
Revisiting Nested Group Testing Procedures: New Results, 
Comparisons, and Robustness

Yaakov Malinovskya, Paul S. Albertb

aDepartment of Mathematics and Statistics University of Maryland, Baltimore County, Baltimore, 
MD

bBiostatistics Branch, Division of Cancer Epidemiology and Genetics National Cancer Institute, 
Rockville, MD

Abstract

Group testing has its origin in the identification of syphilis in the U.S. army during World War II. 

Much of the theoretical framework of group testing was developed starting in the late 1950s, with 

continued work into the 1990s. Recently, with the advent of new laboratory and genetic 

technologies, there has been an increasing interest in group testing designs for cost saving 

purposes. In this article, we compare different nested designs, including Dorfman, Sterrett and an 

optimal nested procedure obtained through dynamic programming. To elucidate these 

comparisons, we develop closed-form expressions for the optimal Sterrett procedure and provide a 

concise review of the prior literature for other commonly used procedures. We consider designs 

where the prevalence of disease is known as well as investigate the robustness of these procedures, 

when it is incorrectly assumed. This article provides a technical presentation that will be of interest 

to researchers as well as from a pedagogical perspective. Supplementary material for this article 

available online.
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1. Introduction

Commonly, individual samples are assessed for the presence of a condition in order to 

identify disease status. Group testing is concerned with finding efficient algorithms to test 

groups of individual samples that provide these identifications with a minimum number of 

tests. Group testing (GT) procedures are cost- and time-saving identification procedures that 

have broad applications to blood screening for HIV, hepatitis, and other infectious diseases 

(Gastwirth and Johnson 1994; Bilder, Tebbs, and Chen 2010; Stramer et al. 2011; Tebbs, 

McMahan, and Bilder 2013; Bar-Lev et al. 2017), quality control in product testing (Sobel 

and Groll 1959; Bar-Lev, Boneh, and Perry 1990), veterinary medicine (Graaesbøll et al. 
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2016), drug discovery (Zhu, Hughes-Oliver, and Young 2001), DNA screening (Du and 

Hwang 2006; Cao and Sun 2016), communication and security networks (Wolf 1985; 

Laarhoven 2013), and experimental physics (Brady and Greighton 2000; Meinshausen, 

Bickel, and Rice 2009), among others.

Although group testing has its roots in the complete identification of a given population with 

respect to a particular disease, the estimation of parameters from probability models has also 

been considered. For example, there is an extensive literature on group testing for disease 

prevalence estimation (Thompson 1962; Tu, Litvak, and Pagano 1995; Delaigle and Hall 

2012; Liu et al. 2012; Warasi et al. 2016; and Haber, Malinovsky, and Albert 2018). This 

article deals only with the identification problem.

There are two main classifications of group testing models for identification purposes: 

probabilistic group testing (PGT) and combinatorial group testing (CGT). In PGT, a 

probability model is assumed for the joint distribution of N binary population items. In CGT, 

it is assumed that there are a certain number of infected individuals among N individuals and 

combinatorial techniques are used to identify them (Du and Hwang 1999). For a more 

detailed discussion of this classification, see Bar-Lev, Stadje, and van der Duyn Schouten 

(2005). This article focuses on only PGT.

Throughout this article, we assume that the tests are not subject to misclassification (i.e., a 

gold-standard test is assumed). In many practical situations, a test is only considered for 

screening when the misclassification is very small. Thus, it is important to present a careful 

comparison of designs when tests are not subject to error. However, we do recognize the 

work of others who have addressed the issue of screening with a misclassified test (Kim et 

al. 2007; McMahan, Tebbs, and Bilder 2012; Malinovsky, Albert, and Roy 2016).

The purpose of this article is to provide a theoretical framework for comparing commonly 

used designs for group testing. In order to rigourously perform these comparisons, we 

develop new and discuss previously known results in the group testing (GT) literature. An 

early PGT formulation was a simple procedure proposed by Dorfman (1943), followed by an 

extension proposed by Sterrett (1957). Although these two procedures have been 

investigated, no one has presented a careful comparison of these two designs relative to an 

optimal nested procedure that we will define later.

We start the discussion with three commonly used GT procedures that were designed for the 

binomial group testing problem, where a set of N individuals have to be classified either as 

positive or not under assumptions that each individual has the same probability p of being 

positive and the outcomes of different individuals are independent. In the group testing 

literature such a set is called the binomial set (Sobel and Groll 1959).

Dorfman procedures: Procedures D and D′

We begin by introducing the Dorfman blood testing problem (see also Feller 1950, p. 189). 

The motivation was the need to administer blood tests for syphilis to millions of people 

drafted into the U.S. army during World War II. Dorfman (1943) suggested to group the 

blood samples of each of the k people and apply a single blood test to the entire group. If the 
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group test is negative, then only the single test is required for identification of the k 
individuals. If the group test is positive then each of the k individuals is tested separately, 

resulting in k +1 tests. This procedure is commonly referred to as the Dorfman two-stage 

group testing procedure (Procedure D). The intuition behind Procedure D is that for small p, 

a second stage will rarely be required. This method is used by the American Red Cross in 

the screening of blood donations for HIV and hepatitis (Dood et al. 2002).

Dorfman’s two-stage GT procedure belongs to the nested class of GT procedures, which we 

will define later. The performance of any GT procedure will be evaluated with respect to the 

expected number of tests. We call a GT procedure optimal within a particular class of 

procedures if it has the minimal expected number of tests.

There is a logical inconsistency in Procedure D. It is clear that any “reasonable” group 

testing plan should satisfy the following property: “A test is not performed if its outcome 

can be inferred from previous test results” (Ungar 1960, p. 50). Procedure D does not satisfy 

this property since if the group is positive and all but the last person are negative, the last 

person is still tested. The modified Dorfman procedure (Sobel and Groll 1959) (defined as D
′) would not test the last individual in this case.

Even though the two procedures D and D′ are very similar, we will show later in this article 

that particularly, when the prevalence is high, the efficiency gain of D′ over D with respect 

to the expected number of tests may be substantial.

Sterrett procedure: Procedure S

Sterrett (1957) suggested an improvement of Procedure D′ in the following way. If in the 

first stage of Procedure D′ the group is positive, then in the second-stage individuals are 

tested one-by-one until the first positive individual is identified. Then, the first stage of 

Procedure D′ is applied to the remaining (nonidentified) individuals. The procedure is 

repeated until all individuals are identified.

When p is small, the probability of having two or more positive individuals in a group is 

very small. Therefore, when retesting a positive group, it is most probable that we will test 

sequentially until the first positive and then the remaining individuals grouped together will 

be negative. Thus, it is intuitively clear that Procedure S will be more efficient than 

Procedure D′ in this situation.

Efficiency of a GT procedure

When comparing the different procedures throughout this article, we make the distinction 

between an infinite and a finite population of size N. This is done since for a large (infinite) 

population it is natural to obtain optimality results under the assumption of equal group 

sizes, and for a finite population we need to consider situations, where the population cannot 

be divided into equal group sizes. More formally, for an infinite population we are looking 

for a common group size kA*  (for a given Procedure A (A ∈ (D, D′, S))) that minimizes the 

expected number of tests per person. For a finite N, we partition the population into subsets, 

where we apply a Procedure A (A ∈ (D, D′, S)) within each subset. In this case, the 
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optimality is defined by finding a partition such that the expected total number of tests is 

minimal. For example, when N = 10, we may consider a design where we apply the 

procedure to the entire population, partition the 10 individuals into two groups of size 5, or 

partition them into three groups of size 3, 3, and 4, and apply the procedure separately in 

each group. In Section 3, we will show that the optimal partition has equal subgroup sizes if 

N is divisible bykA* . This motivates us to start the discussion with the infinite population case 

in order to obtainkA* , and then to apply the optimality results from the infinite to the finite 

population case.

For a general group testing problem, a procedure is optimal if, for a given N and p, it 

achieves the minimum expected total number of tests E(N, p). A general optimal procedure 

is unknown, and its characterization was conjectured as an intractable problem (Du and Ko 

1987). Du and Ko (1987) determined the computational complexity of a wide class of group 

testing models, where they proved that a general version of binomial group testing is NP-

complete (no polynomial time solution is known) (Garey and Johnson 1979).

There are only a few fundamental results in binomial group testing that provide insights on 

the structure of E(N, p). Ungar (1960) characterized the optimality of any group testing 

algorithm and proved that if p ≥ pU = (3 − 51/2)/2 ≈ 0.38, then there does not exist an 

algorithm that is better than individual one-by-one testing. That is,

E(N, p) = N,  for  p ≥ pU .

Web Appendix G provides additional details about Ungar’s result. From now on, we will 

refer to pU as Ungar’s universal cut-off point (UCP). Another important result is due to Yao 

and Hwang (1988), who showed that E(N, p) is increasing in p for 0 < p < pU and N ≥ 2.

A nested algorithm has the property that if the positive subset I is identified, the next subset 

I1 that we will test is a proper subset of I, that is, I1 ⊂ I. This natural class of GT procedures 

was defined by Sobel and Groll (1959) and Sobel (1960), and it is clear that Procedures D, D
′, and S all belong to this class. The optimal nested algorithm is not optimal among all 

possible GT algorithms, but they are simple to implement due to their sequential nature. 

Further, the optimal nested algorithm is nearly optimal over all algorithms (Sobel 1960, 

1967).

This article is organized as follows. In order to compare procedures, we present in Section 

2.1 the expected number of tests per person under Procedures D, D′, and S. A new short 

proof for the expected number of tests under Procedure S is obtained. In Sections 2.2.1–

2.2.3, we present the optimization problem under Procedures D, D′, and S for the infinite 

population, and in Section 3, we present an optimal partition of the finite population under 

Procedures D, D′, and S. In Section 4.1, we present the optimal nested procedure that can be 

found (even for a very large population size) with dynamic programming. Section 5 

investigates the robustness of an optimum nested procedure versus D, D′, and S in the case, 

where the only available information is an upper bound on parameter p. The proofs of key 

optimality results are presented in Appendices A–E. Web Appendices F–I provide 
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theoretical derivations to support other results stated in this article. Web Appendix J provides 

Matlab code for the optimum nested procedure.

2. Optimality Under an Infinite Population

In this section, we will compare two simple procedures that are useful for the case of (large) 

infinite populations. In order to make these comparisons, we need to present some known as 

well as new theoretical results.

2.1. Expected Number of Tests for the Procedures D, D′, and S

We denote the expected number of tests per person in a group of size k under Procedure A as 

EA(k, p). Under the binomial group testing model, we have the following characteristics 

under Procedures D, D′, and S.

Procedure D—For k ≥ 2, the total number of tests is 1 with probability qk (q = 1 − p) and 

k + 1 with probability 1 − qk. Therefore,

ED(k, p) = 1 − qk + 1
k f or k ≥ 2

1 f or k = 1.
(1)

Procedure D′—For k ≥ 2, the total number of tests is 1 with probability qk, k with 

probability qk−1(1 − q), and k + 1 with probability 1 − qk − qk−1(1 – q) = 1 − qk−1. 

Therefore,

ED′(k, p) = 1 − qk + 1/k − (1/k)(1 − q)qk − 1 . (2)

It is easy to check that ED′ (1, p) = 1, and that ED′ (k, p) ≤ ED(k, p).

Procedure S—Sterrett (1957) provided an expression for ES(k, p) in terms of a finite sum 

of terms for which each element involves a binomial coefficient, and the resulting expression 

is very complex. In fact, this finite sum has a simple closed-form expression.

Result 1.

ES(k, p) = 1
k 2k − (k − 2)q − 1 − qk + 1

1 − q . (3)

It is easy to check that ES(1, p) = 1. Sobel and Groll (1959) provided this closed-form 

expression for ES(k, p) as a consequence of the general recursive equations. We prove this 

result with alternative short arguments in Appendix A.

In the remainder of this section, we present results needed for a careful comparison of 

Procedures D, D′, and S.
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2.2. Determining the Optimal Design for Procedures D, D′, and S

For an infinite population, our goal is to find the optimal group size kA*(p) for a given 

Procedure A. It should be recognized that kA*(p) is a function of p and this dependence on p 

is suppressed in the notation. The difficulty in developing a closed-form expression for kA*

lies in the discreteness of the problem. Also, equations (1) and (2) are not unimodal as a 

function of k for a given p.

2.2.1. Procedure D—In the original work of Dorfman (1943), there is no closed-form 

solution for kD* (p), only numerical evaluations. For Procedure D, Samuels (1978) solved this 

optimization problem and showed that if p < pD = 1 − 1/31/3 ≈ 0.31, then kD*  is equal to 1 + 

[p−1/2] or 2 + [p−1/2] (where [p] is denoted as the integer part of p); otherwise, kD* = 1. From 

his result, it follows that the applicability of Procedure D is limited by the value of pD.

2.2.2. Procedure D′—Procedure D′ was mentioned by Sobel and Groll (1959) and 

investigated in detail by Pfeifer and Enis (1978). They did not provide the closed-form 

solution for kD′*  but provided the following result, which immediately led to the solution.

Lemma 2 in Pfeifer and Enis (1978). Let p ∈ (0, (3 − 5)/2). Then (as a function of the 

continuous variable k) ED′ (k, p) has an absolute minimum which is at the smallest zero of 

ED′′ (k, p) =
∂ED′(k, p)

∂k . This zero is unique in that portion of the domain of ED′ for which ED′ 

(k, p) < 1.

From the above lemma, it follows that the optimal value kD′*  is the smallest k value which 

satisfies

ED′(k, p) ≤ ED′(k − 1, p)  and  ED′(k, p) < ED′(k + 1, p) . (4)

Therefore, we have to sequentially check the above inequalities for k = 2, 3, … in order to 

find this smallest value of k.

It is clear from the above inequalities that there are nonunique solutions for some values of p 
(i.e., there are two solutions for the value of p where ED′ (k, p) = ED′ (k – 1, p)). From 

equations (1) and (2) and Lemma 2 of Pfeifer and Enis (1978), it follows that kD′* ≤ kD*  for p 

< 1 − 1/31/3. It was stated in Pfeifer and Enis (1978) that it does not seem possible to 

explicitly obtain a closed-form expression for the optimal group size kD′* (p). Although we 

cannot prove it, we empirically verified the conjecture that the optimal group size kD′* (p) is 

equal to ⌊p−1/2⌋ or ⌈p−1/2⌉ for 0 < p < pU = 3 − 5
2  where ⌊x⌋(⌈x⌉) for x > 0 is defined as the 

largest (smallest) integer which is smaller (larger) than or equal to x. This conjecture was 

examined for values of p in the above range with incremental steps of 10−6 in the following 

way. For a given value of p, the optimal group size kD′* (p) was found using (4), and it was 

then verified that it is equal to either ⌊p−1/2⌋ or ⌈p−1/2⌉. The curious reader can easily check 
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this conjecture empirically using the values of Table 1 and Table 1 in Pfeifer and Enis 

(1978).

2.2.3. Procedure S—Sterrett (1957) failed to provide the closed-form expression for 

ES(k, p) but instead provided a large-sample (infinite population) approximation. As a 

consequence, there are some inaccurate results in his Table I.

The following new result provides a way to find the optimal group size under Procedure S.

Result 2. Let p ∈ (0, (3 − 5)/2). Then (as a function of continuous variable k, k ≥ 1) ES(k, p) 

has an absolute minimum at the unique zero of ES′ (k, p).

For the proof of Result 2, please see Appendix B. □

From Result 2, it follows that the optimal value kS*(p) is equal to ⌈l⌉ or ⌊l⌋, where ES′ (l, p) = 0. 

Alternatively, to avoid solving the nonlinear equation ES′ (l, p) = 0, we can find the optimal kS*

in the same manner as under Procedure D′ using (4). We conjecture that the optimal group 

size kS*(p) is equal to 2/ p  or 2/ p + 1 or 2/ p + 2 for 0 < p < pU. Although we 

cannot prove it, we empirically verified this conjecture in the same manner as we did for 

kD′* (p) in Section 2.2.2.

2.2.4. A Comparison of Procedures D, D′, and S—Table 1 shows a detailed 

comparison of the optimal group size and the corresponding total expected number of tests 

per 100 for Procedures D, D′, and S as a function of p. In particular, for large p, Procedure 

D′ has an impressive efficiency gain over Procedure D. Although Procedure S is uniformly 

better than D′ for all p, for small values of p, Procedure S is substantially better than D′. 

Sterrett (1957) provided a similar comparison for Procedures D and S. However, he only 

used large-sample approximations for the optimal group size and expected number of tests, 

which were slightly inaccurate. Table 1 along with previous discussed theoretical results 

show that Procedures D′ and S (but not D) achieve the same upper applicability bound 

(UCP) pU (see also Web Appendix H).

3. Optimality Under a Finite Population

In Section 2, we have discussed the infinite population case, where for a given Procedure A 
∈ {D, D′, S}, we find the value k which minimizes the expected number of tests per person, 

EA(k, p) =
hA(k, p)

k , where hA(k, p) is the expected total number of tests for a group of size k 

and for a prevalence of p. Define hA(k) = hA(k, p).

Generally, for a finite population of size N and a given Procedure A, we have to solve the 

following optimization problem: find the optimal partition{n1, …, nI} with n1 + ⋯ + nI = N 
for some I ∈ {1, …, N} such that hA(N, p) is minimal (denote HA(N)), that is, {n1, …, nI} is 

a solution of the following optimization problem:
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HA(N) = min
m1, m2, …, mJ

∑
i = 1

J
hA mi ,  subject to,  ∑

i = 1

J
mi

= N, J ∈ 1, …, N .
(5)

Recall from the Introduction that for p ≥ pU, the optimum is to test one-by-one for either 

finite or infinite population size. Therefore, in this case I = N and the optimal partition is {ni 

= 1, i = 1, …, N}. A common method to solve (5) is dynamic programming (DP) (Bellman 

1957); the first application of DP in group testing appeared in Sobel and Groll (1959), and 

that for Procedure D′ was presented by Pfeifer and Enis (1978). The DP algorithm can be 

expressed as

hA(1) = 1, HA(0) = 0, HA(1) = 1,

HA(k) = min
0 ≤ x ≤ k − 1

HA(x) + hA(k − x) , k = 2, …, N . (6)

It is obvious that the computation effort of the above DP algorithm is O(N2), which makes it 

easy to implement, and it can be computationally fast enough for even large values of N.

We can compare D, D′, and S for a finite population using this DP algorithm (6). For 

example, if p = 0.05, then the optimal group size for an infinite population under Procedure 

D is kD* = 7 (Table 1), and the optimal partition when N = 13 is {n1, n2, n3} = {5, 4, 4} with 

HD(13) = 5.615; for Procedure D′ is kD′* = 5 (Table 1), and the partition when N = 13 is {n1, 

n2, n3} = {5, 4, 4} with HD′(13) = 5.489; for Procedure S with the same p = 0 05, kS* = 7

(Table 1) and the optimal partition when N = 13 is {n1, n2} = {6, 7} with HS(13) = 4.685.

The example above illustrates some interesting features of subgroup sizes of the optimal 

partition. Specifically, we see that the optimal partition subgroup sizes differ at most by one 

unit. This was conjectured by Lee and Sobel (1972) as a general result for Procedure D and 

they provided insight by using the convexity (with respect to k) property of an 

approximation to ED(k, p). Gilstein (1985) proved this result for Procedure D′. We will 

prove this result for Procedure S.

In the following result, we show that the optimal partition has equal subgroup sizes if N is 

divisible by kS*. It is clear from the proof that the same holds for the Procedures D and D′.

Result 3. Suppose we apply the group testing algorithm S for a finite population of size N 
for a given p. Also suppose that N = skS*(p), i.e., s subgroups of size kS*. Then, the optimal 

partition is ni = kS*, i = 1, …, s , that is, I = s and the infinite population optimal solution is 

the subgroup size of the optimal partition for the finite population.

Proof. Please see Appendix C.

Malinovsky and Albert Page 8

Am Stat. Author manuscript; available in PMC 2019 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The following result establishes a relationship among the size of subgroups under the 

optimal partition for Procedure S.

Result 4. Suppose we apply group testing algorithm S for a finite population of size N for a 

given p (p ∈ (0, 1)) and we start with some partition {m1, …, mJ}. There exists a better (with 

respect to expected number of tests) partition m1′ , …, mJ′  with m j′ − mi′ ≤ 1 for all i, j.

Proof. The proof is based on the convexity property of hS(x) with respect to x (see also 

discussion on the previous page) and is presented in Appendix D. □

From Result 4, it follows that if we apply group testing algorithm S for a finite population of 

size N for a given p (p ∈ (0, 1)) and we start with an optimal number of subgroups I, then 

there exists an optimal partition containing groups whose sizes differ by at most 1.

The following result, which was conjectured for Procedures D and D′ by Lee and Sobel 

(1972), provides a simple way to construct an optimal partition. Gilstein (1985) proved the 

result for D′ and his method also applies to Procedure D. We prove it for Procedure S.

Result 5. Suppose we apply group testing algorithm S for a finite population of size N for a 

given p (p ∈ (0, 1)). Denote a to be an optimal group size under Procedure S for an infinite 

population, s = N
a  (i.e., s groups of size a) and θ = N − sa (i.e., remainder 0 < θ < a). Then, 

the optimal partition is one of the two following partitions:

i. Distribute the remainder θ among s groups (with initial size a) in such a way that 

|ni − nj| ≤ 1 for all i, j ∈ {1, …, s}.

ii. Build up an additional group (group s + 1) by taking the remainder θ and units 

from the above s groups (with initial size a) in such way that |ni − nj| ≤ 1 for all i, 
j ∈ {1, …, s, s + 1}.

Proof. Please see Appendix E. □

From Result 5, it follows that in order to find the optimal partition, we need to evaluate the 

total expected number of the tests in (i) and (ii) and choose the design ((i) or (ii)) that 

minimizes this quantity. Result 5 provides for finding the optimum partition without any 

computational cost. In Web Appendix F (Remark 1), we provide an alternative direct 

implementation of Result 5.

Table 2 provides the optimum partition (Procedures D, D′, S) for the finite population case 

for different values of p in a similar way as in Table 1. The last two columns of Table 2 will 

be discussed in Section 4.

4. Optimal Nested Procedure and Connection with Coding Theory

4.1. Optimal Nested Procedure

A nested procedure, which was defined in the Introduction (Sobel and Groll 1959), requires 

that between any two successive tests:
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i. future tests are concerned only with units not yet classified as good or defective,

ii. n units not yet classified have to be separated into only (at most) two sets. One 

set of size m ≥ 0, called the “defective set,” is known to contain at least one 

defective unit if m ≥ 1 (it is not known which ones are defective or exactly how 

many there are). The other set of size n − m ≥ 0 is called the “binomial set” 

because we have no knowledge about it other than the original binomial 

assumption. Either of these two sets can be empty in the course of 

experimentation; both are empty at termination.

The number of potential nested group testing algorithms is astronomical. For example, if N 
= 5, then there are 235,200 possible algorithms (Moon and Sobel 1977). Therefore, it is 

impossible to directly evaluate the expected number of tests for each algorithm, making a 

direct computation infeasible. Sobel and Groll (1959) overcame this problem by proposing a 

DP algorithm that finds the optimal nested algorithm, which Sobel and Groll termed “the 

Procedure R1.” There was a large research effort to reduce the computational complexity 

O(N3) of the original proposed algorithm (Sobel 1960; Kumar and Sobel 1971; Hwang 

1976). With new theoretical results, Sobel (1960) reduced the complexity to O(N2). Further, 

Kumar and Sobel (1971) reduced the computation complexity by half as compared with 

Sobel (1960). Finally, Hwang (1976), using the results for optimal binary trees (Huffman 

trees, Huffman 1952) and optimal alphabetic binary trees (Hu and Tucker 1971), reduced the 

computational complexity to O(N) (not including the sorting effort). In addition, Yao and 

Hwang (1990) proved that the pairwise testing algorithm is the unique (up to the substitution 

of equivalent items) optimal nested algorithm for all N if and only if 1 − 1
2 < p < pU (at the 

boundary values the pairwise testing algorithm is an optimal nested algorithm). Recently, 

Zaman and Pippenger (2016) provided an asymptotic analysis of the optimal nested 

procedure.

The development of the optimal nested algorithm (due to Sobel) of complexity O(N2) is 

presented in Web Appendix I. This result allows for computing the optimal total expected 

number of tests H1(N) (under the optimal nested Procedure R1).

For example, if p = 0.05 and N = 13, then the expected number of tests under the optimum 

nested Procedure R1 is H1(13) = 3.878. For comparison, with the same values of p and N, 

we obtain HD(13) = 5.615, HD′(13) = 5.489 and HS(13) = 4.685. Web Appendix I provides a 

thorough explanation of the construction of an optimal nested procedure in this case.

In Table 2, we present the expected number of tests (optimum nested procedure) per N = 100 

individuals (E1(100)) for different values of p.

4.2. Coding Theory and Information Lower Bound

In the previous subsection, we showed that DP can be used to obtain the optimal nested 

procedure. However, it does not speak more generally to optimality among all possible 

procedures. Deriving an information lower bound for the expected total number of tests of 

an optimal procedure provides insight into the efficiency of the optimal nested procedure. 

The information lower bound (ILB) was provided in Sobel and Groll (1959). Sobel (1960, 
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1967) used noiseless-coding theory to derive ILB. In Web Appendix H, we carefully 

demonstrate the development of the ILB using coding theory attributed to Sobel (1960, 

1967). Web Appendix H provides a good pedagogical tool for this important development in 

GT. The key result is the information lower bound H(p) for the expected number of tests 

under an optimal procedure that is the Shannon formula of entropy:

H(p) = N p log2
1
p + q log2

1
q . (7)

The information lower bound H(p) is not attainable but provides a benchmark for what is a 

close-to-attainable level for an optimal group testing procedure (for a detailed discussion, 

see Web Appendix H). In the last column of Table 2, we present the information lower 

bound H(p) for different values of p when N = 100.

5. Robustness Investigation

In this section, we investigate the robustness of the procedures to the incorrect specification 

of the parameter p. In order to simplify this investigation, we will assume the large 

population setting, which will allow for a common group size for a given procedure. 

Optimal group sizes under Procedures D, D′, S, and an optimal nested procedure are all 

functions of parameter p. However, p may not be known, and interest is on the comparison 

of different design strategies when p is not correctly specified. In some situations, there is 

only knowledge of an upper bound U of the design parameter p. Under a constant group size 

setting, such as in Procedures D, D′, and S, we can follow the methodology developed by 

Malinovsky and Albert (2015) to calculate the minimax group size kA* * for Procedures A ∈ 

{D, D′, S} as

kA* * = arg min
k ∈ ℕ+

sup
p ∈ (0, U]

LA(k, p),
(8)

where LA(k, p) = EA(k, p) − EA(k*(p), p), A ∈ {D, D′, S}.

Table 3 shows the expected number of tests per 100 individuals for minimax designs of D, D
′, and S along with nested Procedure R1 using U instead of p (H1(100)) and U/2 instead of 

p H1*(100)  for different p. We evaluated the nested Procedure R1 at a value of U. Further, 

since values of p are often substantially lower than a specified upper bound U, we also 

evaluated the procedure at a value of U/2.

Table 3 shows that Procedure R1 is generally more efficient than D, D′ and S. However, in 

rare situations where the assumed upper bound (U) is substantially higher than the true 

unknown p, Procedure S may indeed be more efficient than R1.

6. Summary

This article provides a unique perspective on group testing, where we tie together literature 

on infinite and finite populations GT, dynamic programming, and coding theory. This is 

done in order to compare important nested group testing procedures, including Dorfman (D 
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and D′), Sterrett (S), and an optimal nested Procedure R1, with the theoretical information 

lower bound of efficiency serving as a reference. All theoretical developments were essential 

for making these comparisons.

Some of the results were provided previously in the literature, while others, particulary for 

Procedure S, are new. We demonstrated that, particularly when p is small, Procedure S has a 

large efficiency gain relative to Procedures D and D′. Further, there can be a sizable 

efficiency gain by using the optimal nested procedure that is based on DP. However, this 

efficiency gain needs to be weighed against the practical complications in implementing the 

different procedures. For example, although there is a sizable efficiency gain in using the 

optimal nested procedure, the complex nature of the design may make it less practical (see 

Web Appendix I). The less efficient Dorfman procedure is simple to implement in that it is a 

two-stage procedure, where testing within the second stage can be conducted in parallel 

(simultaneously). This is in contrast with the Sterrett procedure, where stages subsequent to 

the first stage are sequential and cannot be performed in parallel.

These results are based on the correct specification of p. Using our newly derived results on 

the Sterrett procedure, we were able to show that even when p is misspecified, the optimal 

nested procedure is generally more efficient than S. However, it is important to recognize 

that this may not be the case when our knowledge of p is far from the truth (i.e., when U is 

substantially larger than p). Importantly, for any p, Procedure S is more efficient than D′.

The results in this article highlight the importance of studying efficient procedures in group 

testing. Simplicity aside, the Sterrett and optimal nested procedures are more efficient than 

Dorfman’s procedure. This is also true when p is misspecified. Modern applications of 

nested procedures have generally focused on using Dorfman’s procedure (Hill et al. 2016; 

France et al. 2015), although Sterrett’s procedure is also used (Bilder, Tebbs, and Chen 

2010), rather than an alternative nested procedure. The results of this article clearly 

demonstrate the advantage of using the Sterrett procedure or an optimal nested procedure 

whenever it practicably feasible. Based on our results, we encourage the use of the Sterrett 

procedure and optimal nested procedures in practice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

A.: Proof of Result 1

Proof. Let X be the number of tests in order to identify k persons and let 1j be an indicator 

function that is equal to 1 if the first positive identified person is the person j (j = 1, …, k) 

tested. Also, denote 10 as an indicator function that is equal to 1 if no positive person is in 

the group of size k. We have

X = X10 + X11 + X12 + ⋯ + X1k − 1 + X1k .

Define Ek(X) ≡ E(k) = kES(k, p). It is clear that E(1) = 1. Therefore,

E(k) = qk + kqk − 1(1 − q) + (1 − q)(2 + E(k − 1)) + q(1 − q)(3 + E(k − 2)) + q2(1 − q)(4 + E(k − 3)) + ⋯

+ qk − 2(1 − q)(k + E(k − (k − 1)))

= 1 − (k − 1)qk + 1 − qk − 1
1 − q + (1 − q)[E(k − 1) + qE(k − 2) + q2E(k − 3) + ⋯ + qk − 2E(1)] .

Taking the difference E(k + 1) − E(k), we get

E(k + 1) = E(k) + 2 − q − qk + 1 .

Substituting the appropriate expression for E(k), E(k − 1),…, E(1) = 1, we get 

E(k) = (2k − 1) − (k − 2)q − q − qk + 1
1 − q = 2k − (k − 2)q − 1 − qk + 1

1 − q . □

B.: Proof of Result 2

Proof. Denote f (k) = ES(k, p), ḟ (k) = ∂ f (k)
∂k , f̈ (k) = ∂2 f (k)

∂k2 . Recall (see (3)) that 

f (k) = 2 − q − 1 − qk + 1 − 2q + 2q2
k(1 − q) . We have f(1) = 1, limk↑∞ f(k) = 2 − q, 

ḟ (k) = 1
1 − q

1
k2 1 − qk + 1 − 2q + 2q2 + 1

k qk + 1ln(q) . So, ḟ (1) < 0 for q ∈ 5 − 1
2 , 1  and, 

therefore, the function f(k) (as a function of continuous variable k ≥ 1) has a minimum in 

support k ≥ 1. Further, f̈ (k) = 1
1 − q − 2(1 − q)

k ḟ (k) + 1
k qk + 1(ln(q))2  and if ḟ (l) = 0, then 

f̈ (l) > 0, shows that l is the unique minimum. □
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C.: Proof of Result 3

Proof. N = skS*(p). 
hS kS*(p)

ks*(p) = ES kS*(p), p ≤ ES(k, p) =
hs(k)

k  for any k = 1, 2,… implies 

shS kS*(p) =
∑i = 1

J mi
kS*(p) hS kS*(p) ≤ ∑i = 1

J hS mi, p  for any partition {m1, …, mJ} with 

∑i = 1
J mi = N, j ∈ {1, …, N}, which completes the proof. □

D.: Proof of Result 4

Proof. It is easy to verify that for all p ∈ (0, 1) the second derivative of hS(x) = xES(x, p) 

with respect to x is positive and, therefore, the function hS(x) is convex with respect to x. We 

start with some partition {m1, …, mJ}. Convexity of hS(x) implies that for any mj − mi ≥ 2, 

hS(mj − 1) + hS(mi + 1) ≤ hS(mj) + hS(mi). Applying this +1, −1 improvement for any i, j 
with mj − mi ≥ 2, we obtain a better (with respect to expected number of tests) partition 

m1′ , …, mJ′  with m j′ − mi′ ≤ 1 for all i, j. □

E.: Proof of Result 5

The proof for Procedure S is exactly the same as a proof for Procedures D′ and M in 

Gilstein (1985) (p. 389) and is based on the fact that the function f(x) = ES(x, p) has a unique 

minimum for x ≥ 1 as was shown in the proof of Result 2 in Appendix B.
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Table 1.

The minimal (optimal) expected number of tests per 100 individuals 100EA kA*, p  for Procedure A (A ∈ {D, 

D′, S}) using an optimal group size kA*  for different p.

D D′ S

p kD* 100ED(kD* , p) kD′* 100 ED′,(kD′* , p) kS* 100ES(kS*, p)

0.001 32 6.2759 32 6.2729 45 4.5844

0.005 15 13.91 15 13.879 21 10.535

0.01 11 19.557 10 19.47 15 15.172

0.03 6 33.369 6 32.94 9 27.305

0.05 5 42.622 5 41.807 7 35.977

0.07 4 50.195 4 48.787 6 43.167

0.10 4 59.39 4 57.567 5 52.288

0.13 3 67.483 3 64.203 4 60.042

0.15 3 71.921 3 68.308 4 64.784

0.20 3 82.133 3 77.867 3 74.933

0.25 3 91.146 2 84.375 3 83.854

0.27 3 94.432 2 86.855 2 86.855

0.30 3 99.033 2 90.5 2 90.5

0.32 1 100 2 92.88 2 92.88

0.35 1 100 2 96.375 2 96.375

0.38 1 100 2 99.78 2 99.78
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