
Article
Predicted Effects of Severing Enzymes on the
Length Distribution and Total Mass of Microtubules
Yin-Wei Kuo,1,2 Olivier Trottier,2,3 and Jonathon Howard2,*
1Department of Chemistry, 2Department of Molecular Biophysics and Biochemistry, and 3Department of Physics, Yale University, New Haven,
Connecticut
ABSTRACT Microtubules are dynamic cytoskeletal polymers whose growth and shrinkage are highly regulated as eukaryotic
cells change shape, move, and divide. One family of microtubule regulators includes the ATP-hydrolyzing enzymes spastin, ka-
tanin, and fidgetin, which sever microtubule polymers into shorter fragments. Paradoxically, severases can increase microtubule
number and mass in cells. Recent work with purified spastin and katanin accounts for this phenotype by showing that, in addition
to severing, these enzymes modulate microtubule dynamics by accelerating the conversion of microtubules from their shrinking
to their growing states and thereby promoting their regrowth. This leads to the observed exponential increase in microtubule
mass. Spastin also influences the steady-state distribution of microtubule lengths, changing it from an exponential, as predicted
by models of microtubule dynamic instability, to a peaked distribution. This effect of severing and regrowth by spastin on the
microtubule length distribution has not been explained theoretically. To solve this problem, we formulated and solved a master
equation for the time evolution of microtubule lengths in the presence of severing and microtubule dynamic instability. We then
obtained numerical solutions to the steady-state length distribution and showed that the rate of severing and the speed of micro-
tubule growth are the dominant parameters determining the steady-state length distribution. Furthermore, we found that the
amplification rate is predicted to increase with severing, which is, to our knowledge, a new result. Our results establish a theo-
retical basis for how severing and dynamics together can serve to nucleate new microtubules, constituting a versatile mecha-
nism to regulate microtubule length and mass.
SIGNIFICANCE The numbers and lengths of microtubules are tightly regulated in cells. Severing enzymes
fragment microtubules into shorter filaments and are important for cell division and tissue development. Previous
work has shown that severing can lead to an increase in total microtubule number and mass, but the effect of severing
on microtubule length is not understood quantitatively. Combining mathematical modeling and computational
simulation, we solve the microtubule length distribution in the presence of severing enzymes and explore how
severing activity and microtubule dynamics collectively control microtubule number and length. These results
advance our understanding of the physical basis of severing as a regulatory mechanism shaping the cellular cytoskeletal
network.
INTRODUCTION

The cytoskeleton is a network of filamentous polymers and
is found in all living organisms, including bacteria, plants,
and animals. Microtubules form one component of the eu-
karyotic cytoskeleton. They elongate from their ends by
addition of tubulin subunits and alternate between phases
of slow growth and rapid shrinkage. This alternation, termed
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dynamic instability, causes frequent turnover of polymer
and exchange of tubulin subunits with the soluble pool
(1,2). The dynamics of microtubules can be described quan-
titatively by four parameters: the growth (polymerization)
rate, the shrinkage (depolymerization) rate, the catastrophe
frequency (the transition from the growing to the shrinking
state), and the rescue frequency (the transition from the
shrinking to the growing state) (2,3). As eukaryotic cells un-
dergo cell division, migration, or shape change, microtu-
bule-associated proteins (MAPs) regulate the dynamics of
microtubules so as to alter their numbers and lengths (4).
Much is known about the mechanisms by which MAPs
nucleate microtubules, accelerate growth, promote or inhibit
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Microtubule Length Model with Severing
catastrophe, increase rescue, or induce depolymerization
(5,6). However, the mechanisms by which microtubule-
severing enzymes regulate the microtubule cytoskeleton is
not well understood.

The microtubule-severing enzymes spastin, katanin, and
fidgetin are AAA-ATPases that use the chemical energy of
ATP hydrolysis to sever microtubules into shorter fila-
ments by generating internal breaks in the microtubule lat-
tice (7–9). Microtubule severing, first observed in Xenopus
laevis oocyte extracts (10), was initially thought of as a
destructive process when the first severing enzyme katanin
was discovered (7). Indeed, when katanin and spastin are
overexpressed in tissue culture cells, the amount of micro-
tubule mass is reduced (11–13). However, in vivo experi-
ments showed, paradoxically, that genetic knockdown and
mutations of severases actually reduce microtubule mass
in neurons of flies and fish (14–16) and in the meiotic
spindle of worms (17) and reduce the growth of longitudi-
nal cortical microtubule arrays in plants (18). These
observations suggest that severases have a nucleation-like
activity.

Recent in vitro studies have demonstrated that spastin and
katanin indeed possess nucleation-like activities (19,20).
They promote the regrowth of severed microtubules by
increasing the frequency of rescue and decreasing the
shrinkage velocity and thus lead to a net increase in micro-
tubule number and mass. An extension of the Dogterom
and Leibler dynamic instability model (21) incorporating
severing successfully predicted the exponential amplifica-
tion of total microtubule mass observed in vitro and
confirmed that the modulation of dynamics is essential to in-
crease microtubule number and mass (19). Spastin-mediated
severing also changes the length distribution of microtu-
bules from a monotonically decreasing function to a peaked
function (19). The theoretical basis of this effect, which
makes the microtubules more uniformly distributed in
length, is not understood.

Here, we solve an extended dynamic instability model to
investigate the microtubule length distribution when the
microtubule number and mass are amplified by the combi-
nation of severing and regrowth. Our work builds on earlier
models of actin dynamics (22–25) in which severing is
necessary to keep the mean filament length finite when
the actin concentration is well above the critical concentra-
tion for growth. Severing acts as a negative feedback on
length because longer filaments are cut more frequently.
A similar argument holds for microtubules. However, dy-
namic instability (21) leads to more complex microtubule
behaviors compared to actin, which does not undergo dy-
namic instability. A theoretical model by Tindemans and
Mulder solved the case in which the microtubule number
is constant (26). In this work, we solve the Tindemans
and Mulder model in the case in which the microtubule
number and total polymer mass increase, as is observed
in vitro and in cells.
MATERIALS AND METHODS

Time evolution of microtubule lengths in the
presence of severing and dynamics

In a recent study (19), we solved a generalization of the dynamic instability

model (21) that includes microtubule severing (26):
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The number of growing and shrinkingmicrotubule plus ends of length x at

time t are denoted by n (x, t) and n (x, t), respectively. The four dynamic pa-
g s

rameters are represented by vg, vs, fgs, and fsg: the growth rate, shrinkage rate,

catastrophe frequency, and rescue frequency, respectively. In Eqs. 1 and 2,

the first three terms originate from dynamic instability. The penultimate

term represents the disappearance ofmicrotubules of length x due to severing

(with severing rate k). The last term represents severing of microtubules of

length greater than x into two fragments, one of which has length x.

The model makes several additional assumptions: 1) the new plus end is

shrinking, whereas the new minus end is stable. This is based on the obser-

vation that around 80% of new ends satisfy this property ((18,19,27,28), but

see Vemu et al., who reported a lower percentage, though this might be due

to rapid rescues giving rise to apparent growing ends (20)). A nonzero prob-

ability that newly created plus ends grow can be included within the same

framework and will be discussed later. 2) Microtubule dynamics is domi-

nated by the plus ends. In other words, minus ends are considered ‘‘passive’’

in the sense that they neither grow nor shrink, though a minus end can disap-

pear when the plus end depolymerizes all the way back to the minus end.

This assumption is based on the reduced dynamics of minus ends, which

are often capped or anchored in vivo (5,29). The model could be extended

by also considering minus-end dynamics, but we have omitted this for the

sake of simplicity. 3) Severing is an instantaneous event that takes place sto-

chastically at a random location on the microtubule lattice with uniform

probability. This has experimental support: the location of spastin severing

events on microtubules is consistent with a uniform distribution (Fig. S1).

The severing rate k is constant and has units of length�1,time�1. These as-

sumptions are identical to those made by Tindemans and Mulder.

We solve the equations with the following boundary condition:

ng 0þ; tð Þ ¼ 0 (3)

which corresponds to the absence of stable seeds and without spontaneous

nucleation. This boundary condition differs from the case solved by Tinde-
mans and Mulder, who assumed a constant nucleation rate. In addition, un-

like Tindemans and Mulder, we solve for the case in which the number of

microtubules is increasing, which corresponds to the unbounded growth

regime of the Dogterom and Leibler model.
Computational simulation of the stochastic
severing model

To verify the existence of a length distribution at steady state, we simulated

the stochastic equation for microtubule dynamics that includes severing
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(Eqs. 1 and 2) together with the boundary condition (Eq. 3). The simulation

starts with 100 microtubules whose lengths are sampled randomly from an

exponential distribution, which is motivated by the steady-state solution of

the Dogterom and Leibler dynamic instability model (21). At each time

step, the length and state (growing or shrinking) of microtubules may

change. In the growing state, a microtubule either grows, undergoes catas-

trophe and becomes a shrinking microtubule, or is severed and becomes

shorter. Similarly, in the shrinking state, a microtubule either shrinks, un-

dergoes rescue and becomes a growing microtubule, or is severed and be-

comes shorter. In addition, a microtubule disappears when its plus end

shrinks to its minus end (x ¼ 0), and each severing event creates an addi-

tional shrinking microtubule. Owing to severing and the absence of stable

seeds, the total number of microtubules is not constant, and the length prob-

ability distribution is renormalized at every time point. The model’s input

parameters, which we refer to as the dynamic parameters, are growth rate

vg, shrinkage rate vs, catastrophe frequency fgs, rescue frequency fsg, and

severing rate k. The dynamic parameters in the unbounded growth regime

were obtained from in vitro experiments summarized in Table 1 (19).

The severing activity k is set to 0.05 mm�1,min�1, though the value does

not qualitatively affect the existence of a steady state.
Steady-state length distribution and rate of
microtubule number and mass increase

When the length distribution reaches a steady state, we showed previously

that the above model predicts that the total number N and massM of micro-

tubules increase exponentially with time:

N tð Þ ¼ A e kx�vsps 0þð Þð Þt (4)

M tð Þ ¼ xN tð Þ ¼ A x e kx�vsps 0þð Þð Þt (5)
where A is a positive constant set by initial conditions, ps is the probability

density function of shrinking microtubules, and x refers to the mean length

at steady state (19). The rate constant inside the exponential in Eq. 4 corre-

sponds to the net creation of new microtubules: it is the difference between

the increase in microtubules due to severing ðkxÞ and the decrease due to

minus ends disappearing (vsps(0
þ)).

These equations are a consequence of the assumption that the length dis-

tribution of growing microtubules, pg(x, t), reaches a steady state and so

satisfies

vpg
vt

x; tð Þ ¼ v

vt

ng x; tð Þ
N tð Þ ¼ 1

N

v

vt
ng x; tð Þ � pg

N

vN

vt
tð Þ ¼ 0

(6)

Inserting Eqs. 1 and 4 into Eq. 6 gives the steady-state equation for the

growing microtubule distribution:
TABLE 1 Summary of the Dynamic Parameters Used in the

Model

Model Parameters Input Values

Growth rate vg 0.79 (mm/min)

Shrinkage rate vs 9.9 (mm/min)

Catastrophe frequency fgs 0.098 (min�1)

Rescue frequency fsg 3.12 (min�1)

Severing rate k 0.001–0.25 (mm�1,min�1)

The values used in the mathematical model are from previous experimental

measurements (19). For testing the effect of microtubule dynamics, a

severing rate of 0.05 mm�1,min�1 was used.
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kx � vsps 0
þð Þð Þpg xð Þ ¼ �vg

vpg
vx

xð Þ � fgspg xð Þ

þ fsgps xð Þ � kxpg xð Þ þ k
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x
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(7)

Similarly, the steady-state equation for the shrinking microtubule distri-

bution ps is

kx � vsps 0
þð Þð Þps xð Þ ¼ vs

vps
vx

xð Þ þ fgspg xð Þ � fsgps xð Þ

� kxps xð Þ þ k

ZN

x

p yð Þ þ ps yð Þ½ �dy
(8)

where p ¼ pg þ ps. Summing Eqs. 7 and 8, multiplying both sides by x, and

integrating from 0 to infinity,

kx � vsps 0
þð Þð Þx ¼ vgPg � vsPs (9)

where Pg and Ps are the percentage of growing and shrinking micro-

tubules, respectively. Using Eq. 9 and the fact that Pg and Ps sum to 1,

we get

Ps ¼ vg � x kx � vsps 0
þð Þð Þ

vg þ vs
(10)

vs þ x kx � vsps 0
þð Þð Þ
Pg ¼
vg þ vs

(11)

Integrating Eq. 7 with respect to x from 0 to infinity,

kx � vsps 0
þð Þ þ fgs

� �
Pg ¼ fsgPs (12)

Combining Eqs. 10, 11, and 12, we obtain a characteristic equation (the

same form as previously derived in (19)):

x kx � vsps 0
þð Þð Þ2 þ x fgs þ fsg

� �
kx � vsps 0

þð Þð Þ
þ vs kx � vsps 0

þð Þð Þ � fsgvg � fgsvs
� �

¼ 0 (13)

which is a cubic function of the mean length x and a quadratic function of

ps(0
þ).

The necessary and sufficient condition to find a positive root for kx �
vsps(0

þ), corresponding to the case in which the total mass and number

of microtubule increase, is that the term fsgvg � fgsvs is positive. This

is the unbounded growth regime found in the Dogterom and Leibler

model in which the mean length of microtubules increases indefinitely in

the presence of stable microtubule seeds (21). Another way of stating this

condition is that vg/fgs> vs/fsg: the mean length increase in the growing state

is longer than the mean length decrease in the shrinking state.
Numerical integration of the steady-state
differential equations

Taking derivatives with respect to x of the steady-state equations Eqs. 7 and

8 yields a system of coupled second-order ordinary differential equations

(ODEs):
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vgp
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0
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Evaluating Eqs. 7 and 8 at x¼ 0 gives the boundary conditions of the first

derivatives:
p
0
g 0ð Þ ¼ fsgps 0

þð Þ þ kPg

vg
(16)

0 �v p 0þð Þ2 þ kx þ f
� �
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(17)

Recall that Eq. 13 is a quadratic equation of ps(0
þ) with the root
ps 0
þð Þ ¼ 2kx2 þ a� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ 4x
p

b

2xvs
(18)

where � �

a ¼ x fgs þ fsg þ vs (19)

b ¼ fsgvg � fgsvs (20)
This is the only root of ps(0
þ) that gives a positive value for kx �

v p (0þ), which corresponds to the condition that the total mass and number
s s

increase over time with an amplification rate of

kx � vsps 0
þð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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p
b� a
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Combining these results, the boundary conditions become
0
BB@

pgð0Þ
psð0Þ
p

0
gð0Þ
p

0
sð0Þ

1
CCA ¼

0
BBBBBBBBBBBB@

0

2kx2 þ a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 4xb

p
2xvs

fsgpsð0Þ þ kPg

vg�
kx þ fsg � vspsð0Þ

�
psð0Þ � k � kPs

vs

1
CCCCCCCCCCCCA

(22)

Using the characteristic equation, this set of boundary conditions can

be expressed as a function of x, the mean microtubule length, which is
the only unknown parameter. The steady-state length distribution in

the severing model with dynamic instability is computed numerically

with MATLAB (MathWorks, Natick, MA) using ode15s. To integrate

the solution, the boundary conditions are evaluated using an estimate

for x that is iteratively fine-tuned. When the x estimate deviates from

the true mean length, the solution diverges, and the divergence direction

depends on whether the input x is larger or smaller than the true mean

length (see example in Fig. S2 A; the blue and red curves diverge in

opposite directions). Subsequently, a new estimate for x is calculated

based on the divergence observed in the previous iteration. Specifically,
the x estimate is reduced when a positive divergence was observed and

vice versa. This iteration process terminates when the x estimate and

the mean length calculated from the solution deviate by less than

0.001% (scheme in Fig. S2 B). The final solution converges with a point-

wise accuracy of at least 10�5 mm�1. The parameters of the numerical

solution are based on the experimentally measured values (see Table

1). To explore the effect of dynamics and severing, each single parameter

was altered sequentially.

As a generalization of the model, we allowed newly generated plus ends

to be in the growing state with probability q. In the model above, q¼ 0. The

generalizations of the master equations (Eqs. 1 and 2) are

vng
vt

x; tð Þ ¼ �vg
vng
vx

x; tð Þ � fgsng x; tð Þ þ fsgns x; tð Þ

� kxng x; tð Þ þ k

ZN

x

ng y; tð Þ þ qn y; tð Þ� �
dy

(23)

vns vns

vt

x; tð Þ ¼ vs
vx

x; tð Þ þ fgsng x; tð Þ � fsgns x; tð Þ

� kxns x; tð Þ þ k

ZN

x

ns y; tð Þ þ 1� qð Þn y; tð Þ½ �dy
(24)

where n ¼ ng þ ns. The sum of Eqs. 23 and 24 is identical to the sum of

Eqs. 1 and 2 and is independent of q. At the length distribution steady state,

the microtubule number and mass increase exponentially with time (Eqs. 4

and 5). Following similar methods described above, we can derive the

steady-state length distribution equations as
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The boundary conditions for these coupled ODEs can also be derived as a

function of the mean length x:
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The steady-state length distribution can then be obtained by solving Eqs.

25 and 26 numerically using the aforementioned iteration method and the

boundary condition (Eq. 27).
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Microtubule-severing assay

Bovine brain tubulin was purified as previously described (30). Stabi-

lized microtubules were prepared by polymerizing unlabeled tubulin

with the slowly hydrolyzable GTP analog GMP-CPP (Jena Bioscience,

Jena, Germany) and affixed onto the flow channel surface with anti-

tubulin antibody (clone SAP.4G5; Sigma-Aldrich, St. Louis, MO)

following the previous method (31). Drosophila spastin was expressed

and purified as previously described (19). Severing of the GMP-CPP-sta-

bilized microtubules was performed with 3.5 nM spastin and visualized

by interference reflection microscopy (32) with a frame rate of 0.5 Hz.

Imaging buffer consists of 80 mM K-PIPES (pH 6.9), 1 mM MgCl2,

1 mM EGTA, 50 mM KCl supplemented with 1 mM MgATP and

5 mM dithiothreitol. Analysis of the severing position was done using

Fiji (33).
RESULTS AND DISCUSSION

Existence of the length distribution steady state

To verify that a steady-state length distribution exists, we
performed a stochastic simulation of the microtubule-
severing system (Eqs. 1 and 2, with boundary condition
Eq. 3). The initial lengths of microtubules were randomly
sampled from an exponential distribution with an average
length of 5 mm (Fig. 1, A and B, blue curves). The initial pro-
portion of shrinking microtubules was set to 10%, though
DC
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we found that the system still reached the steady state
regardless of this proportion. The dynamic parameters that
were used in the simulation are based on previous ex-
perimental measurements (Table 1, severing rate k ¼
0.05 mm�1,min�1). The parameters lie in the unbounded
growth regime, meaning that in the absence of severing,
the mean microtubule length would increase indefinitely.

The microtubule length distribution converged to a steady
state, which is peaked and has a decaying tail (Fig. 1 A). The
steady-state shrinking microtubule distribution has a small
fraction of zero-length microtubules, ps(0) (Fig. 1 B); the
disappearance rate of these shrinking microtubules and the
creation rate of new microtubules by severing reach a con-
stant ratio. At steady state, the total number and mass of mi-
crotubules increased exponentially (green solid lines in
Fig. 1, C and D), as predicted by the ODEs (Eqs. 14 and
15) and the characteristic equation (Eq. 13). Furthermore,
when we increased the shrinkage rate and decreased the
rescue frequency to enter the bounded growth regime, in
which fsgvg � fgsvs is negative, the number of microtubules
went to zero (Fig. 1, C andD,magenta dotted curves). Thus,
the stochastic model confirms the existence of a steady state
and that the unbounded growth condition is an essential cri-
terion for amplifying microtubule arrays with severing.
th (µm)
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t=75 min
t=150 min
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d (J= -1.07 µm/min)
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FIGURE 1 Stochastic simulation of microtubule

severing. (A and B) Examples of stochastic simula-

tions showing the temporal evolution of the length

distributions of growing (left) and shrinking (right)

microtubules. (C and D) The total number of mi-

crotubules (left) and total microtubule mass (right)

evolving over time. In the case of unbounded

growth (parameters from Table 1 with k ¼
0.05 mm�1,min�1), both the total number and

the mass of microtubules increase exponentially

(green solid curve in the semi-log plots). In

the case of bounded growth (parameters from

Table 1, but the shrinkage rate is increased to

20 mm/min and the rescue frequency is decreased

to 1 min�1), the microtubules eventually disappear

(magenta dotted curves). The average flux of

tubulin onto each microtubule, J, is equal to

(fsgvg � fgsvs)/(fsg þ fgs). To see this figure in color,

go online.



FIGURE 2 Length distribution of the no-catastrophe model. The analytic

solution to the steady-state length distribution (Eq. 32) is plotted for three

different values of the ratio of the growth rate/severing rate (v/k). As the ra-

tio increases, the lengths increase, and the distribution widens.

Microtubule Length Model with Severing
Simplified no-catastrophe model

In the stochastic simulation, the total number of growing
microtubules is much greater than the number of shrinking
ones. This implies that, on average, microtubules spend
most of their time in the growth phase. This inspired us
to consider a simplified case in which the microtubules
exist only in the growing state, with no catastrophe or
shrinkage events. The approximate solution is valid when
the effect of dynamic instability is relatively small
compared to the net growth, where the tip dynamics can
be approximated as a pure drift process with a small diffu-
sion coefficient.

The time evolution of this simplified model can be ex-
pressed as

vn

vt
x; tð Þ ¼ �v

vn

vx
x; tð Þ � kxn x; tð Þ þ 2k

ZN

x

n y; tð Þdy (28)

where v is the microtubule elongation rate. This equation
follows from Eq. 1 with fsg ¼ 0, fgs ¼ 0, n ¼ ng, ns ¼ 0,
vg ¼ v, and we assume that a new plus end is in the growth
phase. This equation is similar to the integro-differential
equation in Edelstein-Keshet and Ermentrout (22), with
the difference that the factor of 2 in the last term of Eq.
28 is replaced by 1 because only one fragment generated
from severing is taken into account in their model. With
the finite-length assumption, integrating Eq. 28 with respect
to x from 0 to infinity and combining with the boundary con-
dition n(0, t) ¼ 0, we get

vN

vt
tð Þ ¼ kM tð Þ ¼ kx tð ÞN tð Þ (29)

When the length distribution is in the steady state, the to-
tal number and mass of microtubules increase exponentially
with a characteristic time ð1 =kxÞ. The equation for the
length distribution, p(x), is

kxp xð Þ ¼ �v
vp

vx
xð Þ � kxp xð Þ þ 2k

ZN

x

p yð Þdy (30)

Multiplying by x and integrating from 0 to infinity, we
find the following expression for the mean length of the
distribution:

x ¼
ffiffiffi
v

k

r
(31)

Equation 30 can be solved analytically (see Appendix) by
rewriting it as a Hermite differential equation, which is seen
in various physical systems such as the quantum harmonic
oscillator, which models the vibrations of chemical bonds
(34). The final solution is
p xð Þ ¼ k

v

	 
3=2

x2 þ 2

ffiffiffi
v

k

r
x

	 

e

�k x2þ2

ffiffi
v
k

p
x

� �
2 v (32)

The solution is plotted inFig. 2: the curve is peaked, starts at
0 when x ¼ 0, and decays approximately like a Gaussian at
large x. Note that the solution is dependent solely on a single
parameter: the ratio of elongation rate/severing activity v/k.
With increasing v/k, the distribution shifts rightwards (Fig. 2).

An important result is that the no-catastrophe model al-
ways predicts a finite mean length (provided that k > 0).
This is explained by the fact that the severing probability in-
creases with length. Therefore, long microtubules are
quickly shortened by severing, whereas short microtubules
can grow longer before they are severed. This principle
also applies to the scenario with dynamic instability because
the rate to sever a single microtubule will still increase with
polymer length, even in the presence of shrinkage events.
Numerical solution of the dynamic instability with
severing model

To understand the effect of dynamic instability on microtu-
bule length in the presence of severing, we calculated
numerically the steady-state length distributions of growing
and shrinking microtubules, as well as the total microtubule
population, using the ODEs Eqs. 14 and 15 (see Materials
and Methods). These numerical solutions (Fig. 3, A–C)
were in good agreement with the stochastic simulations:
the simulated distributions derived from the partial differen-
tial equations (PDEs) (open circles) are indistinguishable
from the numerical solutions of the ODEs (solid lines).
The close agreement of the distributions implies that the
mean lengths are also in agreement: the mean length of
the numerical solution, 3.991 mm, is close to that of the sto-
chastic simulation, 3.987 mm.
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FIGURE 3 Numerical solution of the steady-state severing model with dynamic instability. Distributions of growing (A) and shrinking (B) microtubules

computed numerically from the ODEs (Eqs. 14 and 15) with boundary conditions (Eq. 22) are plotted for three different severing rates k. The dynamic

parameters used for the solution are contained in Table 1. More frequent cutting leads to the shortening and compaction of length distribution. (C) The

total microtubule length distribution, which is the sum of distributions in (A) and (B). The steady-state distributions from the stochastic simulations (k ¼
0.05 mm�1,min�1) are shown as open circles in (A)–(C) and agree with the ODE solutions. The proportion of shrinking microtubules is much smaller

than that of growing microtubules, so the total distribution is similar to the growing one. (D) A comparison of the experimental length distribution (blue

histogram (19)) with the predicted length distribution (dashed line, k ¼ 0.05 mm�1,min�1). Both distributions have a mean length of �4 mm z
ffiffiffiffiffiffiffiffiffi
vg=k

p
.

(E) Log-log plot of the mean length as a function of the severing rate. The open circles are the mean length obtained from the numerical solution. Black

line is the linear regression of log k and logx (R2 > 0.9999). Red dashed line indicates (v/k)1/2 of the no-catastrophe model case in which v ¼ vg ¼
0.79 mm/min. (F) Severing rate k vs. the amplification rate kx � vsps(0

þ) (solid circles), the average number of cuts on a single microtubule kx (open circles),
and the microtubule disappearance rate vsps(0

þ) (squares). These three functions all increase with severing activity, but the amplification rate quickly reaches

a plateau. To see this figure in color, go online.
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The total microtubule length distribution (Fig. 3 C)
is mainly determined by the growing microtubules
(Fig. 3 A), consistent with the stochastic simulation results,
because growing microtubules are much more abundant (see
Eqs. 10 and 11). The severing activity k has profound effects
on both growing and shrinking microtubules: increasing
severing leads to the tightening of the distribution, reduces
the average length, and increases the disappearance rate
vsps(0

þ).
The model is in good agreement with the experimental re-

sults (19). With a severing rate k ¼ 0.05 mm�1,min�1,
similar to that measured experimentally, the mean length
is �4 mm, and the predicted length distribution (dashed
line in Fig. 3 D) resembles the observed one (Fig. 3 D, his-
togram). We have not attempted to comprehensively test the
model against experiments because several of the experi-
mental parameters are difficult to measure precisely. For
example, severing can be difficult to distinguish from catas-
trophe, and the length distribution is difficult to measure
when microtubule fragments are released from the surface.
Furthermore, the theory makes simplifying assumptions
such as no minus-end growth and the new plus ends always
starting in the shrinking state; the experimental results show
2072 Biophysical Journal 117, 2066–2078, December 3, 2019
that these assumptions only hold approximately. Neverthe-
less, the good agreement between the measured and pre-
dicted steady-state length distributions seen in Fig. 3 D is
a strong qualitative support for the model.

Unexpectedly, when investigating the impact of severing
activity on the mean length, we found that the log-log plot is
highly linear, with a slope of��0.45 when the mean length
(on the y axis) is plotted against the severing rate (Fig. 3 E,
black circles and line). This power law is close to the x f
k�1/2 relation in the no-catastrophe model (Eq. 31). Further
comparison demonstrates that in the presence of dynamic
instability, the mean length is close to the no-catastrophe
case ((v/k)1/2, Fig. 3 E, red dashed line from Eq. 31). This
suggests that the addition of dynamic instability in this
regime has a relatively small impact on the average length,
though we do not have a good explanation for the deviation
from a slope of �1/2.

At steady state, the total microtubule mass and number in-
crease exponentially, and the amplification rate, kx �
vsps(0

þ), is determined by the competition between the
speed of generating new microtubules by cutting and the
disappearance rate of old microtubules (Eqs. 4 and 5).
With increasing severing rate, the average number of cuts
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on a single microtubule kx, as well as the disappearance rate
vsps(0

þ), increases (Fig. 3 F, open circles and open squares).
The amplification rate also increases with the severing rate
(Fig. 3 F, solid circles) but with a lower slope at higher
severing activity. These results demonstrate that faster
severing can lead to faster expansion of the microtubule
network, but the effect quickly saturates with increasing cut-
ting rate because of the shortening of lengths and higher
probability of losing microtubules.
Microtubule growth rate is a key regulator of
length distribution and amplification rate

Motivated by the close resemblance of the mean length in
the full dynamic case and the no-catastrophe model, we
next examined the effect of growth rate vg by solving the
length distribution at a severing rate k ¼ 0.05 mm�1,min�1

with various growth rates, ranging from that measured with
tubulin alone to that measured in high concentrations of the
polymerase XMAP215 (35). Similar to the no-catastrophe
case, higher growth rate leads to longer lengths of microtu-
bules and broader length distributions (Fig. 4, A and B).
Interestingly, the proportion of shrinking microtubules
also increases with growth rate, whereas the disappearance
probability ps(0

þ) is insensitive to this change (Fig. 4 B).
The mean length and polymerization rate also showed a po-
wer-law relation with a power of �0.45 (Fig. 4 C, black cir-
cles and line). Similar to the earlier findings, the mean
length can also be well-approximated by (vg/k)

1/2 (red
dashed line in Fig. 4 C). Owing to the combination of longer
mean length, which increases the average number of cuts
per microtubule, and the invariance of disappearance prob-
ability, the amplification rate kx � vsps(0

þ) shows a strong
A B

C D
increase with the polymerization rate (Fig. 4D, solid circle).
This large increase of the amplification rate with growth rate
compared to the small increase with the severing rate (Fig. 3
F) shows that modulation of the amplification rate is more
effectively achieved by changing the growth rate rather
than the severing rate, even though they both strongly affect
the mean length. Thus, the polymerization rate substantially
affects both the length and amplification rate of the microtu-
bule network.
Steady-state length distribution is insensitive to
other dynamic parameters

Next, we explored how the other dynamic parameters
(shrinkage rate vs, catastrophe fgs, and rescue frequency
fsg) affect the steady-state length distribution. Constrained
by the unbounded growth criterion, which is essential for
increasing microtubule mass with severing, the rescue fre-
quency has a lower bound, and the shrinkage rate and catas-
trophe frequency have upper bounds. We found that these
parameters have a comparably small effect on the steady-
state mean lengths, even when varied over physiologically
relevant ranges attained in the presence of various MAPs
(e.g., EB1 increases catastrophe to �1 min�1 (35), CLASP
increases rescues up to 10 min�1 (36), and spastin and TPX2
decrease shrinkage to �5 mm/min (37)) (Fig. 5, A–C). In all
tested conditions, the change on the mean length was within
0.5 mm (�10%).

As one might expect, a higher catastrophe frequency de-
creases the microtubule length (Fig. 5 A). However, higher
rescue frequency and lower shrinkage rate actually shorten
the steady-state mean length (Fig. 5, B and C), which may
appear to be counterintuitive at first sight. Examining the
FIGURE 4 Effect of growth rate on the steady-

state length distribution. The growing (A) and

shrinking (B) microtubule length distributions

with different growth rates vg. The severing rate

k is 0.05 mm�1,min�1. Faster polymerization rates

increase the mean length and broaden the distribu-

tion. The disappearance probability ps(0
þ) varies

little with the growth rate (see the y-intercept in

B). (C) Steady-state mean length and growth rate

from the numerical solution (circles) show a

power-law relation with a slope close to 1/2 (red

dashed line). (D) Amplification rate kx � vsps(0
þ)

(solid circles), average number of cuts on a single

microtubule kx (open circles), and microtubule

disappearance rate vsps(0
þ) (squares) vs. the

growth rate vg. The mean length increases quickly

with growth rate, whereas the microtubule disap-

pearance rate is much less affected. The amplifica-

tion rate, kx � vsps(0
þ), therefore increases with

faster growth, mainly because of the longer mean

length and the increasing number of cuts on a

single microtubule. To see this figure in color,

go online.
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FIGURE 5 Effects of dynamic parameters on

the steady-state mean length. Higher catastrophe

frequency (A) and rescue frequency (B) shorten

the mean length, whereas increasing the shrinkage

rate leads to a longer average length (C). The mean

length change is small. (D) The mean length de-

pends only weakly on the probability that a newly

generated plus end starts in the growing state, de-

noted by q. Earlier in this analysis we assumed

that q¼ 0. (E) The amplification rate (solid circles)

increases strongly with the probability that a newly

generated plus end starts in the growing state. This

increase is mainly due to the decrease in the rate of

disappearance of microtubules (open squares).
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length distribution in these cases revealed that this is due to
the increasing survival of shorter microtubules. Lower
shrinkage rate leads to an increase in shorter microtubules
for both growing and shrinking states (Fig. S3, A and B).
As opposed to the growth velocity, varying the shrinkage
velocity has a relatively small impact on the growing micro-
tubules (Fig. S3 A) but changes the shrinking microtubule
distribution more prominently (Fig. S3 B). On the other
hand, the rescue frequency modulates both the growing
and shrinking microtubule distributions: a high rescue fre-
quency increases the proportion of short growing microtu-
bules (Fig. S3 C), whereas it decreases the amount of
short shrinking ones (Fig. S3 D). Because of the dominance
of growing microtubules, increasing the rescue frequency
leads to an overall shorter average length (Fig. 5 B). Despite
the mean length depending only weakly on the shrinkage
rate and rescue frequency, they have a more pronounced ef-
fect on the amplification rate by modulating the microtubule
disappearance rate. In conclusion, these results show that
promoting rescue and slowing down shrinkage can decrease
the microtubule disappearance rate and lead to a faster
amplification with little effect on length.
Effect of stabilizing newly generated plus ends

All the modeling thus far has assumed that the new plus
ends generated by severing start in the shrinking phase.
This assumption is based on in vivo and in vitro experi-
mental results showing that �85% of new plus ends are
shrinking (see Materials and Methods). This fraction can
be regulated by plus-end binding proteins such as CLASPs
(27) in cells.

To investigate how the state of the newly created plus
ends affects the microtubule amount and length distribution,
we extended Eqs. 1 and 2 to include the probability (denoted
2074 Biophysical Journal 117, 2066–2078, December 3, 2019
by q) that a newly generated end starts in the growing phase
immediately after severing and obtained the new time evo-
lution equations (Eqs. 23 and 24). The summation of these
two equations is independent of q; thus, the temporal solu-
tions of microtubule number and mass are unchanged, and
both increase exponentially with time when the distribution
reaches a steady state (Eqs. 4 and 5).

The steady-state length distribution can be solved
numerically with the same approach (Eqs. 25, 26, and 27).
Increasing the probability q is analogous to rescue
promotion and leads to a slight shortening of growing mi-
crotubules (Fig. S3 E, the distributions shift left with
higher q) and decreases the proportion of shrinking microtu-
bules (Fig. S3 F).

The steady-state mean length is only weakly perturbed by
the stabilization of the newly generated plus ends (Fig. 5 D)
(using the dynamic parameters in Table 1). Intriguingly, the
disappearance rate of microtubules (vsps(0

þ)) decreases
almost linearly with q (Fig. 5 E, open squares); therefore,
the stabilization of newly created plus ends (q) almost line-
arly increases the amplification rate (Fig. 5 E, solid circles).
Thus, stabilization of severed ends can be a potent method
to generate microtubules with a minor change in their
length.
Comparison to a system with a steady-state
number of microtubules

Previous work by Tindemans and Mulder also investigated
the impact of severing on the steady-state length distribu-
tion. In their scenario, a constant spontaneous nucleation
rate balances the loss of microtubules from shrinkage, lead-
ing to a constant number of microtubules (26). This corre-
sponds to the bounded growth condition in the Dogterom
and Leibler model (fsgvg � fgsvs < 0) (21). In contrast, we
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consider the scenario in which the number of microtubules
is increasing, corresponding to the unbounded growth con-
dition (fsgvg � fgsvs > 0). These two scenarios give rise to
important differences between the length distributions.
First, in the Tindemans and Mulder scenario, the steady-
state microtubule number is independent of the severing
rate, whereas we show that the number increases exponen-
tially with a rate that increases with the severing rate
(Fig. 3 F). Second, in the Tindemans and Mulder scenario,
spontaneous nucleation and the bounded growth condition
together cause a high percentage of very short microtubules,
whereas in our scenario, the proportion of short microtu-
bules is small because of a higher survivability of longer mi-
crotubules (Fig. 3 C). Third, in the Tindemans and Mulder
scenario, the ratio of the total number of growing/shrinking
microtubules is equal to the ratio of the shrinkage/growth
rates, whereas we found that severing introduces an addi-
tional bias toward growing microtubules (Eqs. 10 and 11)
and thus gives rise to an overall increase in the total micro-
tubule mass and number. Last, the power-law relations be-
tween the mean length and the severing or growth
rate arise only in the scenario considered here (Figs. 3 E
and 4 C). Thus, the constraint of constant microtubule num-
ber and the presence of spontaneous nucleation profoundly
affect the length distribution and total microtubule number.

In the Tindemans and Mulder scenario, spontaneous
nucleation is essential to compensate for the loss of shrink-
ing microtubules. This scenario, which may be important in
plant cells, may not be as relevant in animal cells, in which
spontaneous nucleation of microtubules (away from the
centrosome) is normally rare (38,39). Our results suggest
that severing can also serve as a nucleation-like mechanism
that rapidly increases the production of microtubules in the
unbounded growth regime, regardless of the spontaneous
nucleation rate. Indeed, if there is an exponential increase
in new microtubules by severing and regrowth, existing
nuclei or spontaneous nucleation will make decreasing con-
tributions to the total number of new microtubules. How-
ever, if the amplification is autocatalytic, other cellular
mechanisms will be required to stop this activity before
free tubulin is depleted.
The similarity between models with and without
dynamic instability in the presence of severing

Microtubule dynamics measurements in various systems
such as sea urchin and Xenopus egg extracts (40,41),
budding yeast (42), Caenorhabditis elegans (43), and tissue
culture cells (44–46) have shown that the in vivo dynamic
parameters are highly diverse across different species, cell
lines, and cell cycle stages. Growth and shrinkage rates
can span from �0.3 to 20 mm/min and �5–50 mm/min,
respectively. Wide ranges also exist for cellular catastrophe
(�0.3–10 min�1) and rescue frequency (<0.1–20 min�1),
and subsets of highly stable microtubules with little turnover
have been observed in tissue culture cells and neurons
(47,48). Although our simulations have not covered this
entire range, they have shown some general principles of
how severing influences microtubule length and number.

A surprising finding is that the steady-state mean length
can be well-approximated by the no-catastrophe simplified
model (Figs. 3 E and 4 C), implying that in the presence
of severing, the effect of dynamic instability on the length
distribution is fairly small. This phenomenon can be under-
stood by the fact that the total growing time of microtubules
is much longer than the shrinking time and thus approxi-
mates the simplified model in which no shrinking microtu-
bules are present.
Effect of differential severing activity on post-
translational modifications and MAPs

Previous studies have revealed that the severing activities of
spastin, katanin, and fidgetin depend on tubulin post-transla-
tional modifications (PTMs) and on binding of other MAPs.
For example, katanin and spastin preferentially target acet-
ylated and detyrosinated regions, which are common
cellular hallmarks of stable microtubules (49,50). Fidgetin,
on the other hand, has been shown to target the more labile,
tyrosinated microtubules in vertebrate neurons (51,52).
Microtubule stabilizers such as tau (53–56), MAP4 (57),
or MAP65-1 (58) can shield microtubules from severases.
PTMs and MAPs can thus bias the severing events toward
a subset of microtubules in vivo.

Because the mean length in the unbounded growth condi-
tion depends on the severing rate (Fig. 3 E), the activities of
PTM enzymes and the presence of MAPs are expected to
affect the mean length. By contrast, because the rate of in-
crease in microtubule mass is fairly insensitive to the
severing rate (Fig. 3 F), microtubule amplification is ex-
pected to be independent of the PTM enzymes and these
MAPs. Other MAPs that affect dynamic instability parame-
ters are expected to affect microtubule length or amplifica-
tion rate or both. Thus, microtubule length distributions
and amplification are system properties that depend on the
activities of PTM enzymes, the presence of MAPs, and on
which severase is active.
CONCLUSIONS

We have used mathematical modeling to explore how
microtubule dynamics affects the length distribution and
the amplification rate of microtubule number and mass in
the presence of severing. Unexpectedly, dynamic instability
has a small impact on the steady-state length, at least over
observed microtubule dynamics parameters. The microtu-
bule length is mainly governed by the polymerization and
severing rates and can be well-approximated by a simplified
no-catastrophe model, which we have solved analytically.
Rescue frequency, catastrophe frequency, shrinkage rate,
Biophysical Journal 117, 2066–2078, December 3, 2019 2075



Kuo et al.
and the probability that newly severed ends start in the
growing phase perturb the length distribution only weakly
but have a more profound impact on the amplification
rate. Comparison with previous experimental measurements
provides strong qualitative support for our mathematical
model, despite the simplifications such as omitting the
minus-end dynamics and assuming severing as a single-
step instantaneous process.

Cellular microtubule lengths are controlled by various
machineries (59–61), including depolymerases (62–64),
polymerases (65,66), the centrosome (67), severases (68),
and motors (69,70). Our theoretical analysis shows that
microtubule severing, in addition to shortening microtu-
bules, also makes the microtubule length distribution more
uniform. For example, the coefficient of variation of micro-
tubule lengths (standard deviation/mean) is �0.58 for the
parameters used in Table 1 (see Fig. 3 C), whereas it equals
1 for the exponential distribution that solves the Dogterom
and Leibler model under the bounded growth condition in
the absence of severing. In this respect, severing has a
similar functional consequence to the length-dependent de-
polymerase kinesin-8 (62), which also tightens the length
distribution of dynamic microtubules (63,71). Our results
also demonstrate that spastin has an effective nucleation ac-
tivity: the exponential increase in microtubules is a conse-
quence of the microtubule-dependence of severing, and in
this regard, nucleation by severases is analogous to the
explosive nucleation by augmin, which nucleates new mi-
crotubules from the sides of extant microtubules (61,72).
Thus, our analysis provides a quantitative understanding
of how severing and dynamics can jointly regulate the
morphology of microtubule networks.
APPENDIX: ANALYTICAL SOLUTION OF
SIMPLIFIED NO-CATASTROPHE MODEL

The master equation of the simplified no-catastrophe model reduces to the

following integro-differential equation at steady state:

kxpðxÞ ¼ � v
vp

vx
ðxÞ� kxpðxÞþ 2k

ZN

x

pðyÞdy;

pð0Þ ¼ 0;

ZN

0

pðyÞdy ¼ 1; x EQ ¼
ffiffiffi
v

k

r (A1)

First, we differentiate with respect to x to obtain an equivalent second-

order differential equation:

v
v2p

vx2
xð Þ þ k x þ xð Þ vp

vx
xð Þ þ 3kp xð Þ ¼ 0 (A2)

Using the normalization condition on p(x) (Eq. A1), we can derive a

boundary condition for ðvp =vxÞð0Þ that is consistent with the differential

equation:
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Using the substitution v ¼ kx2, the differential equation problem

becomes
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Next, we perform a change of variable to center the distribution around

the mean. Let z ¼ x þ xð Þ=x; the problem becomes
v2p
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By performing the substitution pðzÞ ¼ e�
z2

2 qðzÞ, the differential equation
becomes
v2q
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The second-order ODE is recognized as the Hermite differential equa-

tion for the specific case in which l ¼ 2. The convergent solutions of the

Hermite equation are known as the Hermite polynomials, which were first

described by Pierre-Simon de Laplace and later by Pafnuty Chebyshev and

Charles Hermite in the 1800s. Because we are seeking well-behaved solu-

tions, we require that q(z) be polynomially bounded, and the solution for

q(z) corresponds to the second-order Hermite polynomial

q zð Þ ¼ C z2 � 1
� �

(A7)

where C is a constant that can be determined by the boundary condition.

One notable application of Hermite polynomials in physics is the quantum

harmonic oscillator, in which they give rise to the eigenstates of the Schrö-

dinger equation (34). The solution for Eq. A6 is also found when solving the

wave function of the second excited state in quantum harmonic oscillator

system (vibrational quantum number v ¼ 2 for a one-dimensional molecu-

lar vibrational system).

To satisfy the boundary conditions, we set C ¼
	
e k
v
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. Reverting the

substitutions, the final solution becomes
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