Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2019 Nov 29;75(Pt 12):1940–1946. doi: 10.1107/S2056989019015779

Crystal structure, Hirshfeld surface analysis and inter­action energy and DFT studies of 1-methyl-3-(prop-2-yn-1-yl)-2,3-di­hydro-1H-1,3-benzo­diazol-2-one

Asmaa Saber a, Mohamed Srhir a,*, Tuncer Hökelek b, Joel T Mague c, Noureddine Hamou Ahabchane a, Nada Kheira Sebbar d,a, El Mokhtar Essassi a
PMCID: PMC6895944  PMID: 31871762

The di­hydro­benzimidazol-2-one moiety is essentially planar with the prop-2-yn- 1-yl substituent rotated well out of this plane. In the crystal, C—H⋯π(ring) inter­actions and C—H⋯O hydrogen bonds form corrugated layers parallel to (10Inline graphic), which are associated through additional C—H⋯O hydrogen bonds and head-to-tail, slipped, π-stacking inter­actions between di­hydro­benzimidazol-2-one moieties

Keywords: crystal structure, benzimidazol-2-one, hydrogen bond, C—H⋯π(ring) inter­action, π-stacking, Hirshfeld surface

Abstract

In the title mol­ecule, C11H10N2O, the di­hydro­benzimidazol-2-one moiety is essentially planar, with the prop-2-yn-1-yl substituent rotated well out of this plane. In the crystal, C—HMthy⋯π(ring) inter­actions and C—HProp⋯ODhyr (Mthy = methyl, Prop = prop-2-yn-1-yl and Dhyr = di­hydro) hydrogen bonds form corrugated layers parallel to (10Inline graphic), which are associated through additional C—HBnz⋯ODhyr (Bnz = benzene) hydrogen bonds and head-to-tail, slipped, π-stacking [centroid-to-centroid distance = 3.7712 (7) Å] inter­actions between di­hydro­benzimidazol-2-one moieties. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (44.1%), H⋯C/C⋯H (33.5%) and O⋯H/H⋯O (13.4%) inter­actions. Hydrogen-bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packing. Computational chemistry calculations indicate that in the crystal, C—H⋯O hydrogen-bond energies are 46.8 and 32.5 (for C—HProp⋯ODhyr) and 20.2 (for C—HBnz⋯ODhyr) kJ mol−1. Density functional theory (DFT) optimized structures at the B3LYP/6–311 G(d,p) level are compared with the experimentally determined mol­ecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.

Chemical context  

Benzimidazole is an aromatic heterocyclic organic compound that plays an important role in medicinal chemistry and pharmacology. The most prominent benzimidazole moiety present in nature is N-ribosyl-di­methyl­benzimidazole and it serves as the axial ligand for cobalt in vitamin B12 (Walia et al., 2011). Benzimidazole derivatives possess many biological activities such as anti-microbial, anti-fungal, anti-histaminic, anti-inflammatory, anti-viral, anti-oxidant, anti-cancer and anti-ulcerative (Farukh & Mubashira, 2009; Ayhan-Kılcıgil et al., 2007; Soderlind et al., 1999; Luo et al., 2011; Navarrete-Vázquez et al., 2011). They are considered to be an important moiety for the development of mol­ecules of pharmaceutical inter­est (Mondieig et al., 2013; Lakhrissi et al., 2008). As a continuation of our research on the development of N-substituted benzimidazole derivatives and the evaluation of their potential pharmacological activities (Saber et al., 2018a ,b , 2020; Ouzidan et al., 2011), we have studied the alkyl­ation reaction of iodo­methane with 1-(prop-2-yn­yl)-1H-benzoimidazol-2(3H)-one in the presence of tetra-n-butyl­ammonium bromide as catalyst and potassium carbonate as base, to give the title compound, I in good yield. We report herein on its synthesis, the mol­ecular and crystal structures along with the Hirshfeld surface analysis and the inter­molecular inter­action energies and the density functional theory (DFT) computational calculations carried out at the B3LYP/6–311 G(d,p) level for comparison with the experimentally determined mol­ecular structure in the solid state.graphic file with name e-75-01940-scheme1.jpg

Structural commentary  

In the title compound, the di­hydro­benzimidazol-2-one moiety is planar to within 0.0160 (8) Å (r.m.s. deviation = 0.0082) with atom C7 deviating the most from the mean plane and a prop-2-yn-1-yl substituent rotated well out of this plane as shown by the C1—N2—C9—C10 torsion angle of 62.16 (13)° (Fig. 1).

Figure 1.

Figure 1

The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, inversion dimers are formed by pairs of C—HMthyCg1i inter­actions [Mthy = methyl; symmetry code: (i) − x, 1 − y, 1 − z; Cg1 is the centroid of the benzene (A; C1–C6), ring]; which are connected along the b-axis direction by C—HBnz⋯ODhyr hydrogen bonds (Bnz = benzene and Dhyr = di­hydro) and along the a-axis direction at ca 90° to this and parallel to (10Inline graphic) by inversion-related C—HProp⋯ODhyr hydrogen bonds (Table 1). The resulting corrugated layers are parallel to (10Inline graphic) and are connected in pairs by slipped, head-to-tail π-stacking inter­actions between the di­hydro­benzimidazol-2-one moieties, [Cg2⋯Cg1ii = 3.7712 (7) Å, dihedral angle = 0.96 (6)°; symmetry code: (ii) 1 – x, 1 – y, 1 – z; Cg1 and Cg2 are the centroids of rings A and B (N1/N2/C1/C6/C7) and C—HProp⋯ODhyr (Prop = prop-2-yn-1-yl) hydrogen bonds (Table 1, Figs. 2 and 3).

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1ix 1.005 (15) 2.566 (15) 3.4885 (15) 152.6 (11)
C8—H8CCg1v 1.004 (16) 2.626 (15) 3.5413 (13) 151.1 (12)
C9—H9B⋯O1vi 0.978 (15) 2.347 (15) 3.3198 (14) 172.9 (12)
C11—H11⋯O1vii 1.010 (15) 2.181 (15) 3.1569 (15) 162.1 (12)

Symmetry codes: (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (ix) Inline graphic.

Figure 2.

Figure 2

A partial packing diagram viewed along the a-axis direction with C—H⋯O hydrogen bonds, C—H⋯π(ring) and π-stacking inter­actions shown, respectively, by black, green and orange dashed lines.

Figure 3.

Figure 3

A partial packing diagram viewed along the b-axis direction with inter­molecular inter­actions depicted as in Fig. 2.

Hirshfeld surface analysis  

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out using Crystal Explorer 17.5 (Turner et al., 2017). In the HS plotted over d norm (Fig. 4), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distant contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near O1 and the hydrogen atom H11 indicate their roles as the donors and/or acceptors, respectively; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008; Jayatilaka et al., 2005) as shown in Fig. 5. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors). The shape-index of the HS is a tool to visualize π–π stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no π–π inter­actions. Fig. 6 clearly suggests that there are π– π inter­actions in (I).

Figure 4.

Figure 4

View of the three-dimensional Hirshfeld surface of the title compound plotted over d norm in the range −0.3997 to 1.3219 a.u.

Figure 5.

Figure 5

View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.

Figure 6.

Figure 6

Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 7 a, and those delineated into H⋯H, H⋯C/C⋯H, H⋯O/O ⋯ H, C⋯C, H⋯N/N⋯H and N⋯C/C⋯N contacts (McKinnon et al., 2007) are illustrated in Fig. 7 bg, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H contributing 44.1% to the overall crystal packing, which is reflected in Fig. 7 b as widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at d e = d i = 1.22 Å. The presence of C—H⋯π inter­actions gives rise to pairs of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts, Fig. 7 c., contributing 33.5% to the HS (Table 2); these are viewed as pairs of spikes with the tips at d e + d i = 2.56 Å. The pair of wings in Fig. 7 d has a symmetrical distribution of points with the edges at d e + d i = 2.09 Å arising from the H⋯O/O⋯H contacts (13.4% contribution). The C⋯C contacts, Fig. 7 e, have an arrow-shaped distribution of points with the tip at d e = d i = 1.75 Å. The H⋯N/N⋯N contacts, contributing 2.9% to the overall crystal packing, are depicted in Fig. 7 f as widely scattered points. Finally, the N⋯C/C⋯N inter­actions, contributing 2.4% to the overall crystal packing, are shown in Fig. 7 g as tiny characteristic wings with the tips at d e + d i = 3.45 Å.

Figure 7.

Figure 7

The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) C⋯C, (f) H⋯N/N⋯H and (g) N⋯C/C⋯N inter­actions. The d i and d e values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface contacts.

Table 2. Selected interatomic distances (Å).

O1⋯H9A 2.491 (14) C11⋯O1vii 3.1569 (15)
O1⋯H3i 2.566 (15) C2⋯H8A iv 2.82 (2)
O1⋯H8B 2.516 (19) C3⋯H8C v 2.859 (15)
O1⋯H9B ii 2.346 (14) C3⋯H8A iv 2.92 (2)
O1⋯H11iii 2.181 (15) C4⋯H8C v 2.810 (15)
C2⋯C10 3.3889 (16) C5⋯H8C v 2.935 (15)
C3⋯C8iv 3.5335 (17) C8⋯H5 2.983 (14)
C4⋯C8v 3.4947 (17) C9⋯H2 2.975 (14)
C4⋯C7iv 3.5437 (16) C10⋯H4viii 2.976 (15)
C5⋯C8v 3.5884 (17) C11⋯H5iv 2.865 (15)
C6⋯C6iv 3.5349 (14) C11⋯H4viii 2.705 (15)
C9⋯O1vi 3.3198 (14)    

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

The Hirshfeld surface representations with the function d norm plotted onto the surface are shown for the H⋯H, H⋯C/C⋯H and H⋯O/O⋯H inter­actions in Fig. 8 ac, respectively.

Figure 8.

Figure 8

The Hirshfeld surface representations with the function d norm plotted onto the surface for (a) H⋯H, (b) H⋯C/C⋯H and (c) H⋯O/O⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯H, H⋯C/C⋯H and H⋯ O/O⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).

Inter­action energy calculations  

The inter­molecular inter­action energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in CrystalExplorer17.5 (Turner et al., 2017), where a cluster of mol­ecules is generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within the default radius of 3.8 Å (Turner et al., 2014). The total inter­molecular energy (E tot) is the sum of electrostatic (E ele), polarization (E pol), dispersion (E dis) and exchange-repulsion (E rep) energies (Turner et al., 2015) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017). Hydrogen-bonding inter­action energies (in kJ mol−1) were calculated to be −17.4 (E ele), −3.5 (E pol), −62.6 (E dis), 46.5 (E rep) and −46.8 (E tot) for C11—H11⋯O1, −12.4 (E ele), −1.9 (E pol), −41.6 (E dis), 29.6 (E rep) and −32.5 (E tot) for C9—H9B⋯O1 and −13.7 (E ele), −3.7 (E pol), −15.5 (E dis), 17.0 (E rep) and −20.2 (E tot) for C3—H3⋯O1.

DFT calculations  

The optimized structure of the title compound in the gas phase was generated theoretically via density functional theory (DFT) using the standard B3LYP functional and 6–311 G(d,p) basis-set calculations (Becke, 1993) as implemented in GAUSSIAN 09 (Frisch et al., 2009). The theoretical and experimental results are in good agreement (Table 3). The highest-occupied mol­ecular orbital (HOMO), acting as an electron donor, and the lowest-unoccupied mol­ecular orbital (LUMO), acting as an electron acceptor, are very important parameters for quantum chemistry. When the energy gap is small, the mol­ecule is highly polarizable and has high chemical reactivity. The DFT calculations provide some important information on the reactivity and site selectivity of the mol­ecular framework. E HOMO and E LUMO clarify the inevitable charge-exchange collaboration inside the studied material and are given in Table 4 along with the electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ). The significance of η and σ is for the evaluation of both the reactivity and stability. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 9. The HOMO and LUMO are localized in the plane extending from the whole 1-methyl-3-(prop-2-yn-1-yl)-2,3-di­hydro-1H-1,3-benzo­diazol-2-one ring. The energy band gap [ΔE = E LUMOE HOMO] of the mol­ecule is about 5.4115 eV, and the frontier mol­ecular orbital energies, E HOMO and E LUMO are −5.8885 and −0.4770 eV, respectively.

Table 3. Comparison of the selected (X-ray and DFT) geometric data (Å, °).

Bonds/angles X-ray B3LYP/6–311 G(d,p)
O1—C7 1.2281 (13) 1.24660
N1—C7 1.3735 (14) 1.39764
N1—C6 1.3874 (15) 1.40100
N1—C8 1.4526 (14) 1.45375
N2—C7 1.3807 (14) 1.40268
N2—C1 1.3910 (13) 1.40222
N2—C9 1.4545 (14) 1.46036
C7—N1—C6 110.19 (9) 110.10303
C7—N1—C8 124.14 (10) 122.94288
C6—N1—C8 125.66 (10) 126.95366
C7—N2—C1 110.16 (9) 110.18664
C7—N2—C9 123.55 (9) 122.02491
C1—N2—C9 126.00 (9) 126.78733
C2—C1—N2 131.64 (10) 132.00719

Table 4. Calculated energies for the title compound.

Mol­ecular Energy (a.u.) (eV)  
Total Energy TE (eV) −16594.1662
E HOMO (eV) −5.8885
E LUMO (eV) −0.4770
Energy gap, ΔE (eV) 5.4115
Dipole moment, μ (Debye) 2.8313
Ionization potential, I (eV) 5.8885
Electron affinity, A 2.6040
Electro negativity, χ 0.31828
Hardness, η 2.7058
Electrophilicity index, ω 1.8719
Softness, σ 0.3696
Fraction of electron transferred, ΔN 0.7054

Figure 9.

Figure 9

The energy band gap of the title compound.

Database survey  

The syntheses of several N-substituted benzimidazol-2-one analogues have been reported (Saber et al., 2018a ,b ; 2020; Belaziz et al., 2012; Bouayad et al., 2015; Belaziz et al., 2013). In a search of the Cambridge Crystallographic Database (CSD; Version 5.40, update of September 2019; Groom et al., 2016) using benzimidazol-2-one with an exocyclic carbon atom bound to each nitro­gen generated 94 hits. In these, the bicyclic ring system is either planar, has a slight twist end-to-end, or, in the cases where the exocyclic substituents form a ring, has a very shallow bowl shape.graphic file with name e-75-01940-scheme2.jpg

The closest examples to the title compound, I, are II (HISFUN; Saber et al., 2018b ), III (URAQAG; Ouzidan et al., 2011a ) and IV (AGAXOX; Kandri Rodi et al., 2013). In the title compound, the C—N bonds to the exocyclic groups are 1.4526 (14) and 1.4545 (19) Å while in IIIV the corresponding distances range from 1.445 (3) to 1.4632 (11) Å, and so are quite comparable. The exocyclic groups in I are in an anti-arrangement with the prop-2-yn-1-yl group rotated by 62.16 (13)° out of the plane of the bicyclic moiety (as measured by the C1—N2—C9—C10 torsion angle). In the other three, these substituents are also anti and in II the corresponding torsion angle is 73.46 (18)° while in III they are 82.58 (15) and 74.31 (14)°. In IV the torsion angles are 106.0 (3) and 113.4 (3)° indicating a rotation in the opposite direction from the first three.

Synthesis and crystallization  

To a mixture of 1-(prop-2-yn­yl)-1H-benzimidazol-2(3H)-one (3.61 mmol), iodo­methane (6.73 mmol) and potassium carbonate (6.24 mmol) in DMF (15 ml) was added a catalytic amount of tetra-n-butyl­ammonium bromide (0.37 mmol). The mixture was stirred for 24 h. The solid material was removed by filtration and the solvent evaporated under vacuum. The solid product was purified by recrystallization from ethanol to afford colorless crystals (yield: in 82%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. Hydrogen atoms were located in a difference Fourier map and refined freely.

Table 5. Experimental details.

Crystal data
Chemical formula C11H10N2O
M r 186.21
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 7.1507 (3), 8.8177 (4), 15.4602 (7)
β (°) 97.914 (2)
V3) 965.52 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.68
Crystal size (mm) 0.32 × 0.31 × 0.12
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.83, 0.92
No. of measured, independent and observed [I > 2σ(I)] reflections 6896, 1812, 1679
R int 0.030
(sin θ/λ)max−1) 0.610
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.033, 0.086, 1.06
No. of reflections 1812
No. of parameters 168
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.18, −0.19

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ), DIAMOND (Brandenburg & Putz, 2012) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019015779/lh5936sup1.cif

e-75-01940-sup1.cif (225KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019015779/lh5936Isup2.hkl

e-75-01940-Isup2.hkl (145.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019015779/lh5936Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989019015779/lh5936Isup4.cml

CCDC reference: 1967468

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C11H10N2O F(000) = 392
Mr = 186.21 Dx = 1.281 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54178 Å
a = 7.1507 (3) Å Cell parameters from 5848 reflections
b = 8.8177 (4) Å θ = 5.8–70.1°
c = 15.4602 (7) Å µ = 0.68 mm1
β = 97.914 (2)° T = 150 K
V = 965.52 (7) Å3 Plate, colourless
Z = 4 0.32 × 0.31 × 0.12 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 1812 independent reflections
Radiation source: INCOATEC IµS micro-focus source 1679 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.030
Detector resolution: 10.4167 pixels mm-1 θmax = 70.1°, θmin = 5.8°
ω scans h = −8→8
Absorption correction: multi-scan (SADABS; Krause et al., 2015) k = −10→9
Tmin = 0.83, Tmax = 0.92 l = −18→18
6896 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 All H-atom parameters refined
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.2239P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
1812 reflections Δρmax = 0.18 e Å3
168 parameters Δρmin = −0.19 e Å3
0 restraints Extinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dual Extinction coefficient: 0.0100 (12)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.31019 (11) 0.82725 (9) 0.64517 (6) 0.0345 (2)
N1 0.24854 (12) 0.64929 (11) 0.53316 (6) 0.0280 (2)
N2 0.36075 (12) 0.56773 (10) 0.66470 (6) 0.0250 (2)
C1 0.33940 (14) 0.44082 (11) 0.61080 (7) 0.0235 (2)
C2 0.37638 (15) 0.28918 (12) 0.62754 (8) 0.0289 (3)
H2 0.426 (2) 0.2543 (16) 0.6872 (10) 0.039 (4)*
C3 0.34025 (16) 0.18941 (14) 0.55731 (8) 0.0353 (3)
H3 0.364 (2) 0.0783 (17) 0.5684 (10) 0.043 (4)*
C4 0.27117 (17) 0.24106 (15) 0.47421 (8) 0.0378 (3)
H4 0.246 (2) 0.1678 (17) 0.4255 (10) 0.046 (4)*
C5 0.23359 (16) 0.39392 (15) 0.45751 (7) 0.0339 (3)
H5 0.190 (2) 0.4305 (16) 0.3992 (10) 0.042 (4)*
C6 0.26803 (14) 0.49324 (12) 0.52720 (7) 0.0255 (3)
C7 0.30715 (14) 0.69684 (12) 0.61712 (7) 0.0260 (2)
C8 0.17860 (17) 0.75002 (16) 0.46162 (8) 0.0381 (3)
H8A 0.255 (3) 0.747 (2) 0.4146 (13) 0.076 (6)*
H8B 0.176 (3) 0.854 (2) 0.4867 (13) 0.072 (5)*
H8C 0.044 (2) 0.7264 (17) 0.4370 (10) 0.047 (4)*
C9 0.44506 (16) 0.56993 (13) 0.75585 (7) 0.0283 (3)
H9A 0.4344 (19) 0.6753 (16) 0.7764 (9) 0.033 (3)*
H9B 0.376 (2) 0.5012 (16) 0.7898 (9) 0.038 (3)*
C10 0.64427 (15) 0.52362 (12) 0.76752 (7) 0.0281 (3)
C11 0.80385 (17) 0.48197 (14) 0.77883 (8) 0.0342 (3)
H11 0.938 (2) 0.4443 (17) 0.7926 (10) 0.050 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0298 (4) 0.0254 (4) 0.0471 (5) 0.0006 (3) 0.0015 (3) −0.0012 (3)
N1 0.0239 (4) 0.0309 (5) 0.0277 (5) −0.0020 (3) −0.0012 (4) 0.0074 (4)
N2 0.0254 (5) 0.0249 (5) 0.0236 (4) 0.0005 (3) −0.0007 (3) −0.0007 (3)
C1 0.0196 (5) 0.0264 (5) 0.0244 (5) −0.0023 (4) 0.0028 (4) −0.0014 (4)
C2 0.0249 (5) 0.0281 (6) 0.0337 (6) −0.0008 (4) 0.0041 (4) 0.0011 (4)
C3 0.0298 (6) 0.0300 (6) 0.0469 (7) −0.0021 (4) 0.0088 (5) −0.0072 (5)
C4 0.0339 (6) 0.0427 (7) 0.0384 (6) −0.0083 (5) 0.0107 (5) −0.0158 (5)
C5 0.0286 (6) 0.0486 (7) 0.0248 (6) −0.0089 (5) 0.0048 (4) −0.0032 (5)
C6 0.0207 (5) 0.0307 (6) 0.0254 (5) −0.0046 (4) 0.0037 (4) 0.0014 (4)
C7 0.0189 (5) 0.0261 (5) 0.0328 (6) −0.0007 (4) 0.0025 (4) 0.0025 (4)
C8 0.0294 (6) 0.0450 (7) 0.0380 (7) −0.0013 (5) −0.0019 (5) 0.0189 (6)
C9 0.0296 (6) 0.0332 (6) 0.0218 (5) 0.0004 (4) 0.0019 (4) −0.0014 (4)
C10 0.0333 (6) 0.0293 (5) 0.0206 (5) −0.0018 (4) −0.0004 (4) 0.0014 (4)
C11 0.0330 (6) 0.0381 (6) 0.0298 (6) 0.0022 (5) −0.0016 (4) 0.0030 (5)

Geometric parameters (Å, º)

O1—C7 1.2281 (13) C4—C5 1.3915 (19)
N1—C7 1.3735 (14) C4—H4 0.989 (16)
N1—C6 1.3874 (15) C5—C6 1.3839 (16)
N1—C8 1.4526 (14) C5—H5 0.967 (15)
N2—C7 1.3807 (14) C8—H8A 0.97 (2)
N2—C1 1.3910 (13) C8—H8B 0.99 (2)
N2—C9 1.4545 (14) C8—H8C 1.004 (16)
C1—C2 1.3805 (15) C9—C10 1.4689 (16)
C1—C6 1.4011 (14) C9—H9A 0.988 (14)
C2—C3 1.3937 (17) C9—H9B 0.978 (15)
C2—H2 0.991 (15) C10—C11 1.1885 (17)
C3—C4 1.3883 (19) C11—H11 1.009 (16)
C3—H3 1.005 (15)
O1···H9A 2.491 (14) C11···O1vii 3.1569 (15)
O1···H3i 2.566 (15) C2···H8Aiv 2.82 (2)
O1···H8B 2.516 (19) C3···H8Cv 2.859 (15)
O1···H9Bii 2.346 (14) C3···H8Aiv 2.92 (2)
O1···H11iii 2.181 (15) C4···H8Cv 2.810 (15)
C2···C10 3.3889 (16) C5···H8Cv 2.935 (15)
C3···C8iv 3.5335 (17) C8···H5 2.983 (14)
C4···C8v 3.4947 (17) C9···H2 2.975 (14)
C4···C7iv 3.5437 (16) C10···H4viii 2.976 (15)
C5···C8v 3.5884 (17) C11···H5iv 2.865 (15)
C6···C6iv 3.5349 (14) C11···H4viii 2.705 (15)
C9···O1vi 3.3198 (14)
C7—N1—C6 110.19 (9) C5—C6—N1 132.12 (10)
C7—N1—C8 124.14 (10) C5—C6—C1 120.83 (11)
C6—N1—C8 125.66 (10) N1—C6—C1 107.04 (9)
C7—N2—C1 110.16 (9) O1—C7—N1 127.43 (10)
C7—N2—C9 123.55 (9) O1—C7—N2 126.43 (10)
C1—N2—C9 126.00 (9) N1—C7—N2 106.14 (9)
C2—C1—N2 131.64 (10) N1—C8—H8A 112.7 (12)
C2—C1—C6 121.90 (10) N1—C8—H8B 106.7 (11)
N2—C1—C6 106.45 (9) H8A—C8—H8B 111.1 (16)
C1—C2—C3 117.07 (11) N1—C8—H8C 111.9 (9)
C1—C2—H2 120.7 (8) H8A—C8—H8C 108.5 (15)
C3—C2—H2 122.3 (8) H8B—C8—H8C 105.7 (13)
C4—C3—C2 121.20 (11) N2—C9—C10 112.38 (9)
C4—C3—H3 120.5 (9) N2—C9—H9A 106.5 (8)
C2—C3—H3 118.3 (9) C10—C9—H9A 109.8 (8)
C3—C4—C5 121.63 (11) N2—C9—H9B 109.9 (8)
C3—C4—H4 119.6 (9) C10—C9—H9B 108.2 (8)
C5—C4—H4 118.8 (9) H9A—C9—H9B 110.1 (11)
C6—C5—C4 117.35 (11) C11—C10—C9 177.63 (12)
C6—C5—H5 120.9 (8) C10—C11—H11 176.1 (9)
C4—C5—H5 121.7 (8)
C7—N2—C1—C2 178.91 (11) C2—C1—C6—C5 −0.69 (15)
C9—N2—C1—C2 4.89 (17) N2—C1—C6—C5 178.96 (9)
C7—N2—C1—C6 −0.69 (11) C2—C1—C6—N1 −179.67 (9)
C9—N2—C1—C6 −174.72 (9) N2—C1—C6—N1 −0.02 (11)
N2—C1—C2—C3 −179.33 (10) C6—N1—C7—O1 179.51 (10)
C6—C1—C2—C3 0.23 (15) C8—N1—C7—O1 0.13 (17)
C1—C2—C3—C4 0.37 (16) C6—N1—C7—N2 −1.13 (11)
C2—C3—C4—C5 −0.54 (18) C8—N1—C7—N2 179.49 (9)
C3—C4—C5—C6 0.08 (17) C1—N2—C7—O1 −179.51 (10)
C4—C5—C6—N1 179.20 (11) C9—N2—C7—O1 −5.31 (16)
C4—C5—C6—C1 0.52 (15) C1—N2—C7—N1 1.12 (11)
C7—N1—C6—C5 −178.10 (11) C9—N2—C7—N1 175.32 (9)
C8—N1—C6—C5 1.27 (18) C7—N2—C9—C10 −111.11 (11)
C7—N1—C6—C1 0.72 (11) C1—N2—C9—C10 62.16 (13)
C8—N1—C6—C1 −179.91 (9)

Symmetry codes: (i) x, y+1, z; (ii) −x+1/2, y+1/2, −z+3/2; (iii) −x+3/2, y+1/2, −z+3/2; (iv) −x+1, −y+1, −z+1; (v) −x, −y+1, −z+1; (vi) −x+1/2, y−1/2, −z+3/2; (vii) −x+3/2, y−1/2, −z+3/2; (viii) x+1/2, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H···A D—H H···A D···A D—H···A
C3—H3···O1ix 1.005 (15) 2.566 (15) 3.4885 (15) 152.6 (11)
C8—H8C···Cg1v 1.004 (16) 2.626 (15) 3.5413 (13) 151.1 (12)
C9—H9B···O1vi 0.978 (15) 2.347 (15) 3.3198 (14) 172.9 (12)
C11—H11···O1vii 1.010 (15) 2.181 (15) 3.1569 (15) 162.1 (12)

Symmetry codes: (v) −x, −y+1, −z+1; (vi) −x+1/2, y−1/2, −z+3/2; (vii) −x+3/2, y−1/2, −z+3/2; (ix) x, y−1, z.

Funding Statement

This work was funded by National Science Foundation grant 1228232. Tulane University grant . Hacettepe Üniversitesi grant 013 D04 602 004 to T. Hökelek.

References

  1. Ayhan-Kılcıgil, G., Kus, G., Özdamar, E. D., Can-Eke, B. & Iscan, M. (2007). Arch. Pharm. Chem. Life Sci. 340, 607–611. [DOI] [PubMed]
  2. Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.
  3. Belaziz, D., Kandri Rodi, Y., Essassi, E. M. & El Ammari, L. (2012). Acta Cryst. E68, o1276. [DOI] [PMC free article] [PubMed]
  4. Belaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o122. [DOI] [PMC free article] [PubMed]
  5. Bouayad, K., Kandri Rodi, Y., Ouzidan, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, o735–o736. [DOI] [PMC free article] [PubMed]
  6. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  7. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
  8. Farukh, A. & Mubashira, A. (2009). Eur. J. Med. Chem. 44, 834–844.
  9. Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US
  10. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  11. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  12. Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.
  13. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO – A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
  14. Kandri Rodi, Y., Misbahi, K., El-Ghayoury, A., Zorina, L., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1159. [DOI] [PMC free article] [PubMed]
  15. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  16. Lakhrissi, B., Benksim, A., Massoui, M., Essassi, E. M., Lequart, V., Joly, N., Beaupère, D., Wadouachi, A. & Martin, P. (2008). Carbohydr. Res. 343, 421–433. [DOI] [PubMed]
  17. Luo, Y., Yao, J. P., Yang, L., Feng, C. L., Tang, W., Wang, G. F., Zuo, J. P. & Lu, W. (2011). Arch. Pharm. Pharm. Med. Chem. 344, 78–83. [DOI] [PubMed]
  18. Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. [DOI] [PMC free article] [PubMed]
  19. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  20. Mondieig, D., Lakhrissi, L., El Assyry, A., Lakhrissi, B., Negrier, P., Essassi, E. M., Massoui, M., Michel Leger, J. & Benali, B. (2013). J. Mar. Chim. Heterocycl. 12, 51–61.
  21. Navarrete-Vázquez, G., Cedillo, R., Hernández-Campos, A., Yépez, L., Hernández-Luis, F., Valdez, J., Morales, R., Cortés, R., Hernández, M. & Castillo, R. (2011). Bioorg. Med. Chem. 11, 187–190. [DOI] [PubMed]
  22. Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011). Acta Cryst. E67, o362–o363. [DOI] [PMC free article] [PubMed]
  23. Ouzidan, Y., Kandri Rodi, Y., Jasinski, J. P., Butcher, R. J., Golen, J. A. & El Ammari, L. (2011a). Acta Cryst. E67, o1091. [DOI] [PMC free article] [PubMed]
  24. Saber, A., Sebbar, N. K., Hökelek, T., El hafi, M., Mague, J. T. & Essassi, E. M. (2018b). Acta Cryst. E74, 1842–1846. [DOI] [PMC free article] [PubMed]
  25. Saber, A., Sebbar, N. K., Hökelek, T., Hni, B., Mague, J. T. & Essassi, E. M. (2018a). Acta Cryst. E74, 1746–1750. [DOI] [PMC free article] [PubMed]
  26. Saber, A., Sebbar, N. K., Sert, Y., Alzaqri, N., Hökelek, T., El Ghayati, L., Talbaoui, A., Mague, J. T., Filali Baba, Y., Urrutigoîty, M. & Essassi, E. M. (2020). J. Mol. Struct. 1200, 127174.
  27. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  28. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  29. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  30. Soderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. & Lown, J. W. (1999). Anticancer Drug. Des. 14, 19–36. [PubMed]
  31. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  32. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  33. Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. [DOI] [PubMed]
  34. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.
  35. Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. [DOI] [PubMed]
  36. Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636. [DOI] [PubMed]
  37. Walia, R., Hedaitullah, M., Naaz, S. F., Iqbal, K. & Lamba, H. S. (2011). Int. J. Res. Pharm. Chem. 1, 565–574.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989019015779/lh5936sup1.cif

e-75-01940-sup1.cif (225KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989019015779/lh5936Isup2.hkl

e-75-01940-Isup2.hkl (145.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989019015779/lh5936Isup3.cdx

Supporting information file. DOI: 10.1107/S2056989019015779/lh5936Isup4.cml

CCDC reference: 1967468

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES