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Jasmonate Signaling during Arabidopsis Stamen Maturation
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The last stages of stamen development, collectively called
stamen maturation, encompass pollen viability, filament
elongation and anther dehiscence or opening. These proc-
esses are essential for male fertility in Arabidopsis and re-
quire the function of jasmonate signaling. There is a good
understanding of jasmonate synthesis, perception and tran-
scriptional outputs in Arabidopsis stamens. In addition, the
spatiotemporal localization of jasmonate signaling compo-
nents at the tissue and cellular levels has started to emerge
in recent years. However, the ultimate cellular functions
activated by jasmonate to promote stamen maturation re-
main unknown. The hormones auxin and gibberellin have
been proposed to control the activation of jasmonate syn-
thesis to promote stamen maturation, although we hy-
pothesize that this action is rather indirect. In this review,
we examine these different areas, attempt to clarify some
confusing aspects found in the literature and raise testable
hypothesis that may help to further understand how jasm-
onate controls male fertility in Arabidopsis.

Keywords: Anther dehiscence ¢ Auxin e Filament elongation
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Introduction

In angiosperms, the development of stamens and pistils, the
flower organs bearing the male and female reproductive material,
is exquisitely controlled to guarantee the success of offspring
generation (Ma 2005, Gomez et al. 2015, Erbasol Serbes et al.
2019). Mutations in genes important for any stage of stamen
or pistil development, from organ formation to maturation,
through cell-specific differentiation and function, can lead to
plant sterility (Sanders et al. 1999). For example, in the model
plant Arabidopsis, the jasmonate family of phytohormones is
indispensable for the final stages of stamen development, as
shown by mutants impaired in jasmonate biosynthesis or per-
ception, which are male sterile without compromised female
fertility (Feys et al. 1994, Sanders et al. 2000, Stintzi and Browse
2000). In contrast to most Arabidopsis male sterile mutants,
jasmonate mutants display remarkably normal-looking stamens
until late in development (Fig. 1A). Accordingly, pollen grains
seem to develop normally after meiosis, undergoing two rounds
of mitosis to produce the expected tricellular gametophyte com-
posed of one vegetative cell and two sperm cells (McConn and

Browse 1996). However, pollen grains lose viability after this point
and are unable to germinate. Furthermore, the following two
other processes fail to occur: the elongation of stamen filaments,
which ensures that anthers reach the pistil stigmata for fertiliza-
tion, and the opening of anthers (dehiscence), which is essential
for pollen release (Fig. 1A; Sanders et al. 2000, Stintzi and Browse
2000). We refer to these three aspects of stamen development as
maturation. In this review, we examine our current understand-
ing of jasmonate signaling during this process in Arabidopsis,
including synthesis, perception, transcriptional changes, possible
cellular functions and the influence of auxin and gibberellin. In
addition, we identify open questions and potentially interesting
research avenues on these topics.

Jasmonate Synthesis

Mutant analysis of jasmonate synthesis and perception genes in
Arabidopsis has provided the basis to understand several bio-
logical functions of this hormone family. The failure of stamen
maturation in mutants devoid of jasmonates in Arabidopsis
flowers can be rescued easily by spraying with a concentrated
solution of volatile methyl jasmonate. This restores male fertil-
ity and self-pollination, allowing the propagation of pure mu-
tant populations (Acosta and Farmer 2010). A summary of the
jasmonate synthesis pathway and corresponding enzymes dur-
ing Arabidopsis stamen maturation is presented in Fig. 1B.

Jasmonates are one type of oxylipins, molecules derived from
the oxygenation of polyunsaturated fatty acids (Hamberg and
Gardner 1992). Jasmonates in particular are made from trienoic
a-linonenic acid, the most abundant polyunsaturated fatty acid
in plants. One of the first hints that jasmonate is essential for
Arabidopsis stamen maturation was provided by the fad3 fad7
fad8 triple mutant. This mutant lacks a-linonenic acid due to a
loss of function in all the desaturases catalyzing the last step in
the synthesis of trienoic fatty acids (McConn and Browse 1996).
a-Linonenic acid is mainly found within plastid membranes as
part of glycerolipids, from which it is specifically released in
Arabidopsis stamens by the lipase DEFECTIVE IN ANTHER
DEHISCENCE1 (DAD1) to initiate jasmonate synthesis
(Fig. 1B; Ishiguro et al. 2001).

Plastid-localized 13-lipoxygenases (13-LOXs) oxygenate
o-linonenic acid in carbon 13 to generate a lipid hydroperoxyde
(Bannenberg et al. 2009). The Arabidopsis genome encodes four
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Fig. 1 Jasmonate signaling during Arabidopsis stamen maturation. See
main text for details. (A) Filament (F) elongation starts in wild-type
(WT) Arabidopsis stamens at flower stage 12, and it finishes at stage
13 along with anther (A) opening. These processes fail in the jasmonate
synthesis mutant gos. Notice that two of the six stamens in Arabidopsis

13-LOXs (LOX2, LOX3, LOX4 and LOX6). However, only LOX3
or LOX4 are indispensable and sufficient for stamen matur-
ation, as demonstrated by the male sterility of the lox3 lox4
double mutant (Caldelari et al. 2011) and the full fertility of
lox2 lox3 lox6 and lox2 lox4 lox6 triple mutants (Chauvin et al.
2013). Itis not yet known what determines this specific function
of LOX3 and LOX4 in Arabidopsis stamens, but we can propose
at least two testable explanations. First, they may be the only
13-LOXs specifically present in the relevant stamen cells or sub-
plastidial compartments. Alternatively, they may be better
suited than LOX2 and LOX6 to use as substrate the ‘free’ a-lino-
nenic acid released by the DAD1 lipase.

Two subsequent enzymes, ALLENE OXIDE SYNTHASE
(AOS) and ALLENE OXIDE CYCLASE (AOC), process the lipid
hydroperoxyde to produce 12-oxo-phytodienoic acid (OPDA).
The AOS enzyme is encoded by a single copy gene, whose loss of
function abolishes all jasmonate production in the plant (Park
et al. 2002). Conversely, the AOC step is encoded by four genes,
three of which are located in tandem in the Arabidopsis gen-
ome, which has so far prevented the genetic dissection of their
role in stamen maturation (Stenzel et al. 2012). OPDA is trans-
ported to peroxisomes where the synthesis of jasmonic acid is
completed by an OPDA reductase (OPR3) and three rounds of
p-oxidation. The vast majority of jasmonate synthesis occurs
through OPR3. However, it was shown recently that OPR2, a
paralog localized in the cytosol, is able to partly provide jasm-
onates in the opr3 mutant through an alternative route during
defense responses (Chini et al. 2018). This route is certainly not
functional in stamens, where the full sterility of the opr3 mutant
clearly indicates that OPR3 is the sole contributor to jasmonate
production (Sanders et al. 2000, Stintzi and Browse 2000).

Jasmonic acid (JA) eventually accumulates in the cytosol,
where the JA-amido synthetase JASMONATE RESISTANT1
(JAR1) conjugates it to one of several amino acids (Staswick
and Tiryaki 2004). By far, the most abundant bioactive jasmo-
nate is jasmonoyl-isoleucine (JA-lle) (Katsir et al. 2008, Yan et al.
2016). No JA-amido synthetase mutant devoid of JA-lle has
been identified yet, although the jar1 mutant shows a reduction
of >70% in JA-lle levels both in flowers and after leaf wounding
(Suza and Staswick 2008). Thus, another enzyme or enzymes
not yet identified produce the remaining JA-lle in these tissues.
Interestingly, the jarT mutant is fully fertile but shows reduced
jasmonate defense responses upon insect attack (Acosta et al.
2013), suggesting that the low levels of JA-lle in jar1 flowers
sustain stamen maturation more robustly than defense
responses. Alternatively, a different jasmonate derivative or
conjugate not yet known may be the bioactive molecule acti-
vating stamen maturation.

Interestingly, recent work has shown that the ABCG-type
JASMONATE TRANSPORTER1 (JAT1) is important to

flowers are always shorter and delayed. (B) Jasmonate synthesis pathway
in stamens. The genes encoding the corresponding enzymes at each step
are abbreviated in bold and italics. Question marks indicate that it is not
yet clear which specific AOC and JAR1-type enzymes are required in
stamens. 13-HPOT, 13(S)-hydroperoxy-octadecatrienoic acid; 12,13-
EOT, (135)-12,13-epoxy-octadecatrienoic acid.
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Fig.2 Proposed mechanism of jasmonate perception and transcriptional control of jasmonate-responsive genes with factors known to work during

Arabidopsis stamen maturation. See main text for details.

translocate JA-lle from the cytoplasm to the nucleus, the site of
jasmonate signaling activation (Li et al. 2017). Similar to jar1, the
single mutant jat1 is fertile. However, haploinsufficiency or
higher-order loss of both JART and JAT1 causes male sterility
that can be rescued by methyl jasmonate application.
Therefore, Li et al. (2017) attributed this phenotype to stamen
maturation defects, although a detailed description of anther,
filament and pollen features is missing. These results emphasize
that JA-lle levels in jar1 stamens are at the limit so that further
reducing its transport to the nucleus abolishes jasmonate sig-
naling. Moreover, the rescue of jar1 jat1 fertility with methyl
jasmonate supports the existence of additional unknown en-
zyme(s) capable of converting JA into JA-lle in the absence
of JAR1.

Jasmonate Perception and the Activation of
Transcription

Jasmonate-regulated responses are effected through large
changes in gene expression that in most cases require the tran-
scription factor MYC2, which belongs to subclade llle of the
basic helix-loop-helix (bHLH) family (Lorenzo et al. 2004,
Fernandez-Calvo et al. 2011). During stamen maturation,
MYC2 works redundantly with its close paralogs MYC3,
MYC4 and MYC5 (Qi et al. 2015). Triple myc mutant combi-
nations show delayed anther dehiscence and low pollen viabil-
ity. These defects worsen in the quadruple myc2 myc3 myc4
myc5 (myc2/3/4/5) mutant, which carries limited viable pollen
and additionally displays slower filament elongation.
Ultimately, seed set is reduced by 50% in the quadruple mutant,
but this partial fertility suggests that additional jasmonate-
dependent transcription factors can support the stamen mat-
uration program. MYC2 is believed to recruit the RNA poly-
merase |l transcriptional machinery through its interaction with
MED?25, a subunit of the Mediator coactivator complex (Chen
et al. 2012). However, the biological relevance of this interaction
has been mainly reported for jasmonate-dependent defense
responses (Kidd et al. 2009), with no documentation of stamen
maturation defects in med25 mutants. Thus, which subunits of
the Mediator complex may be required for MYC function in
this process remains an open question.

The current model of jasmonate perception (Fig. 2; reviewed
by Howe et al. 2018) proposes that under low JA-lle concen-
trations, a multiprotein complex coordinated by JASMONATE-

ZIM-DOMAIN (JAZ) proteins represses MYC activity through
several simultaneous mechanisms (Chini et al. 2007, Thines et al.
2007, Sheard et al. 2010). These may include directly blocking
interactions with transcriptional coactivators, or recruiting
TOPLESS-type corepressors either directly or through the adap-
tor protein NOVEL INTERACTOR OF JAZ (NINJA; Pauwels et al.
2010, Howe et al. 2018). When JA-lle accumulates, it acts as a
molecular glue that brings together a coreceptor formed by JAZ
proteins and CORONATINE INSENSITIVE1 (COI1). COI1isan F-
box protein that is part of an E3 ubiquitin ligase complex of the
SKP1-CUL1-F-box type, which ubiquitylates JAZs, effectively
sending them for degradation by the 26S proteasome (Fig. 2;
Xie et al. 1998, Thines et al. 2007, Katsir et al. 2008). This dis-
assembles the entire corepressor complex, liberating MYCs to
recruit the transcription machinery and activate the expression
of target genes. Since a single copy gene encodes COI1 in the
Arabidopsis genome, coi1 mutants are impaired in all
jasmonate-mediated responses known to date, including sta-
men maturation (Xie et al. 1998). Thus, they are indistinguish-
able from the male sterile jasmonate synthesis mutants, except
that jasmonate application obviously does not rescue coi1 fer-
tility. Overexpression of nondegradable JAZ proteins also causes
a failure of stamen maturation, nicely supporting their role as
repressors of jasmonate signaling (Thines et al. 2007, Chung and
Howe 2009).

The core JAZ-MYC jasmonate signaling module is a robust
off/on switch that is activated by a wide range of developmental
or environmental cues capable of stimulating JA-lle accumula-
tion (Howe et al. 2018). On the other hand, each cue prompts
specific transcriptional changes suited to the required response.
Such specificity may be provided by additional transcriptional
activators that interact in a combinatorial manner with MYCs
(Goossens et al. 2017, Howe et al. 2018). For jasmonate-
mediated stamen maturation, it has been proposed that the
MYC partners may be at least two related R2R3-type MYB
transcription factors, MYB21 and MYB24. The genes encoding
these proteins were first identified as induced by jasmonate
signaling at the onset of stamen maturation, along with
MYB57 and MYB108, two other related genes (Mandaokar
et al. 2006). Null myb21 mutants display delayed anther open-
ing and complete failure of filament elongation, which causes
full sterility because anthers are unable to reach the pistil stig-
mata; however, the pollen is viable and the mutants can be
propagated by manual ‘self pollination (Mandaokar et al.
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2006, Reeves et al. 2012). Moreover, myb24 mutants are com-
pletely fertile, but double myb21 myb24 mutants fail in all three
aspects of stamen maturation and are fully sterile (Mandaokar
et al. 2006, Reeves et al. 2012). This indicates that MYB21 is
alone essential for filament elongation, while it acts redundantly
with MYB24 to promote pollen viability and anther dehiscence.

The earlier discovery of the MYB21 and MYB24 genes during
stamen maturation suggested a simple scenario where the out-
come of jasmonate synthesis and perception was the induced
expression of these transcription factors, which would then act
as ‘master regulators’ of the stamen maturation program.
However, in addition to the importance of MYCs in this process,
recent work uncovered that MYB21/24 physically interact with
both MYC and JAZ proteins and that JAZs can inhibit their
transcriptional activation function (Song et al. 2011, Qi et al.
2015). This suggested the slightly more complex picture of the
general JAZ-MYC signaling module cooperating with MYB21/
24 to specifically trigger stamen maturation after jasmonate
activation (Fig. 2; Qi et al. 2015, Goossens et al. 2017, Howe
et al. 2018). This model supposes a pre-existing MYC-JAZ-MYB
complex, but it remains an open question what controls the
‘basal’ expression of the different components. This is unclear
not only for stamen maturation but also for all other
jasmonate-activated responses that use similar modules
throughout the plant. One possibility is that the basal transcrip-
tional machinery constantly drives the expression of core JAZ-
MYC components at low levels in all tissues, while stamen-
specific factors additionally determine the basal expression of
MYB21 and MYB24.

A remarkable outcome of jasmonate signaling activation is
the rapid and transient accumulation of transcripts encoding
jasmonate biosynthesis enzymes (e.g. LOX2, LOX3 and LOX4),
MYC transcription factors, JAZs and other repressors, and jasm-
onate catabolic enzymes (Chung and Howe 2009, Koo et al.
2011). Accordingly, the expression of many of these genes is
found in the transcriptome of maturing stamens (e.g. Reeves
et al. 2012). This ‘jasmonate transcriptional signature’ is believed
to create positive and negative feedback loops that, on the one
hand, increase the capacity to synthesize and respond to jasm-
onates and, on the other hand, attenuate the transcriptional
signaling output (Wasternack 2007, Howe et al. 2018). It has
been suggested that positive feedback upregulation of jasmo-
nate biosynthetic genes does not necessarily result in further
jasmonate accumulation (Scholz et al. 2015). However, math-
ematical modeling suggests that the two opposing loops gen-
erate a transient pulse of jasmonate biosynthesis and response
(Banerjee and Bose 2011). This agrees well with the expression
data of jasmonate-responsive genes in maturing stamens, where
they reach a transitory expression peak at flower stage 12 that
declines at stage 13 (Nagpal et al. 2005, Reeves et al. 2012). It is
conceivable that transient pulses of jasmonate signaling are
essential to correctly pattern and limit the expression and func-
tion of MYB21 and MYB24 because uncontrolled accumulation
of these factors is detrimental not only to fertility but also to
plant vegetative growth (Shin et al. 2002, C. Yang et al. 2007,
Song et al. 2011). Not surprisingly, loss of jasmonate synthesis/
perception or MYC function strongly reduces the expression of

the ‘jasmonate transcriptional signature’. Interestingly, how-
ever, jasmonate-responsive genes remain upregulated in the
myb21 myb24 double mutant past flower stage 13, suggesting
that MYB21 and MYB24 also contribute to the negative feed-
back loop (Reeves et al. 2012).

A practical aspect of the feedback upregulation of jasmonate
signaling genes is that they constitute excellent markers to
diagnose jasmonate signaling activation. However, it is impera-
tive to remember that induction of a gene’s expression does not
always imply an underlying function. A clear example is the
jasmonate synthesis gene LOX2, which is highly expressed in
stamens and follows the kinetics of other jasmonate-
responsive genes (Reeves et al. 2012), but it is obviously not
required for the process of stamen maturation.

Localization and Regulation of Jasmonate
Synthesis and Perception in Maturing Stamens

There is limited and fragmentary information on the spatio-
temporal dynamics of jasmonate synthesis factors during sta-
men maturation. A DADT transcriptional reporter indicates
that, in flowers, this gene is exclusively expressed in stamen
filaments, starting shortly before the onset of stamen matur-
ation (Ishiguro et al. 2001). Low-resolution in situ hybridization
of OPR3 transcripts suggests a similar localization in stamen
filaments and in the vascular region at the junction of anthers
and filaments; however, OPR3 expression does not seem
restricted to the stamen maturation phase, being already pre-
sent at early developmental stages and in additional flower
organs, such as petals and pistils (Sanders et al. 2000). Of the
four AOC genes, only AOCT and AOC4 seem active in mature
stamens (filaments and pollen) according to f-glucuronidase
transcriptional reporters, but an aoc1 aoc4 double mutant did
not have fertility defects (Stenzel et al. 2012). Nevertheless, it
should be noted that the T-DNA line that these authors used
for aoc4 (SALK_124897) may not be a true loss-of-function
allele because their data show only marginal reductions in
AOC4 expression and the most recent update of the SALK T-
DNA index indicates that this insertion lies within the 5" un-
translated region of AOC4. Alternatively, higher-order mutants
including the other AOC genes may be required to unravel
which of the four copies are required for stamen maturation.
Lastly, immunolocalization of AOC proteins resembles the ex-
pression of OPR3 transcripts: widespread in stamens of early
flowers but restricted to filaments in maturing flowers (Hause
et al. 2003b). These authors also attempted immunocytology of
AOS protein and claimed that it was found in pollen, but they
did not describe the situation in filaments. In sum, filaments
seem the single most shared location of jasmonate synthesis
factors during stamen maturation. Although clearly more work
is needed to accurately describe their spatiotemporal dynamics,
an exclusive localization of jasmonate synthesis to the filaments,
if confirmed, raises the interesting possibility that jasmonate
exerts non-cell-autonomous effects in pollen and anther tissues.

Constitutive levels of jasmonates are normally very low in
vegetative tissues but increase within seconds after mechanical
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wounding (Glauser et al. 2009). In contrast, jasmonates are
found at relatively high levels in flowers at the stages of stamen
maturation (Reeves et al. 2012); thus, it is expected that this
accumulation is developmentally regulated. In both cases, it is
not known exactly how stress or developmental signals trigger
jasmonate synthesis and, for stamen maturation, there are some
limited hints. Lack of the homeotic factor AGAMOUS late in
stamen development causes maturation defects that can be
rescued by the application of jasmonate or o-linonenic acid.
Importantly, AGAMOUS seems able to bind putative cis-regu-
latory elements of the jasmonate synthesis gene DADT and to
ectopically activate its expression in petals (Ito et al. 2007).
Although no evidence was presented to support that
AGAMOUS can induce DADT in stamens, the work of Ito
et al. (2007) suggests the intriguing model that this transcrip-
tion factor activates timely DAD1 expression before the onset of
stamen maturation to initiate jasmonate synthesis. In addition
to this putative direct regulatory function of AGAMOUS, there
are several reports of additional factors that seem to indirectly
impact the initiation of jasmonate synthesis, including other
hormones, such as auxin and gibberellin, that will be discussed
below (Nagpal et al. 2005, Cheng et al. 2009, Tabata et al. 2010,
Cecchetti et al. 2013, Peng et al. 2013). Interestingly, most of
these reports suggest DAD1 expression as the ‘limiting’ step for
jasmonate synthesis in stamens.

Recent work has shed light on the sites of jasmonate per-
ception in maturing stamens by expressing a COI1-YFP reporter
under the control of tissue- or organ-specific promoters in a
co0i1-1 mutant background (Jewell and Browse 2016). First, the
promoter of COIT rescues all three aspects of stamen matur-
ation and confers expression in most stamen cells except pollen.
This expression pattern suggests that (i) jasmonate perception
is not required in pollen and is sufficient in sporophytic tissues
to drive pollen viability and (ii) most stamen cells are poised for
jasmonate perception and COIT transcription is not a limiting
factor. Second, expressing COI1 only in the filament using the
DADT1 promoter partly rescues filament elongation but not an-
ther opening or pollen viability; conversely, expressing COI1
only in anther tissues partly rescues anther opening and pollen
viability but not filament elongation. These results indicate that
jasmonate perception within each tissue type (anther or fila-
ment) is necessary and (only) sufficient to activate maturation
within such tissue. This also emphasizes that if jasmonate pro-
duction does occur only in filaments, some jasmonate should
be transported to anthers to activate responses there. Third,
expressing COI1 in all stamen epidermal cells suffices to partly
rescue all three aspects of stamen maturation, suggesting the
intriguing idea that the epidermis is the sole site of jasmonate
perception in stamens. However, since the rescue is only partial,
it is possible that additional cell layers need to activate jasmo-
nate signaling for normal stamen maturation. This may be par-
ticularly expected for filament growth, where a coordinated
expansion of the epidermis, cortex and vascular cell layers
is likely.

In situ hybridization of MYB21 around stage 12 finds it
expressed in filaments, most strongly in the apical region and
in the junction with the anthers, including the anther

vasculature tissue (Cheng et al. 2009, Reeves et al. 2012). This
pattern agrees with the expression of OPR3 described above and
fits with the role of MYB21 in filament elongation. It also sug-
gests that jasmonate synthesis and perception in filaments suf-
fice to activate MYB21 function there. MYB24 shows a similar
expression pattern in the filaments but seems absent from
anthers (Cheng et al. 2009, Reeves et al. 2012). However, this
absence and the restricted expression of MYB21 in the anther
vasculature are difficult to reconcile with the role of MYB21and
MYB24 in anther opening. As discussed below, one of the pro-
posed effects of jasmonate signaling to promote anther opening
is the breakage of stomium epidermal cells, which are several
cell layers beyond the vasculature. Moreover, the work of Jewell
and Browse (2016) suggests that jasmonate perception occurs
not only in the vasculature but also in other anther cells, such as
the epidermis, where it may suffice for anther opening. Thus,
similar to jasmonate synthesis factors, the spatiotemporal dy-
namics of MYB21 and MYB24 requires more detailed analysis to
clarify where exactly it occurs to promote filament elongation
and anther opening.

Possible Cellular Events Activated by Jasmonate
Signaling to Drive Stamen Maturation

In contrast to the mostly clear understanding of the jasmonate
signaling components required for stamen maturation, there has
been only limited research on how the transcriptional reprogram-
ming activated by jasmonate redirects cell functions to drive pol-
len viability, filament elongation and anther opening. The two
published transcriptomes of jasmonate signaling mutants may
provide a starting point to hypothesize potential executors of
the stamen maturation program: the time-course transcriptome
of jasmonate-deficient opr3 mutant stamens after jasmonate
treatment (Mandaokar et al. 2006) and the differentially
expressed genes in myb21 myb24 mutant flowers at stages 12
and 13 (Reeves et al. 2012). For example, Mandaokar et al.
(2006) proposed that jasmonate signaling induces the synthesis
of waxes that may be important for pollenkitt formation and,
therefore, pollen viability. Moreover, stamen filament elongation
occurs through increases in cell length (Mandaokar et al. 2006,
Cheng et al. 2009, Reeves et al. 2012) and the transcriptomes
induced by jasmonate or MYB21/24 include cell wall-modifying
enzymes that may play a role in the expansion of filament cells.
However, all these hypotheses remain to be tested. What seems
clear is that jasmonate promotes stamen maturation by instruct-
ing different cell types to perform particular and disparate func-
tions, such as expansion and degeneration (see below). Thus,
another unsolved question is how each cell-specific response is
achieved. It is possible that MYB21/24 activate the expression of a
second level of transcription factors in different cell types. For
example, one of the primary targets of MYB21/MYB24 may be
MYB108, which seems involved in anther dehiscence only
(Mandaokar and Browse 2009, Reeves et al. 2012).

Pollen is produced and enclosed within two pairs of anther
locules or chambers (Fig. 3). Adjacent locules within a pair are
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Stage 11

Connective Vasculature

Fig.3 Schematic representation of Arabidopsis anther cross-sections at
stages 11 and 12. Distinct cell types are shown with different colors. The
tapetum layer is not visible anymore at stage 12. Red bars on the endo-
thecium layer represent secondary thickenings. At stage 12 in this de-
piction, septum rupture is complete in both locule pairs, while stomium
breakage to allow pollen release has only occurred in the right loc-
ule pair.

kept apart by a group of cells forming a septum. In addition,
adjacent locules converge at the stomium, the epidermal region
where the anther actually opens for pollen release. Several proc-
esses are required for anther dehiscence (represented in Fig. 3;
reviewed by Wilson et al. 2011): (i) deposition of ligno-cellulosic
thickenings at the cell walls of subepidermal endothecium cells;
(ii) separation or break down of septum cells, leading to locule
pair fusion; (iii) separation or break down of the specialized epi-
dermal cells forming the stomium; and (iv) dehydration of the
anther surface. It is believed that this dehydration along with the
tension created by the secondary thickenings of the endothecium
bends the locule outward, widening the stomium opening to
allow pollen release (Keijzer 1987, Nelson et al. 2012).

In Arabidopsis, endothecium secondary thickening does not
require jasmonate signaling (Ishiguro et al. 2001, Steiner-Lange
et al. 2003, Cecchetti et al. 2013). Instead, it is solely dependent
on the transcription factor MYB26, which partly acts by activat-
ing the expression of two other essential transcription factors,
NST1 and NST2, presumed activators of genes encoding cellu-
lose and lignin biosynthetic enzymes (Mitsuda et al. 2005, X. Y.
Yang et al. 2007, Yang et al. 2017). Jasmonate signaling seems
only necessary for stomium breakage because anther histology
shows that only this process is absent or delayed in the
jasmonate-deficient mutants dad1 and opr3; in contrast, they
display normal septum rupture (Sanders et al. 2000, Ishiguro
et al. 2001).

Based on several model species, it has been proposed that
cell separation events in the septum and the stomium involve
pectin-degrading enzymes that facilitate cell wall loosening
(Keijzer 1987, Keijzer et al. 1996, Wilson et al. 2011). Loss-of-
function mutations in a specific clade of pectin-degrading poly-
galacturonases of tomato (PS-2) and Arabidopsis (ADPGT,
ADPG2, QRT2) block or delay anther dehiscence, supporting
the importance of cell wall enzymatic lysis in this process
(Gorguet et al. 2009, Ogawa et al. 2009). Based only on histo-
logical observations, the authors attributed this mutant defect
to a failed rupture of the stomium, not the septum. The tran-
scriptomic data suggest that jasmonate and MYB21/24 may
control the expression of genes encoding these or similar
pectin-degrading enzymes (Mandaokar et al. 2006, Reeves
et al. 2012), but deeper analyses are required.

Stomium breakage has also been variously attributed to
simple mechanical rupture (Keijzer 1987, Wilson et al. 2011)
or to active programmed cell death (Sanders et al. 2000,
Sanders et al. 2005). In particular, Sanders et al. (2000) claim
that the opr3 mutant shows a delayed anther dehiscence due to
a lag in the degeneration of stomium cells, raising the interest-
ing possibility that jasmonate activates developmentally pro-
grammed cell death. However, a clearer, unequivocal definition
of the cellular and molecular events leading to the separation or
break down of septum and stomium cells is still necessary. For
example, it is important to detect and follow the kinetics of
pectin degradation or cell death in those cells to investigate if
these events are truly necessary for anther opening in
Arabidopsis.

Ishiguro et al. (2001) hypothesized that jasmonate signaling
is important for anther dehydration, promoting water move-
ment out of the anthers into the filaments, which would also
cause filament cell expansion. Such mechanism would achieve
an elegant synchronization of anther dehiscence and filament
elongation. However, the tissue-specific rescue of jasmonate
perception reviewed earlier indicates that these two processes
occur mainly independent of each other (Jewell and Browse
2016). This is further supported by the phenotype of the
myb21 mutant stamens, where filaments fail to elongate but
anthers open successfully although with some delay. Still, it is
formally possible that water movements that follow an osmotic
potential in filaments contribute to elongation (Keijzer 1987,
Bonner and Dickinson 1990). Ishiguro et al. (2001) suggested
that jasmonate produced in filaments could stimulate this os-
motic potential by activating the expression of the sugar trans-
porter AtSUCT at the vascular interface of anther and filament
tissues. Nevertheless, the transcriptome data does not support
that jasmonate or MYB21/24 control the expression of AtSUCT.
Instead, myb21/24 mutant stamens seem to show lower expres-
sion of several ion channels that may facilitate the transport of
ions, such as potassium, which could be a faster and more sen-
sitive source of osmotic potential in filaments (Heslop-Harrison
et al. 1987, Heslop-Harrison and Heslop-Harrison 1996).

Recent work has provided genetic and physiological evi-
dence for the requirement of dehydration in Arabidopsis anther
opening and pollen viability. INDUCER OF CBF EXPRESSION 1
(ICE1), another MYC-type transcription factor, is essential for
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the differentiation of abaxially localized anther stomata (Wei
et al. 2018). Although stomium breakage seems to occur in an
ice1 mutant, the anther epidermis remains hydrated, preventing
the widening of the stomium and, therefore, pollen release. This
supports that water evaporation via stomata is essential for
anther dehydration and full dehiscence and suggests that it is
another event putatively activated by jasmonate signaling. Still,
this does not rule out that osmotic potentials are also needed to
drive additional water movements toward the filament, petals
or other organs. Interestingly, jasmonate and ICE1 promote cold
stress tolerance; instead, JAZ proteins repress it because they
bind and block ICE1 function; thus, jasmonate likely activates
ICE1 under cold stress (Hu et al. 2013). This raises the interesting
possibility that jasmonate also activates ICE1 in anthers to allow
stomata differentiation. This hypothesis has not yet been tested
and would imply that jasmonate signaling mutants carry undif-
ferentiated stomata precursor cells similar to the iceT mutant.
Alternatively, jasmonate could promote anther stomata open-
ing as the JA-lle mimic coronatine does in leaves during
Pseudomonas  syringae infections (Melotto et al. 2006,
Gimenez-lbanez et al. 2017).

Interaction of Jasmonate Signaling with Auxin
and Gibberellin

Several works have concluded that the hormones auxin and
gibberellin control jasmonate synthesis through the regulation
of DADT1 expression at the onset of stamen maturation (Nagpal
et al. 2005, Cheng et al. 2009, Tabata et al. 2010, Reeves et al.
2012, Cecchetti et al. 2013). However, no direct effect of auxin or
gibberellin signaling on the promoter of DAD1 has been yet
reported. Moreover, as detailed below, jasmonate treatments
are insufficient to rescue the stamen maturation defects of
mutants impaired in auxin or gibberellin signaling (Nagpal
et al. 2005, Cheng et al. 2009). Therefore, we favor the more
open interpretation that these hormones work first and fore-
most to complete the development of different stamen cell
types, which thereby become ‘competent’ to activate DAD1
expression and jasmonate synthesis. In this model, interrupting
auxin or gibberellin signaling indirectly blocks jasmonate accu-
mulation and, therefore, responses such as the jasmonate tran-
scriptional signature. The model is summarized in Fig. 4 and
detailed below.

To investigate the relationship between gibberellin and
jasmonate signaling during stamen development, Cheng et al.
(2009) used the gibberellin synthesis mutant ga1, which is prac-
tically devoid of gibberellins and displays pleiotropic develop-
mental defects. In addition to having shorter stamen filament
cells, gaT fails to produce viable pollen because microspores do
not separate properly after meiosis nor undergo mitosis, and
eventually degenerate. The anther wall tissue also develops ab-
normally and collapses (Cheng et al. 2004). In contrast, the
pollen in jasmonate mutants almost reaches maturity, arriving
at the tricellular stage but losing viability afterward, and anther
wall tissues are normal until late in development (Sanders et al.
2000, Cecchetti et al. 2013). This suggests that lack of gibberellin
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. AFB47?/57?
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AGAMOUS | yovelopment | =~ ARF8.2/ARF8.4
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Fig.4 Interaction model of jasmonate with auxin and gibberellin during
stamen maturation. We propose that gibberellin (GA) and auxin allow
normal filament development, which is required to activate jasmonate
(JA) synthesis via DAD1. Moreover, gibberellin potentially promotes
AGAMOUS function, which may also induce DAD1 expression. The
low specific levels of auxin required to activate ARF6/8 function might
be reached through catabolism with a DAO enzyme or through down-
regulation of the auxin synthesis genes YUCCA 2/6 mediated by a pu-
tative FTIP-like factor. ARF6/8 also contributes independently to anther
opening by activating MYB26 expression. See main text for fur-
ther details.

arrests several aspects of stamen development long before
jasmonate signaling is activated. Consequently, jasmonate levels
and part of the jasmonate transcriptional signature are lower in
gal. This correlates with an 80% reduction in the transcripts of
DAD1, indicating that gaT arrested stamens are unable to initi-
ate jasmonate synthesis (Cheng et al. 2009). It should be noted
that Cheng et al. (2009) also considered the reduced expression
of LOXT in ga1 as correlative with the low jasmonate produc-
tion. However, LOX1 is a 9-lipoxygenase that does not partici-
pate in jasmonate synthesis, a job performed exclusively by 13-
lipoxygenases and specifically by LOX3 and LOX4 in stamens.
Interestingly, treating ga1 flowers with jasmonate does activate
the expression of MYB21 and MYB24 (Cheng et al. 2009), sug-
gesting that reproductive tissues are competent to respond to
jasmonate before stamen maturation, but the limiting step for
signaling activation is jasmonate production. On the other
hand, even if exogenous jasmonate activates signaling in the
ga1 background, this is insufficient to rescue the stamen devel-
opment arrest of the mutant. This emphasizes that jasmonate
synthesis is just one of several aspects that are blocked in ga1
and that have to take place before the stamen maturation
program is initiated (Cheng et al. 2009). These authors also
suggest the intriguing possibility that gibberellin signaling
may activate the expression of AGAMOUS, which in turn would
directly control DAD1 expression.
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All flower organs of a double mutant defective in the auxin
response factors ARF6 and ARF8 arrest at stage 12, shortly be-
fore the onset of stamen maturation. Consequently, both fila-
ment elongation and anther dehiscence fail to occur (Nagpal
et al. 2005). These defects are only partial and variable in single
arf6 or arf8 mutants indicating that these factors act in part
redundantly. The arrest of arf6 arf8 stamens seems to happen
later than that of ga1, although no histological description has
been reported. Thus, it is not clear if and when arf6 arf8 pollen is
defective, or if arf6 arf8 anthers are affected in other processes
necessary for dehiscence but independent of jasmonate signal-
ing, such as endothecium lignification. However, class 1 KNOX
genes, which are known as repressors of cell differentiation, are
ectopically expressed in arf6 arf8 flowers and this seems to
partly account for their arrest (Tabata et al. 2010). Moreover,
reducing ARF6/8 activity appears to block filament vasculature
at the procambium stage, because a procambial marker shows
an expanded expression in the double mutant (Rubio-Somoza
and Weigel 2013).

Similar to ga1, jasmonate levels in arf6 arf8 are reduced and
correlated with a lack of DAD1 expression (Nagpal et al. 2005,
Tabata et al. 2010). In contrast to gal, jasmonate application
does rescue anther opening in arf6 arf8 but not filament elong-
ation, so it has been concluded that the low jasmonate accu-
mulation in this mutant is only responsible for one defect but
not the other (Nagpal et al. 2005). We propose that ARF6 and
ARF8 are required for the correct development of filament cells,
which are likely the source, via DADT activation, of the jasmo-
nate that triggers both filament elongation and anther opening.
In this model, arf6 arf8 filament cells remain immature, not
competent to initiate the synthesis of jasmonate or to respond
to it. Instead, anther tissues do mature and are obviously re-
sponsive to jasmonate but unable to synthesize it independent-
ly. In this sense, the work on ARF6 and ARF8 would support that
anthers are normally not capable of triggering jasmonate syn-
thesis, for which they are fully dependent on filaments. The
potential requirement of ARF6 and ARF8 for the completion
of vasculature development in the filament is remarkable, be-
cause jasmonate synthesis genes and enzymes can be expressed
in vascular tissues (Hause et al. 2003a; Gasperini et al. 2015),
which may be a suitable location for jasmonate production if
transport to the anther is needed.

Recent work has shown that the function of ARF8 in filament
elongation is most likely effected through specific splice var-
iants, mainly ARF8.4 with perhaps a minor contribution of
ARF8.2 (Ghelli et al. 2018). Inducing higher levels of ARF8.4 in
wild-type plants increases final stamen length slightly but sig-
nificantly, and it restores the mild 15% reduction in filament
length of the arf8-7 single mutant. Moreover, induction of
ARF84 in arf8-7 recovers the expression of Aux/IAAT19, an
auxin-responsive gene that Ghelli et al. consider a master regu-
lator of filament elongation. However, this interpretation is in-
consistent with the function of Aux/IAA19 as a repressor of
auxin signaling. Analogously to JAZs in jasmonate signaling,
Aux/IAA proteins repress the function of ARFs until auxin ac-
cumulation and sensing target them for degradation (Chapman
and Estelle 2009). Accordingly, the dominant MASSUGU2

mutations disrupt the degron motif of Aux/IAA19, which ren-
ders it stable and insensitive to auxin degradation (Tatematsu
et al. 2004). Thus, filament growth is delayed in MASSUGU2
(Tashiro et al. 2009), similar to arf6 or arf8 single mutants, likely
because ARF6/8 remain partially repressed. Therefore, Aux/
IAA19 is a repressor of the filament cell development program
enabled by ARF6 and ARF8 and has to be eliminated through
auxin perception to activate ARF function. In addition, ARF6/8
probably induce the expression of not only Aux/IAA19 but also
at least five other Aux/IAAs [c.f. microarray data in Reeves et al.
(2012)]. Again, in analogy to jasmonate signaling, Aux/IAA in-
duction probably serves a negative feedback role to limit (not
stimulate) auxin-ARF output. It is also a stereotypical transcrip-
tional response that is a practical readout of auxin-ARF signal-
ing activation (Chapman and Estelle 2009).

Ectopically inducing higher levels of both ARF8.2 and ARF8.4
causes precocious anther dehiscence in wild-type and arf8-7
anthers (Ghelli et al. 2018). This phenomenon was correlated
with an earlier endothecium lignification mediated by ARF8.4
and with an increased DAD1 expression brought about through
ARF8.2. As with any other overexpression or gain-of-function
phenotype, this result shows some potential functions of
ARF8.2 and ARF8.4, but this does not necessarily mean that
they are actually performing these functions when expressed
under their endogenous promoter. Therefore, it will be import-
ant to test if ARF8.2 is sufficient to rescue DAD1 expression and,
therefore, jasmonate biosynthesis, in the full loss-of-function
mutant arf6 arf8. Moreover, the potential role of ARF6/8 in
endothecium lignification suggests that this process is likely
impaired in arf6 arf8. However, as mentioned earlier, this and
other histological features have not been yet reported for this
mutant. If such a defect is found, it will also be necessary to test
if ARF8.4 suffices to drive endothecium lignification in an arfé
arf8 double mutant.

As mentioned earlier, the canonical auxin perception mech-
anism is expected to activate ARF6 and ARFS8. This involves
degradation of Aux/IAA repressors after auxin-mediated inter-
action with TIR1/ABF F-box proteins. Accordingly, a tir1 afb1
afb2 afb3 quadruple mutant shows approximately 25% reduced
filament elongation with respect to the wild type (Cecchetti
et al. 2008), reminiscent of the arf8-7 mutant. However, in stark
contrast to the indehiscence of arf6 arf8, the tir1 afb1 afb2 afb3
mutant shows approximately 90% precocious anther dehis-
cence at stage 12, when is rarely observed in the wild type
(Cecchetti et al. 2008). The triple mutant tir1 afb2 afb3 and
the single mutant afb1 also display this phenotype at early stage
12, although at lower frequencies, 35 and 10%, respectively
(Cecchetti et al. 2013). Furthermore, pollen grains also mature
prematurely in all three mutants. In agreement with these phe-
notypes, artificially increasing the output of auxin signaling with
exogenous auxin application or ectopic expression of the
Agrobacterium rolB oncogene can delay anther dehiscence in
Arabidopsis or tobacco, respectively (Cecchetti et al. 2004,
Cecchetti et al. 2008, Cecchetti et al. 2013). In rice, excess ac-
cumulation of the bioactive auxin IAA blocks anther dehiscence
of the dao mutant, impaired in an enzyme that catabolizes IAA,
and of the Osftip7 mutant, affected in a protein essential for the
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downregulation of the auxin synthesis gene OsYUCCA4 (Zhao
et al. 2013, Song et al. 2018). Collectively, this evidence supports
that auxin signaling negatively regulates anther dehiscence and
pollen viability. However, such conclusion seems to contradict
the positive role of the auxin-dependent factors ARF6 and ARF8
in anther opening.

Similar to the ectopic expression of ARF8.2 and ARF84, the
precocious anther dehiscence in the tir1/afb mutants is due to an
earlier expression of MYB26, which causes accelerated endothe-
cium lignification, and to elevated jasmonate levels associated
with higher DAD1 expression (Cecchetti et al. 2013). This deepens
the contradiction because two seemingly opposite events (block-
ing auxin signaling and ectopically activating ARF8, an auxin-
dependent factor) cause the same molecular and phenotypic
effects. The root of this inconsistency may be the way Cecchetti
et al. interpret the kinetics of auxin and auxin-induced DR5
reporters that they have observed in anthers (Cecchetti et al.
2008, Cecchetti et al. 2013). Both auxin and DR5 reporters peak
after meiosis (stage 10) and then decline when endothecium lig-
nification is complete (stage 11). Auxin concentration further
decreases, and DRS5 reporters are not detectable at the onset of
maturation (stage 12). Moreover, DR5 reporters are inactive in
tir1/afb multiple mutants. Thus, Cecchetti et al. (2008) imply that
auxin signaling in anthers is normally switched off before matur-
ation starts to allow anther opening.

We propose instead that the reduced but substantial auxin
content at stage 12 (Cecchetti et al. 2013) does drive a lower
signaling output that is specifically required to activate ARF6
and ARF8 at appropriate levels in anthers (Fig. 4). It is also
possible that the different affinities of each F-box receptor for
different natural auxins or auxin-related molecules may deter-
mine the specific level of signaling required for ARF6/8 function
during stamen maturation. However, this degree of auxin signal-
ing is likely insufficient to activate DR5, a promoter that does
not report all auxin responses (Liao et al. 2015, Chandler 2016).
Instead, Aux/IAA19, another auxin response gene likely acti-
vated by ARF6 and ARFS8, shows a strong, later expression
(Tashiro et al. 2009) that may reflect auxin signaling during
stamen maturation more accurately. In our interpretation,
auxin perception is not abolished but only reduced in the single,
triple or quadruple tir1/afb mutants to a level that allows earlier
ARF6/8 activation and anther opening. The partial reduction
(~25%) of filament growth in the tir1 afb1 afb2 afb3 quadruple
mutant supports this idea because it suggests that some auxin
signaling is still occurring through AFB4 and AFBS5. These are the
remaining functional AFB genes that probably step in to acti-
vate ARF6/8 and allow significant filament elongation. Our in-
terpretation predicts that the precocious anther dehiscence of
tirl afb1 afb2 afb3 requires ARF6/8 function. This can be un-
equivocally tested by introducing the tir1/afb mutations in an
arf8 or arf6 arf8 background. Furthermore, we predict that
completely removing auxin perception should not cause pre-
cocious anther dehiscence but rather prevent it entirely as in
arf6 arf8. Recent work has generated even higher-order tir1/afb
mutants that are viable and may allow to test this hypothesis
(Prigge et al. 2019). Finally, the inhibitory effect of high auxin
(signaling) levels in anther dehiscence may be due in part to

excess ARF6/8 activity, which has also been shown to negatively
impact the progression of this process (Wu et al. 2006, Zheng
et al. 2019).

Concluding Remarks

The maturing Arabidopsis stamen has been a great model to
uncover some of the important components of jasmonate sig-
naling in general. Thus, there is clear genetic support for many
of the jasmonate-related factors required for stamen matur-
ation, including most of the specific enzymes of jasmonate syn-
thesis, the hormone perception coreceptor and the
transcription factors translating jasmonate signaling into gene
expression changes. However, many interesting questions re-
main regarding (i) the cell-specific sites of jasmonate produc-
tion and perception in stamens; (ii) the significance of the
feedback expression of jasmonate-related genes; (iii) the actual
cellular functions activated by gene expression to ultimately
drive pollen viability, filament elongation and anther opening;
and (iv) the interaction of jasmonate with other hormones
during stamen maturation. We have outlined those questions
and proposed ways to answer them. Continued research on the
late stages of stamen development will not only refine our
knowledge of jasmonate signaling but also uncover general
principles for the workings of plant hormones, particularly
how signaling results in specific developmental responses.
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