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CRITICALLY ILL PATIENTS IN THE INTENSIVE CARE UNIT (ICU) REQUIRE urgent 

and complex interventions that expose them to twice as many medications as the number 

encountered on general medical wards.1 Opioids have been the mainstay of pain control and 

sedation in the ICU, despite substantial adverse consequences that continue to plague their 

use.2 Long-term opioid use leads to tolerance (i.e., less susceptibility to the effects of the 

opioid, which can result in a need for higher and more frequent doses to achieve the same 

analgesic effect), physical dependence, and opioid-withdrawal symptoms during weaning 

and contributes to the development of chronic pain later and opioid-induced hyperalgesia (a 

paradoxical hypersensitivity to pain).3–5 Opioid tolerance can be seen during all types of 

critical illnesses; the magnitude, however, seems exaggerated in patients who have had 

major trauma (e.g., burn injury), in patients requiring prolonged mechanical ventilation, and 

in pediatric patients.6–8 The development of tolerance is due in part to the large doses 

needed to control pain in these critically ill patients. However, the inflammatory response to 

opioids themselves, seen in patients in the medical ICU and those in the surgical ICU, plays 

an important role in tolerance. This review describes the indications for opioid therapy in 

patients in the ICU, opioid signal transduction during short-term and long-term use, the role 

of inflammation and opioid-mediated innate immune responses in tolerance, and current and 

potential mitigation strategies for opioid tolerance. Sedative–anxiolytic drugs, which are 

adjuncts to analgesia, are not within the scope of this review.

TISSUE AND SPINAL CORD RESPONSES TO INJURY

Most patients in the ICU have some form of tissue injury that causes local and often 

systemic inflammatory responses. These responses launch a cascade of events, including 

release of proinflammatory substances and activation of spinal cord N-methyl-D-aspartate 

(NMDA) receptors (Fig. 1).9 Concomitantly, endogenous antinociceptive mechanisms also 

become operative. Centrally, the inhibitory opioidergic, serotonergic, and noradrenergic 

pathways are activated, which can reduce nociception. Leukocytes released at the injury site 

secrete endogenous opioid peptides that interact with the injury-induced opioid receptors 

that are up-regulated along nerve terminals and reduce pain.10 However, injury-induced 

reduction of inhibitory control over pain by means of glycine and γ-aminobutyric acid 

receptors enhances central sensitization.11 These local and central changes lead to 

Address reprint requests to Dr. Martyn at the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General 
Hospital, 51 Blossom St., Rm. 206, Boston, MA 02114, or at jmartyn@mgh.harvard.edu. 

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

HHS Public Access
Author manuscript
N Engl J Med. Author manuscript; available in PMC 2019 December 06.

Published in final edited form as:
N Engl J Med. 2019 January 24; 380(4): 365–378. doi:10.1056/NEJMra1800222.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://NEJM.org


exaggerated basal and procedural pain, referred to as hyperalgesia (exaggerated responses to 

painful stimuli such as a pinprick) and allodynia (pain responses to nonpainful stimuli such 

as touch).9,10 These changes are consistent with the body’s need to produce essential 

warning signs and withdrawal responses during nociception.

INDICATIONS FOR OPIOID USE AND CONSEQUENCES OF INADEQUATE 

ANALGESIA

Moderate-to-severe pain, which generally accompanies critical illness, is often distressing 

and frequently underrecognized.12 The underlying illness or surgery, placement of 

penetrating invasive tubes or catheters, and other routine intensive care procedures are 

recognized sources of pain.13 Patients in the ICU often cannot communicate about their pain 

because of the combined effects of endotracheal intubation, sedation, neuromuscular 

blockers, altered mental status, physical restraints, and other disease-related complications. 

Therefore, it is imperative for caregivers to assess pain severity reliably through the use of 

standardized pain-assessment tools validated for use in the ICU.14 Although opioids 

represent the primary pharmacologic therapy for moderate-to-severe pain, there are 

numerous other indications for opioid use, including sedation (Table S1 in the 

Supplementary Appendix, available with the full text of this article at NEJM.org). 

Analgesia-first sedation (also known as analgosedation) is a strategy for managing pain and 

discomfort that relies on analgesic agents first, before sedatives such as benzodiazepines. 

Analgesia-first sedation results in improved outcomes, including fewer days on a ventilator, 

as compared with combined analgesic–sedative regimens,15,16 and has been recommended 

in clinical practice guidelines for the ICU.2

Unrelieved pain affects physiological and psychological function and is associated with both 

short- and long-term consequences, most of which are due to exacerbation of the stress 

responses induced by catecholamines, glucocorticoids, and antidiuretic-hormone release.
17,18 Stress activation of the hypothalamic–pituitary–adrenal axis and the renin–angiotensin–

aldosterone axis can lead to fluid retention, generalized edema, and hypertension. Other 

adverse consequences of stress include impaired tissue oxygenation, wound healing, and 

immunity17,18; increased myocardial and total oxygen consumption and muscle catabolism; 

and neuroinflammatory priming.19–22 Unrelieved pain has psychological consequences, 

including anxiety, depression, impaired sleep, and demoralization, and is a risk factor for 

subsequent post-traumatic stress disorder.22,23 Both patients and family members report pain 

as the most stressful experience during their time in the ICU and after discharge.24 Some 

patients, particularly those who have undergone major surgery, have persistent pain after 

discharge from the ICU that contributes to a reduced quality of life.25 Risk factors for the 

development of persistent pain are poorly controlled, high-intensity, acute pain; preoperative 

pain or anxiety; long-term opioid use; a relatively long ICU stay; and major surgery.26

SIDE EFFECTS OF OPIOID THERAPY

Side effects of opioid therapy are categorized as either peripheral (e.g., constipation, urinary 

retention, and bronchospasm) or central (e.g., oversedation, respiratory depression, 

hypotension, nausea, truncal rigidity, and cough suppression). Opioid-induced vasodilatation 
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and hypotension can increase fluid requirements after trauma.27 In contrast, vasodilatation 

can be beneficial during disease-, anxiety-, and pain-induced hypertension. The respiratory 

and cough-suppressive effects can also be beneficial in the ICU setting (Table S1 in the 

Supplementary Appendix). Other detrimental effects that are often overlooked include 

inappropriate immune modulation through neuroendocrine pathways or direct effects 

through receptors that are present on immunocytes.28,29 That opioids impair immune 

function has aroused concern during the care of patients with cancer in the ICU,30 but the 

role of opioids in cancer recurrence is far from clear.31 The negative effect of intolerable 

pain on immune function is well documented; however, the more immediate concern is the 

alleviation of pain and suffering and avoidance of their deleterious consequences.31

Opioids can contribute to delirium, poor sleep quality, and unintended sedation; this is 

particularly true in patients in the ICU, because of altered drug clearance, concomitant drug 

therapy, and central metabolic dysfunction. The strategy of analgesia-first sedation in trauma 

and burn populations in the ICU has been associated with a reduced risk of delirium,32 

whereas opioids in combination with benzodiazepines, particularly in the elderly, have been 

associated with an increased risk of delirium.33 Conversely, complete lack of sedation can 

result in more cases of delirium than sedation with daily interruption,34 although the lack of 

sedation may simply result in more cases of delirium being identified.

PHARMACOKINETIC COMPONENTS OF OPIOID TOLERANCE

Pharmacokinetic studies of opioid use during critical illness are limited. Autoinduction of 

cytochrome P-450 enzyme and enhanced drug clearance do not occur with long-term opioid 

use and therefore cannot explain dose escalation (i.e., the need to increase the dose to 

maintain equipotent analgesic effects).35 However, cytochrome P-450 inducers increase 

clearance of some drugs (e.g., methadone), resulting in subtherapeutic plasma levels, which 

may be misinterpreted as pharmacodynamic tolerance (i.e., tolerance due to changes in sites 

of action).36 Similarly, during the hyperdynamic phase of trauma and compensated sepsis, 

the enhanced elimination kinetics of “flow dependent” drugs (e.g., fentanyl and morphine) 

could cause dose escalation.37

Inflammation increases the expression of α1-acid glycoprotein, an acute-phase reactant 

protein, which binds some drugs. Since methadone has a high affinity for α1-acid 

glycoprotein, there is a decreased free fraction of methadone in the plasma.36,38 Despite 

minimal binding of fentanyl and morphine to α1-acid glycoprotein,36,38 tolerance still 

occurs. Thus, increased glycoprotein binding contributes minimally to opioid dose 

escalation. The P-glycoprotein transporter that is present in brain capillaries controls drug 

efflux from the central nervous system. Long-term administration of oxycodone, morphine, 

and alfentanil, but not methadone, up-regulates P-glycoprotein expression, causing 

decreased drug penetration in the central nervous system and attenuated analgesia.36 

Similarly, tumor necrosis factor α increases expression and activity of P-glycoprotein.39 

Together, these observations imply that critical illness–related cytokine release and opioid 

administration may tighten the permeability of the P-glycoprotein–controlled blood–brain 

barrier, reducing the efficacy of some opioids.
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PHARMACODYNAMIC COMPONENTS OF OPIOID TOLERANCE

METABOLITE CONTRIBUTIONS

Opioid metabolism can result in metabolites that enhance or antagonize the analgesic effect 

or have no pharmacologic effect. In the case of morphine, the parent drug is active, although 

its metabolites have contrasting effects: normorphine is inactive, and morphine-6-

glucuronide is more potent than morphine, whereas morphine-3-glucuronide is considered to 

have hyperalgesic effects that oppose the analgesic effects of morphine and of morphine-6-

glucuronide.40 During renal failure or dose escalation of morphine (or hydromorphone), as 

seen in the ICU, markedly increased morphine-3-glucuronide levels can counteract the 

analgesic potency of morphine and morphine-6-glucuronide.40 The hyperalgesic effects of 

morphine-3-glucuronide are simultaneously opioid receptor–dependent and opioid receptor–

independent, as shown in a study involving knockout mice41 and studies involving naloxone.
28 The receptor-independent effects are mediated by activation of both microglia toll-like 

receptors and NMDA receptors.28 The magnitude of the contribution of morphine-3-

glucuronide to a deficiency of analgesia is controversial.

OPIOID-RECEPTOR SIGNALING DURING SHORT-TERM AND LONG-TERM OPIOID USE

Most clinically used opioids act through muopioid receptors, which belong to the G-protein–

coupled receptors family, and transmit downstream signals through heterotrimetric Gαβγ-

proteins. When an opioid binds to the mu-opioid receptor, the receptor-associated Gαβγ-

protein dissociates into Gα and Gβγ subunits. Concomitantly, the mu-opioid receptor 

becomes phosphorylated by G-protein–coupled receptor kinase,3 which recruits β-arrestin 

protein and binds it to the receptor, sometimes leading to receptor internalization (Fig. 2). 

These processes lead to desensitization (conversion from a responsive-receptor state to a 

decreased-signaling state), which partly explains acute tolerance.42 The desensitized 

receptors recover over time (minutes to hours, depending on the agonist) after the stimulus 

has been withdrawn, and the endocytosed receptors are recycled to the plasma membrane in 

a resensitized state.

Long-term opioid use leads to exaggerated opioid tolerance, which is characterized by 

escalating dose requirements to maintain analgesia, and subsequently contributes to opioid-

induced hyperalgesia. Tolerance to the analgesic effects of opioids (and euphoria) develops 

faster than tolerance to respiratory depression, which explains the increased risk of 

hypoventilation with dose escalation during tolerance. Both duration and dose appear to 

affect the development of tolerance; infusions induce tolerance faster than intermittent 

therapy.43 The potent opioid remifentanil induces tolerance more quickly than the less potent 

meperidine. Persons with substanceuse disorder who are receiving maintenance therapy with 

methadone or buprenorphine are observed to have opioid-induced hyperalgesia, which is 

absent in those who are not receiving opioids.44

Prominent signaling changes develop during the continued presence of exogenous or 

endogenous ligands because the central nervous system has intrinsic mechanisms to prevent 

overstimulation or understimulation. The typical response of G-protein–coupled receptors to 

chronic agonists is receptor internalization and down-regulation together with intracellular 
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signaling changes, leading to decreased analgesia.45,46 Additional cellular adaptations 

during long-term opioid use include induction of systems that attenuate analgesic effects. 

These systems elicit adaptive responses to persistent opioid-induced inhibitory downstream 

signaling.45 The adaptations encompass the activation of NMDA receptors, down-regulation 

of glutamate transporter, conversion from a state of decreased to a state of increased 

adenylate cyclase activity3 (Fig. 2), and increased transduction through other nociception 

channels.3,4 The formation of opioid-receptor heterodimers that bind opioids has also been 

implicated in opioid-induced hyperalgesia.47 Thus, activation of the analgesia-attenuating 

system at multiple sites during long-term opioid therapy leads to an imbalance between pro-

nociceptive and antinociceptive pathways, resulting in reduction of analgesia, increased 

tolerance, and opioid-induced hyperalgesia.

INNATE IMMUNE RESPONSES IN THE CENTRAL NERVOUS SYSTEM

Injury- or inflammation-related pain can become aggravated or long-lasting, features that 

cannot be explained by neuronal activation alone. In the central nervous system, the glia 

(astroglia and microglia) play a major role in central sensitization.3,28 Persistent activation 

of the dorsal horn of the spinal cord by the injury-induced barrage of nociceptive input and 

the associated release of damage-associated molecular patterns (DAMPs) activate glia, 

which release inflammatory mediators that enhance the excitability of adjacent neurons (Fig. 

3).48 Although acute stress results in stress-induced analgesia, persistent sympathetic 

overactivity leads to stress-induced hyperalgesia.49 Repetitive stress can also lead to central 

and peripheral leukocyte priming and release of inflammatory mediators,21,22,28 causing 

exaggerated pain behaviors.50,51 The stress-induced catecholamine surge releases 

immunocytes, including phenotypical inflammatory M1 monocytes (as opposed to 

antiinflammatory M2 monocytes). This release compounds inflammatory-mediator 

responses.52 Stress-associated glucocorticoid release can function as DAMPs, promoting 

activation of the glia.22,53 Superimposition of bacterial inflammation and release of 

pathogen-associated molecular patterns further augment leukocyte-related toll-like receptor 

activation and cytokine release, which can lead to nociceptor sensitization.54 Systemic 

inflammatory diseases can also lead to neuroinflammation,55,56 with selective breakdown of 

the blood–brain barrier to inflammatory M1 monocytes, which further exaggerate 

neuroinflammation, modulating both mood and nociception.20–22

Opioids, even in the absence of systemic inflammation, cause neuroinflammation by 

activating toll-like receptors in glia and other immune cells that permeate the blood–brain 

barrier.3,28,52 The cytokine release from activated immune cells leads to exaggerated 

nociception; antagonism of toll-like receptors or their knockout in mice abrogates the 

hyperalgesia.28,46 Similarly, specific antagonists of putative inflammatory mediators (e.g., 

interleukin-1β) attenuate hyperalgesia. Other factors that contribute to central sensitization 

include age, sex, and concomitant inflammatory conditions (e.g., those caused by cancer and 

chemotherapy). Notably, greater opioid tolerance seems to develop in pediatric patients7,8; 

this may be related to less inhibition in the dorsal horn and more facilitation by the 

rostroventral medulla than in adults.57 Thus, there are multiple factors (e.g., inflammation, 

infection, stress, and use of opioids) that can lead to activation of the glia in patients in the 

ICU and can exaggerate pain behaviors, tolerance, and opioid-induced hyperalgesia, creating 
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a vicious cycle of dose escalation and worsening pain (Figs. 3 and 4).50,51 Thus, tolerance 

appears to reflect a desensitization of receptor-mediated antinociceptive pathways, whereas 

opioid-induced hyperalgesia involves induction of pro-nociceptive glial–neuronal pathways. 

Clinical observations confirm that hyperalgesia in persons with critical illnesses can be more 

profound than hyperalgesia in the general population.6,7 Further understanding of this 

phenomenon should help explain why simple and routine procedures can cause pain in 

patients in the ICU and will allow for more empathic and better care of patients in the ICU.

STRATEGIES TO MITIGATE OPIOID TOLERANCE AND OPIOID-INDUCED 

HYPERALGESIA

Strategies for mitigating opioid tolerance and opioid-induced hyperalgesia include reducing 

the dose of analgesics and the duration of treatment by interrupting infusions of sedative or 

analgesic agents daily or modulating infusions on the basis of analgesic assessment and 

sedation scores, by using multimodal analgesic agents (nerve blocks and nonopioid 

analgesics), and by rotating analgesic agents sequentially (Table 1, and Tables S2 and S3 in 

the Supplementary Appendix). Patients who have not previously received opioids usually 

have a good response to opioid analgesics, whereas those with prolonged exposure (illicit or 

prescribed) may have opioid tolerance on admission to the ICU, confounding therapy.44,58 

Four case scenarios are discussed in Appendix S1 and Table S4 in the Supplementary 

Appendix.

DAILY INTERRUPTION OF SEDATIVE INFUSIONS

Interrupted infusions of analgesics and sedatives, as compared with uninterrupted infusions, 

allow patients to be more awake (without iatrogenic coma), yield improved assessment and 

treatment of pain with fewer days on a ventilator, lessen psychological distress, and do not 

increase the incidence of cardiovascular and other outcomes.59–62 Conversion to intermittent 

bolus therapy or patient-controlled analgesia should be instituted as early as possible. 

Prolonged coadministration of a benzodiazepine and morphine was shown to exacerbate 

opioid tolerance63; therefore, reducing benzodiazepine use may mitigate tolerance and 

delirium. Alternative nonanalgesic drugs could be used for sedation and potentiation of 

opioid effects.

NEURAXIAL AND NON-NEURAXIAL ANALGESIA

Neuraxial (thoracic or lumbar epidural) analgesic techniques provide effective analgesia 

while reducing opioid exposure and tolerance, pulmonary morbidity, duration of mechanical 

ventilation, and the incidence of postoperative ileus. They also render patients more awake 

and able to adhere to physical therapy regimens.64,65 Indications for epidurals include 

thoracic or major abdominal surgery, chest wall trauma, or pulmonary contusion. Despite 

possible contraindications in critically ill patients (e.g., administration of anticoagulant 

therapy), epidurals can be placed safely before — and continued during — anticoagulant 

administration. Other regional or non-neuraxial analgesic techniques with catheters are as 

effective as epidural administration of analgesics in selected patients. Non-neural blocks 

include paravertebral block for rib fractures or after thoracotomy, as well as transversus 

abdominis block for surgery of the lower abdomen.65 Ultrasound-guided nerve blocks have 
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been safely performed even in patients in the ICU who have had clinically significant 

coagulopathy.66

OPIOID ROTATION

Opioid rotation (i.e., administration of a different opioid to control pain) generally mitigates 

tolerance. A single gene encodes the mu-opioid receptor, but during gene expression some 

exons are excluded from the final messenger RNA. Consequently, several receptor subtypes 

can coexist (e.g., mu1 and mu2) owing to alternative exon splicing. One receptor subtype 

may undergo desensitization to one opioid, leaving other subtypes available for a new 

opioid; hence, the rationale for opioid rotation for the restoration of analgesic efficacy and 

decreased doses.67 During opioid rotation, the dose of the new opioid is derived empirically 

because opioid conversion tables (used for calculations of opioid equivalence) may be 

inapplicable in a patient in whom tolerance has developed, particularly during the 

coadministration of nonopioid adjuvants (e.g., dexmedetomidine or ketamine).67 Another 

explanation for the efficacy of drug rotation during morphine and hydromorphone therapy 

involves the properties of the morphine-3-glucuronide metabolite, which counteract the 

analgesic effects of morphine and morphine-6-glucuronide.40 Replacing morphine and 

hydromorphone with another opioid that has inactive metabolites (e.g., fentanyl or 

methadone) will decrease morphine-3-glucuronide levels, allowing more effective analgesia 

by the second drug.

MULTIMODAL ANALGESIA

In multimodal pain management, multiple nonopioid drugs can be used in combination with 

or in place of opioids to target various nociceptive pathways in the peripheral or central 

nervous system.68,69 This approach produces additive and even synergistic effects of the 

analgesic agents and reduces the adverse effects of opioids. Only the common nonopioid 

analgesics available for pain control are discussed here (Table 1, and Table S3 in the 

Supplementary Appendix).69

Ketamine induces analgesia largely by blocking the NMDA receptors, but it also has 

modulatory roles by means of cholinergic, aminergic, and opioid systems.70 Since NMDA-

receptor hyperactivity underlies a key mechanism of opioid tolerance and opioid-induced 

hyperalgesia, ketamine effectively ameliorates these conditions.70 Additional advantages 

include opioid sparing, minimal respiratory depression without psychotomimetic effects (at 

lower levels),69,70 and the antidepressant effects of ketamine metabolites.71

Clonidine, an α2-adrenergic agonist, has modest analgesic, sedative, antihypertensive, and 

opioid-sparing effects and has also been used to mitigate opioid-induced hyperalgesia and 

withdrawal symptoms during opioid weaning.72 Dexmedetomidine is more potent and has a 

shorter half-life than clonidine, and doses can easily be adjusted according to the response.69

The gabapentinoids gabapentin and pregabalin are commonly used adjuncts for multimodal 

analgesia. The involvement of multiple sites of action is probably responsible for their 

superior pain relief.69 Common dose-related side effects include sedation, dizziness, and 

confusion, and their opioid potentiation can cause respiratory arrest.73
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OTHER NONOPIOID DRUGS

Acetaminophen is a weak analgesic but is commonly incorporated in multimodal analgesic 

strategies for opioid sparing because it blocks the central production of prostaglandins.74 

Parenteral acetaminophen causes hypotension. Doses are reduced or not administered during 

hepatic dysfunction, malnutrition, or dehydration. The traditional nonsteroidal 

antiinflammatory drugs (e.g., ibuprofen), which are nonselective cyclooxygenase inhibitors, 

are not conventionally used in the ICU because of their side effects. Ketorolac is effective as 

an opioid-sparing agent, and short-term ketorolac use does not increase postoperative 

bleeding.75

FUTURE DIRECTIONS FOR PREVENTION AND TREATMENT OF OPIOID 

TOLERANCE

The basic and translational development of forthcoming opioid-receptor–targeted and 

nonopioid-receptor–targeted pain therapies unrelated to patients in the ICU has been 

recently reviewed.76 Several approaches presented in that review show promise for 

mitigating tolerance and hyperalgesia in the ICU. We will highlight three approaches.

MODULATION OF IMMUNE RESPONSES

Studies have suggested that inflammasome and toll-like receptor activation mediated by 

DAMPs critically affects the glial response to both tissue injury and opioids.3,28,48 Toll-like 

receptor activation can be regulated by racemic naloxone or a stereoselective naloxone 

isomer, (+)-naloxone.28 For example, dextromorphine exerts a stereoselective action over 

levomorphine in the activation of glia; opioid-receptor agonists, including morphine, activate 

toll-like receptors but are antagonized by (+)-naloxone.28 Thus, (−)-naloxone and (+)-

naloxone could be used to differentiate between the role of an opioid in analgesia and 

activation of toll-like receptors, making it possible to lessen the inflammatory responses to 

tissue injury and opioid exposure without antagonizing opioid-induced analgesia. Specific 

inflammasome inhibitors may also be used to modulate gliamediated exaggerated 

nociception and opioid tolerance, without broadly inhibiting immunity.77

The neuronal α7 nicotinic acetylcholine receptor agonists have been shown to attenuate 

microglia activation52,78 and to have protective effects on inflammation induced by critical 

illnesses.79,80 Moreover, α7 nicotinic acetylcholine receptor activation attenuates 

inflammatory and neuropathic pain and opioid-induced hyperalgesia in rodent models.
78,79,81 Therefore, α7 nicotinic acetylcholine receptor agonists could be useful in the 

reduction of both critical illness–related inflammation and pain.

CANNABINOIDS

The role of endocannabinoids in anxiety, stress, and pain is well documented,82,83 but the 

usefulness of exogenous cannabinoids in stress-induced hyperalgesia and opioid-sparing in 

patients in the ICU is unknown. In addition, cannabinoids regulate inflammatory responses 

in preclinical models.82 The analgesic efficacy of cannabinoids, their interactions (additive 

or synergistic) with opioids, and their abuse potential when combined with opioids for pain 

control in patients in the ICU are topics for future study.
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BUPRENORPHINE WITH OR WITHOUT NALOXONE AND METHADONE

Buprenorphine, an opioid analgesic agent, is currently used (with or without naloxone) as 

replacement therapy in persons with substance-use disorders and for the treatment of chronic 

pain.84 Although it is a weak analgesic for patients who do not have opioid dependency, it 

has shown promise in patients with opioid dependency because it reverses opioid-induced 

hyperalgesia.84 Opioid-induced hyperalgesia is partially related to increased interaction of 

dynorphins with the kappa-opioid receptor; buprenorphine blocks the binding of dynorphins 

to the kappa-opioid receptor and attenuates opioid-induced hyperalgesia.85,86 Furthermore, 

buprenorphine, although a partial opioid agonist, has high affinity for opioid receptors and 

thereby blocks other opioids from activating the same receptors. Although few studies have 

directly compared the analgesic effects of buprenorphine and methadone, buprenorphine 

may be superior in cases of renal failure because of extrarenal excretion.87 Thus, pragmatic 

clinical protocols are needed to guide the use of buprenorphine and naloxone in patients in 

the ICU who are progressing toward opioid tolerance and for those already receiving 

buprenorphine or naloxone therapy before admission.

Methadone, another opioid analgesic, mitigates opioid-induced hyperalgesia by inhibiting 

NMDA receptors and serotonin-reuptake activity and blocking adenylate cyclase 

overactivity, which is partly responsible for the withdrawal symptoms.36,88 The major 

downside of methadone is its variable metabolism, intra- and interindividually. During 

opioid rotation or opioid weaning, methadone doses must be adjusted to maintain sufficient 

alleviation of symptoms while avoiding side effects.88–90 Oversedation and prolongation of 

the cardiac QT interval can occur with cytochrome P-450 inhibitors or low magnesium 

levels. Methadone is used cautiously in the ICU because of its unpredictable half-life and 

cardiac toxicity.91,92 Methadone is a racemic mixture of two stereoisomers (l-methadone and 

d-methadone), with l-methadone being 8 to 50 times as potent as d-methadone36; therefore, 

in patients in the ICU who do not have a response to other opioids, the usefulness of l-
methadone or methadone, which produces analgesia through multiple sites of action that 

differ in potency, is not clear.36,88,90

OTHER DRUGS AND CONSIDERATIONS

Lidocaine, β-adrenoceptor antagonists, magnesium, tricyclic antidepressants, and other 

drugs have been used as analgesic adjuncts to decrease opioid doses. Their long-term safety 

and efficacy in the ICU have not been well established in randomized, controlled trials. 

Selective serotonin-reuptake inhibitors and serotonin–norepinephrine reuptake inhibitors 

have antinociceptive effects, but mortality is higher among patients who use them before 

ICU admission than among patients who do not.93 Antipsychotic agents are currently used 

in the ICU as adjuncts to opioids, but their use has not been studied systematically. Multiple 

drugs are often administered simultaneously, and in cases of organ dysfunction, the altered 

drug disposition increases the risk of additive, synergistic, or antagonistic drug interactions, 

underscoring the importance of reviewing all medications.94 Hepatic disease mildly affects 

the dispositions of morphine and fentanyl, and their elimination depends on hepatic blood 

flow; therefore, the drugs are useful in hepatic dysfunction but not in low-flow states.95 

Remifentanil, although rapidly cleared even in cases of organ dysfunction, quickly induces 

tolerance and opioid-induced hyperalgesia.91
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CONCLUSIONS

There are many indications for opioid use in persons with critical illnesses. However, long-

term opioid use has detrimental effects, including analgesic tolerance, which drives dose 

escalation and leads to opioid-induced hyperalgesia. Pain management (analgesia) in 

patients in the ICU, who are more vulnerable than the general population to both 

exaggerated tolerance and the deleterious effects of opioids, has been a challenge for 

decades, and methods to mitigate the risks associated with opioid administration are 

unresolved. The etiologic factors (i.e., cell types and receptors, sex, extremes of age, and the 

underlying inflammation- and opioid-induced immune responses) that contribute to these 

maladaptive responses have not been well characterized and pose a barrier to improving 

analgesic therapy in cases of critical illness. A more nuanced understanding of the way 

critical illness and inflammation affect the body’s response to opioids could lead to 

tremendous reduction in morbidity among critically ill patients. Furthermore, the 

translational application of pain therapies targeted to opioid receptors and those targeted to 

nonopioid receptors is currently being studied in the general population and provides a road 

map for strategies to mitigate opioid tolerance in persons with critical illnesses.
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Figure 1. Sites of Action of Opioids and Effects of Injury on Modulation of Nociception.
Sites of action of opioids for pain relief include the brain (cortex, thalamus, hypothalamus, 

locus coeruleus, amygdala, and periaqueductal gray matter), spinal cord, and peripheral-

nerve membrane. Transmission of pain sensation (nociception) from the peripheral-tissue 

injury to the central nervous system occurs through the ascending spinothalamic tract to the 

thalamus and then to the somatosensory cortex (orange). Descending inhibitory tracts (blue) 

from the brain and other regions, including the rostroventral medulla, modulate nociception. 

Nociception can be amplified by dorsal-root ganglia and changes in the dorsal horn of the 

spinal cord (top inset). The afferent neurons are sensitized by the sprouting of new axons 

around the cell bodies of dorsal-root ganglia, as well as by infiltrating macrophages, which 

release inflammatory substances. Neuron projections from dorsal-root ganglia to the dorsal 

horn amplify the pain by the release of other pro-nociceptive mediators (e.g., calcitonin 

gene–related peptide), activation of N-methyl-D-aspartate receptors, and the increase in 

glutamate levels. Second-order neurons transmit these signals upstream to the brain 

(orange). Injury to tissues (bottom inset) results in local and often systemic inflammatory 
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responses, which prime the peripheral sensory neurons and dorsal-root ganglia to 

exaggerated nociception by up-regulation or modulation of ligand-gated and voltage-gated 

ion channels. Mu-opioid receptors are newly expressed throughout the nerve membrane. 

Extravasated circulating leukocytes (e.g., macrophages and lymphocytes) release 

proinflammatory mediators, further sensitizing the neurons to pain. These leukocytes also 

release antinociceptive endogenous opioid peptides, which bind to the up-regulated opioid 

receptors on the nerve, attenuating pain.
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Figure 2. Opioid-Receptor Signaling during Short-Term Therapy and Long-Term Therapy.
In short-term treatment, the binding of an opioid to its receptor (Panel A) causes 

downstream G-protein–coupled receptors, composed of Gαβγ subunits, to dissociate into 

Gα and Gβγ subunits. The dissociated G-protein subunits inhibit voltage-gated calcium 

channels by means of reduced transmitter release, activate inward-rectifying potassium 

channels (causing hyperpolarization of the membrane), and inhibit downstream adenylate 

cyclase enzymes, decreasing cyclic adenosine monophosphate levels. These events reduce 

excitability and nociception and result in analgesic effects. When an opioid binds to its 

receptor, it becomes an immediate substrate for phosphorylation by G-protein–coupled 

receptor kinase (GRK), which leads to recruitment and binding of β-arrestin protein to the 

receptor. This results in desensitization and sometimes endocytosis of the receptor; each of 

these events decreases the responses to opioids, inducing tolerance and insufficient 

analgesia. Opioid-receptor signaling terminates when the opioid is displaced from the 

receptor. After the stimulus (i.e., the agonist) is withdrawn, the desensitized receptor 

recovers over time (minutes to hours, depending on the agonist), Gα rebinds to Gβγ and 

once again forms Gαβγ, and the endocytosed receptor is reexpressed on the plasma 

membrane in a resensitized state. In long-term treatment (Panel B), escalating doses of 

opioids and concomitant persistent activation of the receptor lead to aggravation of the 

tolerance by receptor-dependent and receptor-independent intracellular signaling changes, 
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which include up-regulation of the antiopioid (pro-nociceptive) signaling pathways. The 

sustained β-arrestin binding to the receptor often leads to internalization, degradation, and 

down-regulation of membrane receptor number, further decreasing response to opioids. 

Receptor down-regulation occurs with some opioids (e.g., fentanyl) but not others (e.g., 

morphine). Phosphorylation by other kinases (e.g., protein kinases A and C), increased 

adenylate cyclase activity (with increased cyclic adenosine monophosphate levels), 

activation of N-methyl-D-aspartate (NMDA) receptor, and down-regulation of glutamate 

receptors (increased glutamate levels) are all implicated in the imbalance between pro-

nociceptive and antinociceptive pathways, which results in attenuated analgesic effects, 

aggravated pain behaviors, increased tolerance, and opioid-induced hyperalgesia.
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Figure 3. Cross Talk between Neuronal and Non-Neuronal Cells during Injury and 
Inflammation.
Non-neuronal cells (e.g., astroglia and microglia) can modify pain perception through the 

production and release of pro-nociceptive m ediators. Opioids, injury, cancer, chemotherapy, 

stress, and other causes of sterile or microbial inflammation can induce the release of 

damage-associated molecular pathogens (DAMPs) and pathogen-associated molecular 

patterns (PAMPs). DAMPs and PAMPs cause inflammasome release, which leads to the 

transition of microglia to an active state and astroglia to a reactive state. The “switched on” 

glia release inflammatory substances through activation of toll-like receptors (TLRs) and 

their downstream signaling proteins (Jun N-terminal kinase [JNK], nuclear factor κB [NF-

κB], extracellular signal-regulated kinase [ERK], and p38 mitogen-activated protein kinase 

[p38]). Peripheral macrophages infiltrate the central nervous system because of selective 

breakdown of the blood–brain barrier, and they contribute to the inflammatory responses. 

The released proinflammatory substances (inflammasomes, ATP, and calcitonin gene–

related peptide [CGRP]) sensitize the pre- and postsynaptic central neurons, leading to a 

vicious cycle characterized by the need for more opioids and more sensitization and more 

glia inflammation. The end result is a marked exaggeration of nociception, severe opioid 

tolerance, peripheral and central sensitization, and opioid-induced hyperalgesia.
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Figure 4. Short-Term and Long-Term Opioid Therapy and Effects of Inflammation or Injury on 
Pain Threshold.
In Panel A, short-term opioid administration (light blue) provides sufficient analgesia with 

no or minimal opioid tolerance (pink). In cases of inflammation or injury, as compared with 

uninjured states, the analgesic potency of the opioid (i.e., the threshold for pain) is 

decreased, resulting in hyperalgesia; short-term administration of higher doses (dark blue) 

provides sufficient analgesia but for a shorter duration (purple), requiring more frequent 

doses (dark blue). Panel B shows that in an uninjured patient with long-term exposure to 

opioids, the analgesic potency decreases (pink) and the duration of opioid-induced analgesia 

also decreases with each dose, requiring an increase in dose frequency. Long-term opioid 

administration will result in induction of antinociceptive mechanisms, resulting in 

hyperalgesia; even higher doses of opioids (light blue) do not restore complete analgesia 

(pink). During opioid-induced hyperalgesia in an injured patient, exaggerated pain 

sensitivity occurs at the injured and uninjured areas. Any cause of systemic inflammation or 

neuroinflammation (e.g., infection, cancer, diabetes, stress, or chemotherapy) decreases the 

analgesic potency and the duration of analgesic effects and leads to earlier development of 

opioid-induced hyperalgesia; even high doses (dark blue) result in minimal analgesia 

(purple) because of decreased analgesic potency.
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Table 1.

Strategies for Mitigating Opioid Tolerance or Opioid-Induced Hyperalgesia.*

Appropriate use of opioids

Use of valid assessment scales of pain before and during administration of the analgesic drug

Use of intermittent opioid therapy (oral or intravenous) rather than continuous infusions, when possible

Opioid rotation

Use of remifentanil for short-term analgesia (because of potent induction of opioid-induced hyperalgesia), except when rapid offset of effect is 
required, as in evaluation of head injury

Minimal use of benzodiazepines (because of delirium and potential opioid-induced hyperalgesia associated with long-term use)

Avoidance of excessive dose escalation; supplementation of opioid with nonopioid analgesics

Addition of methadone to attenuate or delay opioid tolerance

Coadministration of nonopioid analgesics as rescue therapy during procedures or to potentiate the effects of opioids

N-methyl-D-aspartate receptor antagonists (ketamine)

α2-Adrenergic receptor agonists (clonidine or dexmedetomidine)

Gabapentinoids (gabapentin or pregabalin)

Continuous administration of nerve blocks by means of a catheter

Neuraxial: thoracic or lumber epidural blocks for thoracic, abdominal, or bilateral leg analgesia

Regional: brachial plexus block for arm analgesia; femoral or obturator block or both, with or without sciatic nerve block for lower-limb 
analgesia

Local: paravertebral block for rib fractures or chest-tube–associated pain; transversus abdominis block for lower abdominal surgery

Prevention or reversal of opioid-induced hyperalgesia and opioid-withdrawal symptoms

Tapering of opioid dose when pain score goal is achieved (10–20% dose reduction every 1–4 days)

Use of valid withdrawal assessment scales

Use of adjuncts to opioids (ketamine, dexmedetomidine, or gabapentinoids [gabapentin or pregabalin])

Use of methadone

Reduction of inflammation

Scheduled acetaminophen therapy

Short-term use of ketorolac†

*
The nonopioid strategies that are listed are usually used in combination with opioids; dosing regimens and routes of drug administration are 

provided in Tables S2 and S3 in the Supplementary Appendix.

†
 Other nonsteroidal antiinflammatory drugs (e.g., ibuprofen) have limited use in the intensive care unit because of cardiovascular, nephrotoxic, and 

gastrointestinal side effects.
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