Skip to main content
. 2019 Dec 5;11:76. doi: 10.1186/s13321-019-0398-8

Table 4.

Average performance of 1000 queries against 1 million targets

#bits Method #Tanimotos (M) chemfp 1.5 chemfp 3.3
Avg. time (ms) TTanimoto (ns) Bandwidth (GiB/s) Avg. time (ms) TTanimoto (ns) Bandwidth (GiB/s)
166 k = 1 91.8 0.25 2.68 8.34 0.19 2.08 10.7
166 k = 1000 588 2.20 3.74 5.97 1.85 3.15 7.10
166 T = 0.70 688 1.72 2.50 8.93 1.42 2.07 10.8
881 k = 1 146 1.50 10.3 10.2 1.22 8.35 12.5
881 k = 1000 485 5.64 11.6 8.97 4.73 9.75 10.7
881 T = 0.70 554 5.70 10.3 10.2 4.70 8.47 12.3
1021 k = 1 113 1.30 11.5 10.4 0.86 7.56 15.8
1021 k = 1000 743 9.25 12.5 9.58 6.25 8.41 14.2
1021 T = 0.70 489 5.51 11.3 10.6 3.64 7.45 16.0
2048 k = 1 356 7.76 21.8 11.0 5.29 14.8 16.1
2048 k = 1000 939 21.2 22.6 10.6 14.6 15.5 15.4
2048 T = 0.40 920 19.9 21.6 11.1 13.6 14.8 16.1

The timings use three different search methods to search the four different fingerprint types from the chemfp benchmark data set. The total number of Tanimoto evaluations is less than 1 billion because of BitBound pruning. TTanimoto is the average time per Tanimoto evaluation, including storing the hits. The effective read bandwidth is calculated as #Tanimotos * storage_size (24, 112, 128, and 256 bytes respectively)/TTanimoto. Note that while shorter fingerprints are faster and more compact, longer fingerprints tend to have better scientific usefulness