Skip to main content
. 2019 Nov 4;11(11):1725. doi: 10.3390/cancers11111725

Table 3.

Computational methods available for copy number variation estimation from whole exome sequencing data. Tools marked with an asterisk are suitable for both WGS and WES data analysis.

Name Published Control Needed Contamination Correction GC-Content Correction Trained on Cancer Data Cited in 2018 Environment Ref.
Varscan2 2012 + + 2229 Java, Perl, R, Galaxy [21]
CNVnator 2011 + + 767 C++ [86]
CNV-Seq 2009 + 463 Perl, R [87]
CoNIFER 2012 + 378 Python [88]
Control-FREEC * 2012 + + + 342 C, C++, R [89]
ExomeCNV 2011 + + + 338 R [90]
XHMM 2012 + + + 322 C++ [91]
ExomeDepth 2012 + + 264 R [92]
cn.MOPS 2012 + + 249 R [93]
Cnvkit * 2016 + + + + 219 Python, Galaxy [94]
CONTRA 2012 + 194 Python, R [95]
Sequenza * 2015 + + + 167 Python, R [96]
EXCAVATOR 2013 + + + + 155 Perl [97]
CODEX 2015 + + + 72 R [98]
ADTEx 2014 + + + 57 Python, R [99]
Seqgene 2011 + + 43 R [100]
FishingCNV 2013 41 Java, R [101]
HMZDelFinder 2017 33 R [102]
ExoCNVTest 2012 + 27 Java, R [103]
CLAMMS 2016 + 23 C [104]
falcon 2015 + + + 22 C [105]
saasCNV * 2015 + + + 17 R [106]
WISExome 2017 1 C, C++ [107]