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Abstract: Pancreatic Ductal Adenocarcinoma (PDAC) is a particularly insidious and aggressive
disease that causes significant mortality worldwide. The direct correlation between PDAC incidence,
disease progression, and mortality highlights the critical need to understand the mechanisms by which
PDAC cells rapidly progress to drive metastatic disease in order to identify actionable vulnerabilities.
One such proposed vulnerability is epithelial mesenchymal plasticity (EMP), a process whereby
neoplastic epithelial cells delaminate from their neighbours, either collectively or individually, allowing
for their subsequent invasion into host tissue. This disruption of tissue homeostasis, particularly in
PDAC, further promotes cellular transformation by inducing inflammatory interactions with the
stromal compartment, which in turn contributes to intratumoural heterogeneity. This review describes
the role of EMP in PDAC, and the preclinical target discovery that has been conducted to identify
the molecular regulators and effectors of this EMP program. While inhibition of individual targets
may provide therapeutic insights, a single ‘master-key’ remains elusive, making their collective
interactions of greater importance in controlling the behaviours’ of heterogeneous tumour cell
populations. Much work has been undertaken to understand key transcriptional programs that drive
EMP in certain contexts, however, a collaborative appreciation for the subtle, context-dependent
programs governing EMP regulation is needed in order to design therapeutic strategies to curb
PDAC mortality.
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1. Pancreatic Cancer, Tumour Heterogeneity, and Carcinoma Vulnerabilities

Pancreatic cancer (PC) is the fourth most common cause of cancer-related deaths in Western
societies, with 57,000 new cases annually, resulting in nearly 46,000 deaths in North America alone [1].
The most common type of PC is Pancreatic Ductal Adenocarcinoma (PDAC), which arises in the ductal
epithelium of the exocrine tissue responsible for secreting pancreatic digestive juices. Late detection
combined with early metastatic spread have limited gains in overall survival relative to other cancers
such that PDAC mortality has the potential to surpass that of both colorectal and breast cancers by
2030 [2]. PDAC research therefore aims to define better diagnostic markers and novel therapeutic
avenues, however is significantly complicated by the clinical heterogeneity present both within
and between patient tumours. This emphasises the need for more integrative approaches aimed at
developing a better understanding of targetable processes in PDAC tumourigenesis.
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Cancer is a genetic disease caused by the accumulation of somatic mutations, resulting in a
functional imbalance between tumour suppressive and oncogenic signals [3]. While transformed cells
retain characteristics of the host to efficiently avoid being detected as foreign by the immune system,
many aberrant phenotypes caused by genetic mutations and dysregulated signaling potentially render
these cells susceptible to selective therapeutic interventions. Extensive examinations of the molecular
traits of PDAC aimed at identifying such vulnerabilities have been conducted to date. Indeed, genomic
and transcriptional profiling of patient tumours as part of large-scale studies by the The Cancer Genome
Atlas (TCGA) and International Cancer Genome Consortium (ICGC) have allowed for insights into the
scale of inter-tumour heterogeneity in a breadth of patient cohorts [4–6].

These studies have identified four major genetic aberrations common to pancreatic
tumours [7–9]. 90% of tumours carry gain-of-function mutations in KRAS2, activating proliferative
and cell survival pathways, whilst 95% contain either partial or complete inactivating mutations in
CDKN2A, contributing to loss of cell cycle regulation, furthering proliferation. TP53, responsible for
responding to DNA damage and inducing apoptosis, is altered in 60% of cases. SMAD4 inactivation is
also common in pancreatic cancer development, and is found in 50% of patient cancers, disrupting the
tumour suppressive signals of TGFβ, aiding proliferation [10]. As well as these four common driver
mutations, genomic sequencing of tumours has identified an additional panel of consistently mutated
genes [6]. These genetic mutations implicate pathways often dysregulated in cancer, including KRAS,
TGFβ, WNT, NOTCH, ROBO/SLT, G1/S, SWI-SNF, and chromatin/DNA/RNA modification and repair.

Transcriptional profiling of PDAC tumours has allowed researchers to define discrete regulatory
mechanisms within these networks that are associated with particular prognostic indices in different
molecular subtypes of PDAC, which include squamous, pancreatic progenitor, immunogenic and
aberrantly differentiated endocrine/ exocrine tumours [6]. Such classification schemes may provide
clinical value by aiding in patient treatment regimen selection and planning [11], however, to date
they have provided limited clinical value due to lack of targetable phenomena. It is important to
note that while these studies have aimed to characterise changes within carcinoma cells, the excessive
presence of desmoplastic stroma may confound these results. Indeed, microdissection of the tumour
from its associated stroma has allowed the retrospective re-evaluation of large-scale transcriptional
profiling efforts, highlighting the overwhelming contribution of stromal contamination to many such
studies. Deconvolution based on laser capture microdissection and RNASeq profiling of 60 matched
tumour/stroma pairs suggested that ICGC and TCGA samples contained stromal fractions of 46%
and 55%, respectively, highlighting difficulties in deriving definitive conclusions from whole tumour
analyses [12].

Such studies are invaluable as a means of understanding the intertumoural heterogeneity that
exists between patients, and they form a strong set of public data that have been analysed to better
appreciate the diversity of tumour presentation [13]. An increasing focus on single cell analytic
technologies has yielded exciting opportunities to understand the contributions that individual cells
make towards intratumoural heterogeneity, tumour progression, and patient outcomes [14,15]. These
studies highlight the need for efforts aimed at distinguishing the heterogeneous nature of a tumour’s
biology from that of the surrounding host tissue in which it propagates, so as to be better able to exploit
cancer specific vulnerabilities [16].

As such, it is not surprising that the interactions between neoplastic epithelial cells and host
myofibroblast and stellate populations, which can promote stromal inflammation, are increasingly
being recognised. This desmoplastic reaction, which accounts for up to 90% of PDAC tumour volume,
has pro-tumourigenic properties by leading to increased tissue stiffness and hypoxia as well as by
providing physical barriers to both immune surveillance and chemotherapeutic penetrance [17–19].
The fibrillar collagen, hyaluronic acid and fibronectin rich extracellular matrix (ECM) deposited by
stromal cells contains many soluble cytokines and growth factors secreted by both cancer and stromal
compartments and contributes to both tumour initiation and progression [20–23]. Resident cells
are forced to interact within this dynamic tumour microenvironment and are subject to stimuli that
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influence cell phenotypes in both stromal and carcinoma components. Such stimuli may propagate the
invasion and dissemination of carcinoma cells by inducing epithelial mesenchymal plasticity (EMP),
and thus this process is considered an important vulnerability that, when effectively targeted, may
curb tumour progression [24,25].

2. EMP and PDAC Progression

EMP is often separated into two distinct but related processes—the forward process of
epithelial-mesenchymal transition (EMT), and the reverse process of mesenchymal-epithelial transition
(MET) [26]. These programs serve to describe the plasticity within epithelial cells that enables them
to dedifferentiate into a more motile mesenchymal state, thereby allowing them to more effectively
migrate. EMP is thought to play a significant role in several stages of tumour formation [27] and
progression [28]. Initially, this plasticity allows tumour cells to detach and migrate from their site of
origin (invasion), gaining access to lymphatic and blood vessels (intravasation), and then penetrating
distant sites (extravasation), to form metastases.

A litany of reviews regarding different facets of EMP in PDAC, have been written, including those
focused on molecular mechanisms of EMP regulation and metastasis [29–36], the role of epigenetic
regulation [37], therapy development and resistance [38–42], microRNA regulation [43,44], and cancer
stem cell generation [45–49]. This review thus focuses on some of the ongoing controversy surrounding
in vivo evidence of EMP and the limitations of current approaches, highlighting the need to integrate a
greater diversity of published EMP molecular regulators.

Development of PDAC frequently progresses undetected, remaining asymptomatic until it
becomes an advanced stage of disease. Non-invasive precursor lesions formed either by epithelial
proliferations or mucinous cysts in the pancreatic ducts, termed pancreatic intraepithelial neoplasia
(PanINs), or intraductal papillary mucinous neoplasms (IPMNs), respectively, mark the onset of a
histologically definable neoplasm in PDAC [50]. Such neoplasms, namely PanINs, progress through
stages of dysplasia within the ductal epithelium, giving rise to the most common form of PDAC,
pancreatic ductal adenocarcinoma (PDAC). The full breadth of factors that contribute to the invasive
and metastatic behaviour of PDAC are vast. In this form of PDAC, there is very little latency between
primary tumour formation and local and distant metastasis, implying that PDAC carcinoma cells may
be readily equipped to invade and disseminate from a very early stage of development [51,52].

Invasive regions of human carcinomas are typically characterised by the presence of
tumour-derived, fibroblast-like cells expressing mesenchymal markers such as vimentin, fibronectin
and N-cadherin, with decreased expression of epithelial adhesion molecule E-Cadherin and increased
nuclear beta-catenin relative to surrounding cells [53–57]. Decreased expression of E-cadherin has been
shown to correlate with invasive and undifferentiated PDAC [58]. Furthermore, PDAC patients with
tumour cells that express decreased E-cadherin and higher amounts of vimentin, s100A4, fibronectin
and SNAI1 are more likely to have distant metastases, lymph node invasion and lower overall
survival [54,59–62]. The EMP inducing transcription factor (TF) TWIST1 has been shown to be
upregulated in PDAC compared to match normal tissues [63], and SNAI1 mRNA levels in PDAC fine
needle aspirates are significantly correlated with lymph node and perineural invasion as well as with
poorer survival [64]. A mediator of transforming growth factor beta (TGFβ) signaling, SMAD3, was
also shown to accumulate in the nucleus of PDAC samples, and was correlated with higher grade
tumours and lymph node metastasis, indicating a role for TGFβ in driving EMP in vivo [65]. Solitary
infiltrating cancer cells displaying low E-cadherin and increased vimentin expression have proven to
be significant prognostic indicators in resected clinical specimens from PDAC patients [66]. Tumour
budding cells in PDAC have been observed with increased levels of ZEB1 and ZEB2, and reduced
levels of E-cadherin and β-catenin, indicative of EMP mediated local invasion. ZEB2 overexpression
in tumour-stroma associated cells also correlated with pathological assessment of tumour size, and
lymph node metastasis [67]. Such striking pathology provides some of the clearest evidence for the
role of EMP in PDAC progression.
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While this clinical evidence strongly supports a role for EMP in mediating cancer invasion, the
inability to accurately follow carcinoma epithelial dedifferentiation in vivo has led to some debate
surrounding the extent of its role in tumour progression [68,69]. Such debate has necessitated the use
of genetically engineered mouse models (GEMMs) to trace the role of EMP in cancer progression,
specifically the pancreatic epithelium conditional Kras/P53 mutant (PKCY) mice Lineage labelling
of epithelial cells in this spontaneous PDAC model has allowed researchers to track these cells as
they adopt mesenchymal properties and migrate away from the primary tumour into the circulation,
seeding liver metastases [70]. In one study, EMP was detected in 42% of labelled PDAC epithelial cells,
as assessed by the expression of EMP markers Zeb1 or Fsp1 and/or lack of E-cadherin. These cells were
mostly observed in regions of inflammation, supporting the idea that EMP is driven by inflammatory
interactions within the tissue microenvironment. Interestingly, some labelled epithelial cells that had
undergone EMP displayed evidence of delamination and fibroblast morphology prior to tumour
formation, and were otherwise indistinguishable from host stromal cells [70]. This is supportive of the
very early, integral role that EMP may play in PanIN formation prior to tumour development.

Further studies in this same PDAC mouse model have shown that suppression of EMP via the
knock-out of Twist1 or Snai1 TFs does not reduce metastasis, despite the decreased expression of EMP
markers and increased cell proliferation as evidence for EMP ablation [71]. Equivalent numbers of
lineage labelled epithelial cells were found in circulation and in metastases regardless of Twist/ Snai1
knockout, suggesting that other mechanisms are involved in PDAC cellular invasion. PDAC cells do
not possess a strong epithelial phenotype however, and may thus be insensitive to the loss of Snail TFs,
which are potent repressors of epithelial programs but are less efficient in inducing mesenchymal
properties. This possibly explains why Snail is dispensable for EMP and metastatic progression in
this model [71,72], and points towards alternative mechanisms of EMP induction that may be driving
factors in this PDAC system.

Indeed, there is evidence that the Zeb1 TF is largely responsible for driving EMP in this GEMM
model of PDAC development [73]. Zeb1 ablation in PDAC cells was not found to affect Twist1 expression,
however it was associated with decreased Zeb2, Slug and a slight reduction in Snai1 expression. Zeb1
depleted tumours were better differentiated, indicating less local invasion, and showed significantly
reduced metastasis when compared to control PDAC mice [73]. This is in direct contrast to depletion
of Twist1 or Snai1, which did not affect metastasis in this model system, highlighting the importance of
recognising the context and tissue specific drivers of EMP.

Subsequent investigations aimed at overcoming the limitations of identifying single EMP
regulatory TFs has shown that lineage labelled cancer cells are able to metastasize without expression
of αSma or Fsp1, both of which are thought to be robust markers of EMP activation in this model [74].
Indeed, larger metastatic nodules were found containing exclusively cells that had never expressed
αSma or Fsp1, while micrometastatic clusters of 3–5 cells were shown to have undergone EMP. Such
evidence, combined with the fact that Zeb1 depletion in previous studies resulted in only a 50%
reduction in metastasis underscores the pitfalls of seeking to identify individual master regulators and
markers of such a complex process. Adding to this complexity, the emerging importance of hybrid
EMP phenotypes, in which the expression of both epithelial and mesenchymal markers may occur at
levels that are insufficient to drive the reporter constructs used in such lineage tracing models, adds a
further technical challenge [75–77].

More recent attempts to understand EMP in individual PDAC cells has shown the activation
of EMP transcriptional programs within certain subsets of tumour cell populations [14]. This study
highlighted a clear role for cytokines from the stromal compartment in inducing EMP in certain PDAC
cell lines, and indicated that EMP activation could be observed in discrete tumour gland subunits with
prognostic utility. These models have provided considerable insights into the diverse mechanisms of
PDAC development, and highlight that there are context-dependent EMP programs involved in both
local invasion and metastatic dissemination that require further examination [72,78].
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3. In Vitro EMP Models and Exogenous Stimuli

While GEMMS, in particular the PKCY model of spontaneous PDAC formation, are currently
the gold standard for studies of the biology of EMP in tumourigenesis, in vitro studies form the
basis for the majority of our current molecular understanding of intracellular events which occur in
EMP. Many publicly available and in-house generated cell lines are used to study PDAC, but only
a very limited number of these undergo well-characterised, stimulus-driven transitions that mimic
the pathophysiological induction of EMP. This is perhaps consistent with the limited number of EMP
events witnessed in in vivo models, highlighting the difficulties of studying such a dynamic process.

EMP is modulated by TGFβ, receptor tyrosine kinases (RTK) ligands, WNT ligands, interleukins,
hypoxia via HIF1α signaling, as well as HIPPO, NOTCH signaling. Their mechanisms and specific
impact on downstream EMP targets have been comprehensively reviewed elsewhere, however our
understanding of their subtleties is on-going [79,80]. TGFβ acts as a tumour suppressor in normal
tissue and early stage disease by regulating cell proliferation and inducing apoptosis through canonical
signaling pathways, however this activity is lost as cellular transformation progresses [81–85]. Indeed,
TGFβ is a potent activator of EMP in PDAC cells when its tumour suppressive signals are disrupted
through SMAD4 mutations, found in 50% of PDAC tumours [81,86]. Similarly, activating KRAS
mutations found almost ubiquitously in PDAC cooperate with TGFβ signaling to hyperactivate
downstream RAS/RAF MAPK pathways to induce EMP [87]. While TGFB activates the greatest
number of EMP signaling pathways, and may thus be considered a major driver in PDAC, the
activation of additional pathways shown in Figure 1 by RTK, WNT and interleukin ligands may
provide additional layers of crosstalk. Activation of SMAD, MAPK, PI3K, STAT, and NFκB pathways
are commonly demonstrated in PDAC EMP research, however the relative extent to which each
pathway governs EMP is unclear, as many studies evaluate these pathways independently [29,88–94].

These complex pathways ultimately serve to influence transcriptional programs that co-operate
directly and indirectly to control the plasticity that exists between epithelial and mesenchymal
phenotypes of carcinoma cells (Figure 1). Of note is the increasing recognition for the role of long
non-coding RNAs (LncRNA) and micro-RNAs (miRNA) in EMP regulation. Among the cells that do
undergo EMP-like transitions, there is a degree of selectivity for the ligands that are able to activate
these EMP programs, and this is reflected in the limited number of commercial cell lines that are
commonly manipulated within the field. This is consistent with the level of heterogeneity reported in
PDAC, and suggests discrete differences in steady state signaling, which may predispose a given cell’s
response or resistance to exogenous stimuli.
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EMP is induced by stimuli shown within arrows on the left in order of potency. These signals
activate signal transduction pathways that cooperate directly and indirectly to translocate signals to
the nucleus (braced) to regulate EMP transcription factors, long non-coding RNAs (LncRNA), and
micro RNAs (miRNAs).These factors then modulate EMP by discrete regulation of epithelial (Red Box)
and mesenchymal (Green box) cellular properties, which in turn influence migration and invasion.
Transforming growth factor (TGFB) activates the greatest number of these pathways, including direct
cytoskeletal regulation by RhoA, aswell as canonical SMAD and non-canonical p38/JNK, MEK/ERK
MAPK pathways and PI3K/AKT. Receptor tyrosine kinase (RTK) signaling is induced by binding
of growth factor (GF) ligands such as EGF, IGF, FGF, HGF or VEGF and activates RAS/MEK/ERK,
PI3K/AKT/NFκB and downstream SRC pathways. WNT signaling also modulates EMP by downstream
stabilisation of B-catenin and subsequent nuclear translocation for EMP program activation by TCF/LEF
transcription factors. Interleukins (ILs) can also induce EMP programs via STAT3 signaling. Additional
mediators of EMP include Hypoxia, Hedgehog, Notch and Integrin signaling (not shown), and
highlight the context dependent activation of EMP from micro-environmental cues.

While most studies rely upon knockdown and over-expression approaches to demonstrate the
function of proteins in the context of cell migration, proliferation and EMP transitions, relatively few
studies have investigated these targets in the context of the physiological induction of EMP in response
to exogenous stimuli. Among PDAC cell lines, L3.6pl cells have been shown to respond to VEGF
treatment [95], while the inflammatory cytokines TNF-α and IL-1β drive EMP in PaTu 8988T and
AsPC-1 cells via Hedgehog signaling [96]. Collagen 1 also stimulated L3.6pl and BxPC-3 cells to become
more invasive through interaction with DDR1 [97], and BMP2 was able to elicit a similar response
in BxPC-3 cells [98]. PANC-1 cells are a well characterised model of inducible EMP, first shown by
Ellenrieder et al to undergo a bidirectional change in response to TGFβ alongside CAPAN-1, COLO-357,
IMIM-PC1 [99], HPAF-II, and CAPAN-2 cells [100]. PANC-1 cells have since been repeatedly modelled
with regard to their EMP response, which has been shown to be inducible in response to TGFβ, TNF-α,
HGF, or hypoxia through differing mechanisms [101–104]. SNAI1 appears to be a major driver in
this model, being heavily regulated at the transcript and protein level, despite modest changes in
E-cadherin and Vimentin proteins [105]. EMP is thus invariably the result of exogenous stimuli that
activate discrete but conserved cellular pathways through novel intermediates that are an ongoing
focus of basic cancer cell biology research.

4. Pre-Clinical Discovery of EMP Targets

As a result of the complexities of discerning cancer biology from native processes in vivo, the
use of cell lines derived from primary tumours are a valuable means of modelling the molecular and
phenotypic properties of cancers. Extensive investigation has been performed using gene silencing and
overexpression approaches to evaluate the role that particular molecules have in regulating or effecting
the EMP phenotypes of PDAC cells, however a concise summary of novel targets in the PDAC EMP
field has to date been lacking. Thus, this review provides an exhaustive overview of such research as a
platform for their integration, and progressive evaluation. The function of these candidate molecules
can be broadly separated into secreted/soluble products (Table 1), receptors (Table 2), other membrane
associated proteins (Table 3), cytoskeletal adaptors (Table 4), kinases (Table 5), intracellular mediators
(Table 6), transcription factors (Table 7) and post transcriptional controllers (Table 8). The candidates
shown were selected by searching Pubmed for the terms ‘pancreatic’ and ‘epithelial’, and articles
investigating a novel candidate’s impact on EMP phenotypes were manually curated. These effectors
have been characterised to varying extents for their influence on invasion, migration, xenograft tumour
growth, prognostic associations, and impact on known EMP signaling pathways. The proposed
mechanisms of candidates and assays used to assess such effects are shown within tables and may be
used to gauge where further support may be warranted to confirm and extend such findings. Due to
the inherent variation in models used, the statistical power granted by IHC for varying sized patient
cohorts with accompanying clinical information, and the level of EMP as a primary context, it is difficult
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to draw direct conclusions regarding pivotal significance within the field and clinical importance
from such singular studies. Candidate expression in primary patient material that correlated with
lymph-node metastasis are shown in bold within tables, and provide the best surrogate for their role in
EMP mediated invasion, and include membrane bound proteins IGFBP2, ITGB4, CEACAM6 [106–108].
The use of IHC to capture dynamic EMP processes may be limited however, as shown in the case of
LIN28B, where its expression is both induced by TGFβ and high in PDAC tissue, despite its role to
suppress the pro-EMP non-coding RNA LET7a [109,110]. Such studies highlight both the utility and
limitations of the links between in vitro assays and clinical material, and emphasise the need for both
wider cohorts of patient material for validation and the development of GEMM models to strengthen
findings in a standardized manner.

Figure 2 illustrates the proposed activity of some of these novel candidates, and how they may
positively or negatively regulate discrete EMP signaling pathways. Of note are several candidates
that converge to positively regulate EMP migratory phenotypes through FAK/Src and FAK/PI3K
signaling, including the 5HT receptor and mucins, as well as EEF2K, USP22, and ZIP4. Their complete
mechanisms of action and prevalence in PDAC tissue remain to be elucidated, however their inhibition
may curb carcinoma invasion by blocking FAK activation and subsequent EMP modulation. Similarly,
candidates participating in stability of EMP signaling and TF activity provide targets to modulate
the EMP process specific for carcinoma cells. AURKA kinase has been shown to participate in a
positive feedback loop with stabilization and activity of TWIST1, while PEAK1 and NES have been
implicated in stabilization YAP/TAZ and SMAD TF activity. The discovery of discrete EMP regulation
and development of combinatorial inhibitors may provide the opportunity for more personalized
therapeutic approaches to curb metastatic disease.
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EMP and cell migration (GREEN boxes) is induced through cell surface proteins (ITG, 5HTR, MUC,
BLT2, SEMA3C, RTK, TGFβR) (RED) to activate signaling pathways (ORANGE boxes, blue arrows).
These pathways are influenced by novel mediators (BLUE boxes) through activation (GREEN arrows)
or inhibition (RED T) of known signaling members, however complete mechanisms of action
remain to be elucidated. For full details, evidence of proposed mechanism and references of novel
mediators, see tables below. Note signaling pathways shown have had intermediates removed for ease
of visualisation.
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Table 1. Soluble and secreted factors that influence EMP. This table describes novel candidates that may be secreted within the ECM and act either directly through
ligand-receptor interactions, or through mechanisms that remain to be demonstrated. Candidates that exhibit clinical correlation with lymph node metastasis are
shown in bold.

Cell Line Target

EMT
Regulation
(Direct or
Indirect

Observation)

KD/KO/Over-expression Pathway/Mechanism Functional Assay
Human

Prognostic
Association

EMT
Activator Reference

BxPC-3 DKK3 Negative, Direct Over-expression

DKK3 is overexpressed in
tumour and is antagonist of

WNT ligand activity,
preventing nuclear

translocation of β-catenin and
EMP under hypoxia

Transwell assays,
chemo-resistance, IHC in 75
matched PDAC v normal

samples, xenograft growth

Not performed Hypoxia [111]

ASPC-1,
PANC-1 IGFBP2 Positive, Direct siRNA/Over-expression

IGFBP2 activated NF-κB
through PI3K/AKT/IKK,

inhibited by PTEN

WB, Transwell assays,
orthotopic growth, IHC in

80 patient PDAC and
lymph node samples

Survival and
lymph node
metastasis

- [106]

PANC-1 LTB4 Positive, Direct siRNA
LTB4 induced EMT through
receptor BLT2 and ERK1/2

activation
WB, Transwell assays Not performed LTB4 [112]

Patu8988,
PANC-1 DMKN Positive,

Indirect shRNA
Knockdown reduced p-STAT3

and EMT increased ERK1/2,
AKT

Proliferation, Transwell
assays, Xenograft, IHC in
44 patient PDAC tumours

Correlated with
T stage - [113]

PANC-1 LGALS1 Positive, Direct shRNA/Over-expression

LGALS1 IHC expression
correlated with MMP9 and

Vimentin in PDAC. PSC
LGALS1 promoted cancer cell
EMT and activation of NF-κB

Xenograft, Proliferation,
Invasion, IHC in 66 PDAC

tumours
Not performed [114]

BxPC-3,
CFPAC SEMA3C Positive,

Indirect shRNA/Over-expression

SEMA3C knockdown
suppressed EMT and

tumourigenesis, and activation
of ERK1/2 signaling

Proliferation, migration,
Scratch wound, Xenograft,
IHC in 118 PDAC tumours

Stage, survival,
recurrence [115]

Capan-1 FUT3 Positive, Direct shRNA/Over-expression

FUT3 knockdown impeded
proliferation, migration,

tumour growth and TGFβ
induced EMT

Proliferation, Scratch
wound, Transwell assays,

Xenograft
Not performed TGFβ [116]

PANC-1,
MIAPaCa-2,

Capan-2

MIF/
NR3C2

Positive,
Indirect siRNA/Over-expression

MIF induces miR-301b,
targeting NR3C2, inducing
EMT and chemo sensitivity

PDAC transcriptome by
array, IHC of 173 PDAC,

Proliferation, Colony
formation, Transwell

assays, chemo-resistance

NR3C2
inversely

prognostic by
RNA and IHC

- [117]
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Table 1. Cont.

Cell Line Target

EMT
Regulation
(Direct or
Indirect

Observation)

KD/KO/Over-expression Pathway/Mechanism Functional Assay
Human

Prognostic
Association

EMT
Activator Reference

PANC-1,
BxPC-3 WNT5A Positive, Direct siRNA, Over-expression

Wnt5a expression induced
EMT and invasion and was
elevated in PDAC by IHC

Scratch wound, Transwell
assays, WB, orthotopic

growth, IHC of 134 PDAC
v normal

No - [118]

PANC-1 LCN2 Negative,
Indirect Over-expression

LCN2 expression correlated
with better survival and lower

EMT state

IHC of 60 PDAC tumours,
Transwell assays

Protective by
IHC - [119]

MIAPaca-2,
BxPC-3,
SUIT-2

NOV Positive,
Indirect shRNA/Over-expression

NOV expression high in PDAC
by IHC, and induced EMT
phenotypes in vitro/in vivo

Colony formation, soft agar,
Proliferation, Transwell

assays, in vivo metastasis
Not performed - [120]

PANC-1,
BxPC-3 CCL18 Positive, Direct

CCL18 expressed in
mesenchymal and cancer cells,

and induced EMT

WB, Transwell assays, IHC
of 62 PDAC tumours,

serum ELISA from PDAC
patients

Survival - [121]

PANC-1,
BxPC-3 TUFT1 Positive,

Indirect siRNA/Over-expression

TUFT1 expression correlated
with T stage and lymph node

metastasis by IHC, RNA
expression correlated with

HIF1a, SNAI1 and VIM

WB, Proliferation, scratch
wound, Transwell assays,

Xenograft, IHC of 63
PDAC tumours

Yes in TCGA
by RNA [122]

SW1990,
ASPC-1 OLR1 Positive, Direct siRNA/Over-expression

OLR1 overexpressed in
tumours and correlates with
metastasis and poor survival,
overexpression induced EMT

Transwell assays, scratch
wound,

Proliferation/apoptosis,
IHC of 98 PDAC tumours

Yes survival by
IHC and TCGA - [123]

MIAPaCa-2,
PANC-1,
ASPC-1,
BxPC-3

LOXL2 Positive,
Indirect siRNA/Over-expression

LOXL2 IHC expression
correlated with recurrence,
depth of invasion and poor

survival, and enhanced EMT
in vitro

Transwell assays, IHC of 80
PDAC tumours Yes by IHC - [124]

PANC-1,
PK9 TFF1 Negative, Direct siRNA

TFF only expressed in PanIN
and intraductal neoplasia, not

normal or invasive PDAC,
knockdown activated EMT,
loss of TFF in GEMM drove

PanIN, PDAC and CAF
infiltration

Transwell Invasion, Scratch
wound, KC GEMM, IHC on
small number of samples

Not performed - [125]
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Table 2. Receptors. This table describes known receptors that may be activated to transduce signals required for EMP modulation. Candidates that exhibit clinical
correlation with lymph node metastasis are shown in bold.

Cell Line Target EMT
Regulation KD/KO/Over-expression Pathway/Mechanism Functional Assay Prognostic

Association
EMT

Activator Reference

L3.6pl VEGFR1
activation Positive, Direct RTK VEGFR-1 activation

induced SNAI1/2, TWIST
E-cadherin/b-catenin

localization/WB Not performed VEGF [95]

PANC-1,
MiaPaCa-2 HTR1B, HTR1D Positive,

Indirect siRNA
5-HT receptor knockdown

reduced uPAR and Src/FAK
signaling and EMT

Scratch wound,
Transwell, Colony

formation
Not performed - [126]

PANC-1
HPAC IGF1R Positive,

Indirect siRNA

IGF1R overexpressed in
PDAC by IHC, silencing

inhibits AKT/PI3K, MAPK,
JAK/STAT signaling

pathways

Transwell assays,
soft agar,

Proliferation,
apoptosis, IHC of

TMA

Not performed - [127]

L3.6pl,
BxPC-3 DDR1 Positive, Direct siRNA/ Over-expression

DDR1 expression correlates
with CHD2 expression by

IHC, DDR1-b signals through
SHC1 adapter to PYK2 to

induce CDH2

Invasion, IHC of
PDAC TMA Not performed COL1A [97]

PANC-1 SMO Positive,
Indirect siRNA

Hedgehog activated in
tumourspheres, SMO
knockdown inhibited

CSC/EMT features properties

Proliferation,
sphere formation,
Transwell assays,

Xenograft

Not performed - [128]

PANC-1,
BxPC-3 EPHA4 Positive, Direct siRNA

EPHA4 knockdown
suppressed EMT, MMP2

activity

Gelatin
zymography,

Transwell assays,
scratch wound, WB

Not performed - [129]

CFPAC-1,
AsPC-1 ITGB4 Positive, Direct siRNA/Over-expression

ITGB4 IHC expression
correlated with T stage,

knockdown inhibited EMP

Transwell assays,
WB, IHC of 134
PDAC tumours

Survival lymph
node

metastasis by
IHC

TGFβ [107]

PANC-1,
MiaPaCa2,

Capan2
F2R Positive,

Indirect shRNA
F2R (PAR1) expression

associated with
mesenchymal gene signature

Xenograft, Scratch
wound Not performed - [130]
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Table 3. Membrane associated proteins. This table describes membrane bound proteins that may interact with other cells and the extracellular environment to sense
cues that modulate EMP in a context dependent fashion. Candidates that exhibit clinical correlation with lymph node metastasis are shown in bold.

Cell Line Target EMT
Regulation KD/KO/Over-expression Pathway/Mechanism Functional Assay Prognostic

Association
EMT

Activator Reference

PANC-1 CDCP1 Positive,
Indirect siRNA

CDCP1 expression high
in PDAC, induced by
BMP4/ERK signaling,

and knockdown inhibited
EMT phenotypes

Scratch wound,
Transwell, spheroid

formation,
chemo-resistance,
IHC on 42 PDAC

tumours

Not performed - [131]

Colo-357,
Capan-1 MUC16 Positive,

Indirect siRNA, CRISPR/Cas9

MUC16 knockdown
decreased FAK mediated

AKT/ERK/MAPK
activation, and EMT

Proliferation,
migration, Colony

formation,
Xenograft

Not performed - [132]

MiaPaCa2 ANXA1 Positive,
Indirect CRISPR

ANXA1 KO
downregulated miR196a,
effected cell motility and
liver metastases in vivo

Scratch wound,
Transwell

migration, Invasion,
Xenograft

Not performed [133,134]

CFPAC-1,
PANC-1 CEACAM6 Positive, Direct shRNA,

Over-expression

CEACAM6, regulated
by miR-29a/b/c,

required for EMT

Transwell assays,
Xenograft, WB,

IHC in 99 PDAC
tumours

Lymph node
metastasis - [108]

SUIT-2,
CAPAN-2 TM4SF1 Negative,

Indirect siRNA

TM4SF1 IHC expression
protective, knockdown
induced migration and
decreased E-cadherin

Transwell assays,
IHC in 74 PDAC

tumours

Yes inversely
prognostic by

IHC
TGFβ [135]

PANC-1,
SW1990 DPP4 Positive,

Indirect siRNA/ Over-expression
DPP4 (CD26) knockdown
suppressed EMT, in vivo

growth

Proliferation,
Transwell assays,

Xenograft, WB
Not performed - [136]

PANC-1,
AsPC-1 SLC39A4 Positive,

Indirect siRNA/ overexpression

SLC39A4 (ZIP4) IHC
expression correlated
with ZEB1 and EMT,
increasing FAK and

paxillin phosphorylation

Xenograft, Scratch
wound, Transwell

migration, Invasion,
IHC of 72 paired
PDAC v normal

Not performed - [137]
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Table 4. Cytoskeletal adaptors. This table describes intracellular adapter proteins that may participate in and be required protein complex localization and transduction
of signals that modulate EMP. Candidates that exhibit clinical correlation with lymph node metastasis are shown in bold.

Cell Line Target EMT
Regulation KD/KO/Over-expression Pathway/Mechanism Functional Assay Prognostic

Association
EMT

Activator Reference

PANC-1,
CFPAC-1 WASF3 Positive,

Indirect siRNA,

WASF3 (WAVE3)
knockdown suppressed
PDK2, downregulating
PBK/AKT pathway and

EMT

Proliferation,
migration,

Invasion, Scratch
wound, IHC of 87

paired PDAC v
normal

Lymph node
metastasis - [138]

PANC-1,
AsPC-1,

MiaPaCa-2
NES Positive, Direct shRNA/Over-expression

NES (Nestin) required for
EMT and induced by

TGFβ in positive feedback
loop promoting p-smad2

Xenograft,
Transwell assays,

IHC of GEMM
Not performed TGFβ [139,140]

HPAF-II,
PANC-04.03

PANC-1
DNM2 Positive,

Indirect siRNA, Over-expression

Upregulated by IHC in
PDAC, DNM2/VAV1

interaction required for
RAC-1 induced

lamellipodia formation

Transwell assays,
lamellipodia

formation,
xenograft, IHC of 85

PDAC tumours

Not performed EGF
(HPAF-II) [141,142]

SUIT-2 RAB5A Positive,
Indirect siRNA

RAB5 IHC expression
correlated with invasion
and CDH1, aids TGFβR
endocytosis, stimulates
FA turnover, prognostic

in PDAC, breast, ovarian

Morphology,
Proliferation,

Transwell assays,
IHC of 111 PDAC

tumours

Survival IHC - [143]
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Table 5. Kinases and Phosphatases. This table describes proteins with activity that may directly participate in signal transduction by phospho-regulation of intracellular
substrates. Candidates that exhibit clinical correlation with lymph node metastasis are shown in bold.

Cell Line Target EMT
Regulation KD/KO/Over-expression Pathway/Mechanism Functional Assay Prognostic

Association
EMT

Activator Reference

PANC-1,
MIAPaCa-2 EEF2K, Positive, Direct siRNA/Over-expression

EEF2K promotes EMT through
TG2/β1 integrin/SRC/uPAR/MMP2

signaling

Scratch wound,
Transwell assays, WB Not performed - [144]

Patu8988,
PANC-1,
BxPC-3,
Capan-1

CDK14 Positive, Direct siRNA Suppression of CDK14 reduced
PI3K/AKT activation and EMT

Proliferation, Colony
formation, Transwell

assays
Not performed - [145]

HDPE PRAG1 Positive,
Indirect siRNA/Over-expression

Phosphorylation of PRAG1 found
in malignant cells, Over-expression

induced JAK1/STAT3 mediated
EMT

Transwell assays,
phospho-WB Not performed - [146]

BxPC-3,
PANC-1 AURKA Positive, Direct shRNA

AURKA IHC expression high in
PDAC, phosphorylates and

stabilizes TWIST1 in positive
feedback loop, promoting EMT

Sphere formation,
migration,

Proliferation,
Xenograft, IHC on
small PDAC cohort

Not performed - [63]

PANC-1,
ASPC-1 MAP3K3 Positive, Direct CRISPR

MAP3K3 (MEKK3) KO reduced
EMT, CSC and migration, and

YAP/TAZ transcriptional activity
on AXL, DKK1, FosL1, CTGF

Transwell migration
Invasion,

Proliferation,
Xenograft, ChIP

Not performed - [147]

PANC-1,
COLO357 RAC1 Negative, Direct siRNA/Over-expression

RAC1b inhibits canonical and
non-canonical TGFβ signaling,

effecting MKK6-p38 and
MEK-ERK-MAPK EMT activation

Migration, qPCR Not performed TGFβ [90,148]

HPAF-II,
CAPAN-2 PTPN11 Positive, Direct shRNA/Over-expression

PTPN11 (SHP2) activity enhances
the effect of EGF on TGFβ induced
EMT, resulting in more complete

EMT

Cell scatter, scratch
wound, WB Not performed TGFβ/EGF [100]
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Table 6. Enzymes and Co-factors. This table describes intracellular proteins that may directly or indirectly participate in pathways required for EMP modulation by
other enzymatic control of substrate proteins. Candidates that exhibit clinical correlation with lymph node metastasis are shown in bold.

Cell Line Target EMT
Regulation KD/KO/Over-expression Pathway/Mechanism Functional Assay Prognostic

Association
EMT

Activator Reference

PANC-1 USP22 Positive, Direct shRNA/Over-expression
USP22 expression correlated with
Ezrin and FAK phosphorylation

and EMT

Scratch wound, Transwell
assays, WB Not performed - [149]

779E, 1334
PDCL EIF5A Positive,

Indirect shRNA/Over-expression

Mutant KRAS induces EIF5A,
stimulating PEAK1 mediated ECM
signaling. PEAK1 binds YAP/TAZ

driving stem TFs

Sphere formation, IP, WB Not performed - [150]

AsPC-1,
PANC-1 EIF4E Negative,

Indirect siRNA

Knockdown of MNK effector,
EIF4E, induced ZEB1 through

repression of miR-200c, miR-141,
MNK inhibitors induce MET

Collagen 3D, qPCR Not performed - [94]

BxPC-3 RGCC Positive, Direct siRNA RGCC regulated by HIF1α and
required for hypoxia induced EMT qPCR, WB Not performed hypoxia [151]

PANC-1
MIA PaCa-2 SET Positive, Direct shRNA/ Over-expression

SET over-expression activated
Rac1/JNK/c-Jun pathway and

decreased PP2A activity,
N-cadherin and EMT TFs up

Transwell assays, Colony
formation, Xenograft

tumour growth and liver
metastases

Not performed - [152]

MiaPaCa2,
SW1990,
PANC-1,
CFPAC1

GPX1 Negative, Direct shRNA/Over-expression

GPX1 IHC expression lower in
PDAC, silencing induced EMT and

gemcitabine resistance through
ROS activated

PI3K/Akt/GSK3B/SNAIL,
Over-expression sensitized in vivo

Transwell migration,
chemo-resistance,

Xenografts, IHC of 281
PDAC tumours, and 42
paired PDAC v normal

Yes inversely
prognostic by

IHC
[153]

BxPC-3,
PANC-1,

MiaPaCa2,
PSN1

HDAC1 Positive,
Indirect siRNA HDAC IHC expression and activity

correlated with EMT phenotype

IHC, Transwell Invasion,
IHC of 103 PDAC

tumours
Survival by IHC - [154]

PANC-1
BxPC-3 Class I HDAC Positive,

Indirect 4SC-202 small inhibitor

HDACi (inhibition) blocked TGFβ
induced EMT in PANC-1,

requiring BRD4 and MYC for effect
of HDACi

Migration, sphere
formation, Xenograft Not performed TGFβ

(PANC-1) [155]

CFPAC-1,
L3.7-2 PAFAH1B2 Positive, Direct siRNA/Over-expression

PAFAH1B2 IHC expression higher
in PDAC, HIF1a expression

regulated PAFAH1B2 via direct
promoter binding

Transwell migration,
Invasion, orthotopic

Xenograft/ liver
metastases,

HIF1a/PAFAH1B2
co-localization in PDAC,

IHC of 124 PDAC
tumours and 70 normal

Survival by IHC
and TCGA hypoxia [156]
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Table 6. Cont.

Cell Line Target EMT
Regulation KD/KO/Over-expression Pathway/Mechanism Functional Assay Prognostic

Association
EMT

Activator Reference

PANC-1,
MIAPaCa-2 KDM4B Positive, Direct siRNA

KDM4B IHC expression
correlated with ZEB1 in

PDAC, knockdown inhibited
TGFβ induced EMT in

PANC-1 by regulating ZEB1
methylation

CHIP, scratch wound,
Transwell assays, IHC of

49 PDAC tumours
Not performed TGFβ [157]

HPAC,
BxPC-3,
Colo357
PANC-1,

MiaPaCa-2

SMURF2 Negative, Direct
SMURF negative regulator of

TGFβ induced EMT,
suppressed by miR-15b

Scratch wound, Transwell
assays, WB Not performed TGFβ [158]

CAPAN-1
PANC-1 CUL4B Positive, Direct miRNA

CUL4B IHC expression
higher in PDAC, regulated
by miR -300, required for

Wnt/β-catenin induced EMP

qPCR, Transwell assays,
Xenograft, IHC of 110

PDAC v normal
Not performed - [159]

PANC-1 KMT5C Positive, Direct siRNA

KMT5C (SUV420H2)
expression higher in PanIN

and PDAC, methylates
H4K20me3,suppresses

epithelial drivers FOXA1,
OVOL2, OVOL2

Transwell assays,
chemo-resistance, sphere

formation,
Not performed - [160]

PANC-1 NOX4 Positive, Direct siRNA

NOX4 IHC expression
elevated in PDAC, aids ROS

generation and TGFβ
induced EMT

Transwell assays, WB Not performed TGFβ [161]

BxPC-3 PAWR Negative,
Indirect siRNA, Over-expression

PAWR (PAR4) suppressed in
cisplatin resistant EMT cells,
required PI3K/AKT signaling

Transwell assays,
Proliferation, WB,

Xenograft
Not performed - [162]

BxPC-3 PPM1H Negative,
Indirect siRNA

PPM1H expression decreased
by TGFβ/BMP2 treatment,
knockdown induced EMT

Proliferation, Transwell
assays, WB, apoptosis Not performed TGFβ, BMP2 [98]

PANC-1 HMGN5 Positive,
Indirect shRNA HMNG5 silencing reduced

Wnt expression
Xenograft, Transwell

migration Invasion, WB, Not performed - [163]

PANC-1 GOLM1 Positive, Direct siRNA/ overexpression

GOLM1 (GP73)
overexpression induced

EMT and correlated with
human metastasis and

Xenograft growth

Xenograft, Transwell
migration Invasion,
Scratch wound, WB

Not performed - [164]
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Table 7. Transcription Factors and Cofactors. This table describes transcription factors and cofactors that influence gene expression required for actions of EMP in their
respective systems. Candidates that exhibit clinical correlation with lymph node metastasis are shown in bold.

Cell Line Target EMT
Regulation KD/KO/Over-expression Pathway/Mechanism Functional Assay Prognostic

Association
EMT

Activator Reference

PaTu 8988T,
AsPC-1 GLI1 Positive, Direct siRNA

GLI1 component of HH
signaling, induced EMT

by TNF-α/IL-1β,
mediated through NF-κB

pathway

Transwell assays, WB Not performed TNF-α/IL-1β [96,165–168]

Colo-357,
L3.7 FOXM1 Positive,

Indirect siRNA/Over-expression
FOXM1c activates uPAR

promoter directly,
inducing EMT

Scratch wound,
Transwell migration,
IHC of PDAC TMA v

normal

Elevated in
metastatic

PDAC
- [169]

BxPC-3,
ASPC-1,
PANC-1

TAZ Negative, Direct shRNA, Over-expression

TAZ required for EMT
through TEA/ATTS TFs,

activation correlates with
suppression of NF2

Colony formation,
Xenograft, Transwell

assays, IHC of 57
PDAC v normal

Correlated with
PDAC

differentiation
- [170]

PANC-1,
CAPAN-1 YAP Positive, Direct shRNA/Over-expression

YAP expression
associated with activation
of AKT cascade and EMT

Transwell assays,
chemo-resistance, WB Not performed - [171]

PANC-1,
BxPC-3 HSF1 Positive,

Indirect siRNA

p-HSF1 IHC elevated in
PDAC, promotes
invasion and is

downregulated by
p-AMPK

Transwell assays,
scratch, WB, GEMM Not performed - [172]

HPAC,
MiaPaCa2 FOXC1 Positive,

Indirect siRNA/Over-expression

IGFR1 positively
regulates FOXC1,

activating PI3K/Akt/ERK,
promoting migration, and
EMT, and tumour growth

Xenograft, Transwell
migration Invasion,

soft agar
Not performed IGF [173]

PANC-1,
SW1990

BHLHA15,
Direct Negative, Direct Over-expression

BHLHA15 (MIST1)
Over-expression

suppressed tumour
growth & metastases.

Caused MET by
suppressing SNAIL

indirectly

Transwell migration,
Invasion, Xenograft

and liver met
Not performed - [174]
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Table 7. Cont.

Cell Line Target EMT
Regulation KD/KO/Over-expression Pathway/Mechanism Functional Assay Prognostic

Association
EMT

Activator Reference

PANC-1 KLF8, Indirect Positive, Direct siRNA, Over-expression

KLF8 IHC elevated in
PDAC, directly induces
FHL2 transcription via

promoter binding

WB, Invasion Not performed - [175]

GEMM P73, Direct Negative, Direct GEMM

P73 deficiency led to
stromal deposition and
EMT in PDAC tumours,

decreased BGN secretion,
required for tumour

suppressive functions of
TGFβ

GEMM, Transwell
assays Not performed - [176]

GEMM PRRX1 Positive, Direct Overexpression

PRRX1 a/b have discrete
functions in MET/EMT,
knockdown suppresses

tumour growth and EMT

GEMM tumour
model, Xenograft Not performed - [177]

Capan-2 TRIM28 Positive,
Indirect Overexpression

TRIM28 Overexpression
drove EMT and

Invasion, correlated
with T stage

Transwell assays,
WB, Xenograft, IHC

of 91 PDAC

Lymph node
metastasis and

survival
- [178]

PANC-1 ETS1 Positive, Direct shRNA
ETS1 knockdown

epithelialized PANC-1
cells

Scratch wound,
adhesion, qPCR for

EMT markers
Not performed - [179]

HDPE,
COLO-357 NFE2L2 Positive, Direct siRNA/Over-expression

NFE2L2 activation
enhanced TGFβ induced

EMT in both
premalignant and

malignant cells

Scratch wound,
Transwell assays, WB,

qPCR
Not performed TGFβ [180]

PANC-1,
HPAF-II PDX1 Positive,

Indirect shRNA, GEMM

PDX1 has dual roles in
premalignant and

transformed cells. PDX1
expression is reduced in

tumours and EMT

Colony formation,
GEMMs, IHC of 183

PDAC

Inversely
prognostic for

survival

TGFβ
(PANC-1),

HGF
(HPAF-II)

[181]
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Table 7. Cont.

Cell Line Target EMT
Regulation KD/KO/Over-expression Pathway/Mechanism Functional Assay Prognostic

Association
EMT

Activator Reference

PANC-1 BCL9L Positive, Direct siRNA/Over-expression
BCL9L knockdown
prevented EMT and

inhibited in vivo growth

Proliferation,
Transwell assays,

Xenograft
Not performed TGFβ [182]

GEMM ETV1 Positive, Direct Overexpression

ETV1 induces SPARC,
required for tumour

growth and metastasis
in vivo, EMT in vitro

Xenograft, Invasion Not performed - [183]

ASPC-1,
SW1990 EPAS1 Positive, Direct siRNA

EPAS1 (HIF2α) IHC
expression high in

PDAC, and knockdown
inhibited EMT

CHIP, Transwell
assays, IHC of 70

PDAC

Lymph node
metastasis,

differentiation
- [184]

PANC-1
BxPC-3 SIX1 Positive,

Indirect siRNA/shRNA

SIX1 IHC expression
elevated in PDAC,

knockdown reduced
migration and tumour

size

Migration, EMT
markers, PANC-1

Xenograft,
CD44-/CD24+, IHC of

139 PDAC

No - [185]

Cfpac-1 GRHL2 Negative, Direct siRNA

GRHL2 IHC expression
elevated in normal duct

and liver metastases,
drives epithelial

phenotype.

Proliferation, EMT
markers, Colony and

sphere formation,
drug resistance, IHC

of 155 PDAC

No - [186]

PaTu8988S GATA6 Negative, Direct shRNA/Over-expression
GATA6 IHC expression
low in PDAC, Silencing

induced EMT

chemo-resistance, IF,
Invasion, Xenograft,

IHC of 58 PDAC

Inversely
prognostic for

survival
- [187]
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Table 8. Post transcriptional effectors. This table describes factors that may post transcriptionally modulate EMP by controlling stability of mRNA and hence
expression of effector proteins. Candidates that exhibit clinical correlation with lymph node metastasis are shown in bold.

Cell Line Target EMT
Regulation KD/KO/Over-expression Pathway/Mechanism Functional Assay Prognostic

Association
EMT

Activator Reference

Miapaca-2,
PANC-1,

Patu-8988
HNRNPA2B1 Positive, Direct shRNA/Over-expression

Knockdown epithelialized
cells, Over-expression
drove EMT through

ERK/SNAI1 pathway

Cell viability,
Transwell assays,

PANC-1 Xenograft,
EMT markers

Not performed - [188]

SW1990,
BxPC-3 YTHDF2 Negative, Direct shRNA

Knockdown reduced
p-AKT, p-GSK-3b,

promoted EMT, YAP
knockdown reversed effect

Proliferation, Colony
formation, Invasion,

adhesion
Not performed - [189]

Panc-1,
Patu8988 Lnc TUG1 Positive, Direct shRNA

Lnc TUG1 sponges
miR-382, preventing
repression of ezh2

Colony formation,
Transwell assays, WB Not performed - [190]

Gemcitabine
resistant
BxPC-3

DYNC2H1-4 Positive, Direct siRNA

Lnc DYNC2H1-4 sponges
miR-145, upregulating
ZEB1, MMP3 and other

CSC markers

Transwell assays, CSC
markers, Xenograft Not performed - [191]

ASPC-1,
BxPC-3,
PANC-1

miR-23 Positive, Direct miRNAs

miR -23 promotes EMT by
regulating ESRP1, miR-23

required for TGFβ induced
EMT

WB, Transwell assays,
Xenograft, qPCR of 52
paired PDAC tumour

v normal

Survival by
RNA TGFβ [192]

SW1990,
PANC-1,
BxPC-3,

CAPAN-1

NORAD Positive, Direct shRNA/Over-expression
Lnc NORAD acts as ceRNA
of miR-125a-3p, enhancing

RHOa and EMT

Scratch wound,
Transwell assays,

Xenograft
Not performed Hypoxia [193]

Panc-1 Lnc H19 Positive, Direct siRNA
H19 antagonised LET-7,

inducing HMGA-2
mediated EMT

Transwell assays,
scratch wound, WB Not performed - [194]

ASPC-1,
BxPC-3 LncRNA-ROR Positive, Direct shRNA/Over-expression LncRNA-ROR expression

induces ZEB1 and EMT

Scratch wound,
Transwell assays,

Xenograft
Not performed - [195]
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Table 8. Cont.

Cell Line Target EMT
Regulation KD/KO/Over-expression Pathway/Mechanism Functional Assay Prognostic

Association
EMT

Activator Reference

PANC-1,
BxPC-3,

COLO357

miR-100, miR
-125b

Positive,
Indirect siRNA/CRISPR/Over-expression

TGFβ induced
lnc-miR100HG, which
codes for tumourigenic
miR 100, miR125b and
LET-7a. LIN28B also

induced by TGFβ,
suppresses LET-7a activity

miR Over-expression,
Xenograft, Scratch

wound, sphere
formation, RNAseq,

RIPseq

Survival by
RNA TGFβ [109]

BxPC-3,
PANC-1,
CFPAC-1,
SW1990

miR-361-3p Positive, Direct Over-expression
miR-361-3p downregulates

DUSP2, preventing
inactivation of ERK1/2

Orthotopic metastasis,
Transwell assays

Survival by
RNA - [196]

Sw1990 miR-1271 Negative, Direct miR Mimics, Inhibitors miR -1271 inhibited EMT
and migration

Proliferation,
Transwell migration
invasion, xenograft

Not performed - [197]

Panc-1 LSM1 Positive,
Indirect Over-expression

Lsm1 (CaSm) induction
induced EMT and

proliferation, effecting
apoptotic and metastasis

gene expression

Proliferation, anoikis,
Transwell assays,
chemo-resistance,

xenograft

Not performed - [198]

KPCY MTDH Positive,
Indirect siRNA

MTDH expression
promoted CSC and

metastasis, high
cytoplasmic expression by

IHC

Spheroid formation,
orthotopic and

metastatic xenograft
models, IHC of 134

PDAC

Survival - [199]

ASPC-1,
HS766t,
BxPC-3

LIN28B Positive, Direct shRNA

LIN28B IHC expression
high in PDAC,

suppression inhibited
proliferation and EMT

Colony formation,
Proliferation,

migration, IHC of
185 PDAC tumours

Survival, stage,
metastasis - [110]
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5. Conclusions

Overall, investigation of the fundamental biology of EMP aims to combat local and metastatic
invasion by providing a better understanding of the processes that allow cancer cells to dissociate
from their epithelial adhesions to spread. EMP is a prominent driver of PDAC progression, thus
highlighting the importance of our understanding of the subtleties of its regulation. The ability of EMP
programs to direct cancer cells towards a drug resistant and migratory lineage capable of seeding local
and distant recurrence presents a significant barrier to current treatment regimens. Therefore, the
identification of new candidate molecules regulating these processes are crucial to inform targeted
therapies and provide insights into the vulnerabilities of heterogeneous populations of tumour cells
present in PDAC.

It is clear from this ever-growing list of EMP effectors in PDAC cells alone, that much work
remains to delineate their collective interactions within and beyond our current understanding on
EMP signaling pathways. While candidates have been shown to play roles in aspects of EMP signaling
and associated phenotypes, significant support is required for their mechanisms of action to make
concrete conclusions about their directive actions in cancer. Our understanding of receptor mediated
canonical signaling through PI3K/AKT, MAPK, NFκB and other well studied cell cycle pathways has
required decades to tease apart, and the subtleties of EMP programs provides a similar challenge. Open
source integrative tools such as Reactome [200], WikiPathways [201], String [202], and Cytoscape [203]
provide platforms for researchers to combine such analyses to build upon our current understanding
and fill knowledge gaps in the field of cancer biology. In this way, progress may be made to better
understand and discover properties that may be modulated in concert to control EMP in cancer.

In vitro and xenograft tumour modelling and manipulation of target molecules often demonstrates
a role in cancer cell migration and tumour formation, however stronger evidence for their physiological
role in regulating EMP, metastasis and therapy resistance may require GEMMs. The use of in vivo
manipulation of PDAC GEMM models using targeted CRISPR approaches may be such a route towards
a system that better recapitulates the spontaneity and heterogeneity of human tumours [204].
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