Skip to main content
. 2019 Dec 5;7:198. doi: 10.1186/s40478-019-0858-4

Table 3.

Classification of dementia status with different algorithms and different combinations of neuropathology features. Prediction accuracy and standard error are listed for each feature when it is omitted from the multivariable classifier. Age and brain weight had the largest effect when dropped from the model, whilst the neuropathological parameters each had similar effects

Classifier Type Age & Brain weight Thal Phase Plaque score Braak Stage CAA No features omitted
Logistic Regression 0.6327 (+/−  0.0035) 0.6774 (+/−  0.0033) 0.6773 (+/−  0.0033) 0.6776 (+/−  0.0033) 0.6785 (+/−  0.0034) 0.6773 (+/− 0.0033)
Decision Tree 0.6327 (+/−  0.0040 0.6997 (+/−  0.0045 0.6929 (+/−  0.0045 0.7026 (+/−  0.0048 0.7011 (+/−  0.0047 0.7010 (+/−  0.0043)
LDA 0.6344 (+/−  0.0032) 0.6763 (+/−  0.0035) 0.6709 (+/−  0.0034) 0.6738 (+/−  0.0034) 0.6760 (+/−  0.0.0036) 0.6834 (+/−  0.0035)