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Abstract

Identification of causal noncoding single nucleotide polymorphisms (SNPs) is important for 

maximizing the knowledge dividend from human genome-wide association studies (GWAS). 

Recently, diverse machine learning-based methods have been used for functional SNP 

identification; however, this task remains a fundamental challenge in computational biology. We 

report CERENKOV3, a machine learning pipeline that leverages clustering-derived and molecular 

network-derived features to improve prediction accuracy of regulatory SNPs (rSNPs) in the 

context of post-GWAS analysis. The clustering-derived feature, locus size (number of SNPs in the 

locus), derives from our locus partitioning procedure and represents the sizes of clusters based on 

SNP locations. We generated two molecular network-derived features from representation learning 

on a network representing SNP-gene and gene-gene relations. Based on empirical studies using a 

ground-truth SNP dataset, CERENKOV3 significantly improves rSNP recognition performance in 

AUPRC, AUROC, and AVGRANK (a locus-wise rank-based measure of classification accuracy 

we previously proposed).
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1. Introduction

The rSNP detection problem

Genome-wide association studies (GWAS) are increasingly being used to map the genes that 

underlie human polygenic traits. GWAS have uncovered variant-to-trait associations in 

thousands of studies collectively involving millions of individuals.1 Functional interpretation 

of genetic loci identified through GWAS has primarily focused on coding regions in which 

SNPs can be explained based on amino acid changes;2 however, 90% of human GWAS-
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identified SNPs are located in noncoding regions3 from which it is difficult to pinpoint the 

regulatory SNP (or rSNP) that is causal for trait variation.4

With the tremendous increase in genomic and functional genomic datasets, computational 

data-driven approaches have become a mainstay of functional rSNP prioritization, although 

the rSNP identification problem remains fundamentally challenging. While some 

unsupervised approaches, which do not involve training based on an example set of 

experimentally validated rSNPs, have been proposed,5–15 evidence from our work16,17 and 

others’18–21 suggests that supervised approaches in general have superior rSNP detection 

accuracy. In addition, the growth of literature-curated databases of experimentally validated 

rSNPs22–24 has stimulated the development of supervised approaches. A variety of 

supervised classification algorithms have been proposed, including the SVM,11,13,18,25 naïve 

Bayes,26 ensemble decision tree algorithms,19,20,27 probabilistic graphical models,12,28 deep 

neural networks,14,21,29 weighted sum of feature ranks,30 and our work using regularized 

gradient boosted decision trees16,17 and deep residual networks.31 Recently, several hybrid 

methods have been proposed such as combining recurrent and convolutional neural 

networks21 and combining deep neural networks with regularized gradient boosted decision 

trees.29 In addition to binary classification approaches, regression-based approaches have 

been used for the rSNP detection problem.32,33

For rSNP detection, as with other machine-learning problems, the features (in this case, SNP 

features) are as important as the classification algorithm. Consequently, various types of 

SNP annotations that correlate with functional rSNPs have been used,34 for example, 

phylogenetic sequence conservation and expression quantitative trait locus (expression QTL, 

or eQTL) association35 scores. Furthermore, studies have shown that increasing the diversity 

of SNP annotation features improves rSNP detection, and thus there has been a steady 

increase in the number of features used in machine-learning approaches for this problem.
10,18–21,26,27,29 In our previous work17 we reported a model (Computational Elucidation of 

the REgulatory NonKOding Variome, CERENKOV) with a 246-dimensional feature space 

that clearly outperformed some models20,21,29 with significantly higher-dimensional feature 

spaces. This suggested that feature correlation within, and sparsity of, high-dimensional 

feature space may weaken the improvement of rSNP detection accuracy. Therefore, how to 

identify and integrate various types of rSNP correlates remains a key challenge for accurate 

rSNP detection.

Our previous CERENKOV methods

Our previous classifier, CERENKOV,17 had four key innovations. First, we selected a 

reference set of SNPs to represent noncoding loci that would be expected to be encountered 

in a post-GWAS analysis, based on population minor allele frequency.17 Second, we used a 

regularized gradient boosted decision tree (XGBoost) classification algorithm,36 which we 

found has superior rSNP recognition performance to Random Forest and Kernel SVM. 

Third, we engineered 246 SNP-level features from phylogenetic, genomic, epigenomic, 

chromatin structural, cistromic, population genetic, replication-timing, and functional 

genomic datasets. Fourth, CERENKOV incorporated a locus-wise rank-based measure of 

classification accuracy, AVGRANK,17 which more realistically models the costs associated 
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with incorrect predictions in post-GWAS analysis than typical measures like area under the 

receiver operating characteristic curve (AUROC) or area under the precision-recall curve 

(AUPRC). We compared the accuracy of CERENKOV to nine previously published rSNP 

recognition models17 and found that CERENKOV’s performance significantly improved 

upon the nine other models, by AUPRC, AUROC, and AVGRANK.

More recently, we reported on CERENKOV2,16 which improved performance over 

CERENKOV by leveraging insights into the data-space geometry of the problem. In addition 

to using a 2.5-fold expanded reference set of SNPs (the OSU18 SNP set which has 39,083 

SNPs for model benchmarking), we incorporated new features that are based on likelihood 

ratios of average SNP-to-neighboring-SNPs distances for various types of distance 

measures. By taking account geometric properties of the distribution of SNPs in data space, 

CERENKOV2 achieved significantly better rSNP recognition performance than 

CERENKOV and (as with CERENKOV) it outperformed the next-strongest rSNP detection 

tool, GWAVA.19

CERENKOV3: new clustering-derived and network-derived features

Clustering: Clustering is a widely used technique for statistical data analyses. In GWAS, 

SNP clustering can help detect groups of similar SNPs that are amenable to classification 

using group-wise models.37 To find useful SNP partitions, one option is to use specific 

domain knowledge to group the SNPs, for example by target genes and/or functional 

pathways. Another option is to use hierarchical clustering methods which rely on a distance 

measure between the SNPs. For example, SNPs can be clustered based on their pairwise 

relation given by stagewise regression coefficients using average linkage and the result of 

clustering helps alleviate the dimensionality problem when training deep Boltzmann 

machines.38 Therefore, we hypothesized that deriving a feature to explicitly account for SNP 

clustering could improve performance for rSNP detection in the context of supervised 

classification.

Molecular network: Molecular networks, especially gene regulatory networks (GRN), are 

also key to the rSNP detection problem because molecular networks mediate the effects 

exerted by rSNPs on trait population variation. Therefore we hypothesized that mapping 

SNPs to a molecular network, and deriving features from the vantage points of SNPs in the 

network, would benefit rSNP detection. Construction of such a network is greatly aided by 

the recent availability of datasets from studies of direct DNA contacts utilizing assays such 

as Hi-C or chromatin interaction analysis by paired-end tag sequencing (ChIA-PET). More-

over, molecular networks have been successfully used to improve the inference accuracy of 

causal coding variants.39–42 However, although biologically intuitive, the complex 

interactions reflected by the underlying GRNs in which noncoding rSNPs take effect, 

namely, interactions among transcription factors and their target genes, are largely not taken 

into account in existing algorithms for functional SNP identification.43 We endeavored to 

capture such network-contextual information as new SNP-level features in CERENKOV3.

CERENKOV3: CERENKOV3 takes advantage of newly engineered features reflecting SNP 

clustering and SNP network context and thereby improves rSNP prediction performance 
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over our previous approaches, CERENKOV17 and CERENKOV2.16 As in our previous 

approaches, in CERENKOV3 we use regularized gradient boosted decision trees (XGBoost) 

as the base classifier due to its superior speed and performance. We combined our original 

248-dimensional feature matrix with two new types of features derived from clustering and 

molecular networks, respectively: (1) “locus size”, a static feature based on the number of 

SNPs within a locus; and (2) a pair of dynamic features extracted by node2vec,44 an 

algorithm for learning continuous feature representations for nodes based on network 

random walks. We constructed a weighted molecular network using the the data sources 

4DGenome,45 Encyclopedia of DNA Elements (ENCODE), and Genotype Tissue 

Expression (GTEx) for SNP-gene connections; and BioGRID,46 Coexpedia47 and 

HumanNet48 for gene-gene connections. We treated the edge weights as hyperparameters 

that we tuned in the method (see Methods).

2. Methods

Reference SNP set and annotation features

A set of experimentally validated SNPs is fundamental to our supervised-learning method. 

In this work, we used the OSU18 SNP set that we first used in CERENKOV216 and that is 

specifically designed to represent the computational task of post-GWAS rSNP identification. 

Loci are partitioned naturally by our filtering procedure when choosing SNPs: we only 

included SNPs within 50 kbp of an rSNP; this partitioning scheme also guarantees the 

possibility of locus sampling,17 a group-wise sampling technique that we implemented to 

assign SNPs to cross-validation (CV) folds by locus. After we analyzed the repeated locus-

sampling based CV performance, we found that, whichever fold it was assigned, the locus 

with ID chr5_30 (internally meaning the 30th locus on chromosome 5) would hinder the 

validation performance. From the OSU18 SNPs we pruned one locus (chr5_30) because it 

contained an anomalously high number of rSNPs (143) that lack supporting documentation 

in the source database (ClinVar). With that exclusion, the overall class balance of the 

remaining 38,795 OSU18 SNPs is ~15.26 (ratio of control SNPs, or cSNPs, to rSNPs). As 

our baseline set of features, we obtained the 248 SNP annotation features from the 

CERENKOV216 feature pipeline. For comparison purposes, we also extracted 175 SNP-

level features from the GWAVA19 software.

Clustering-derived feature: locus sizes

As mentioned above, when collecting the negative examples, i.e. the cSNPs, we only chose 

those that were in strong linkage disequilibrium (r2 ≥ 0.8) with, and located no more than 50 

kbp distance from, an rSNP. This procedure provided us a natural way of clustering: we first 

sorted all the OSU18 SNPs by their locations per chromosome. Then, for any pair of 

neighboring SNPs on the same chromosome, if the distance between their chromosome 

positions is greater than 50 kbp, we divided them into two separate loci. In this way, we 

partitioned the OSU18 SNP set into 1290 loci, each containing approximately 30 SNPs on 

average. Then for each SNP, the number of SNPs within its locus is computed as the “locus 

size” feature.
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Construction of molecular networks

We constructed an undirected SNP-proximal molecular network for CERENKOV3 as 

follows (Fig. 1): First, vertex types were limited to SNPs and genes in order to reduce 

constructional and computational overhead. Second, we integrated eight data sources of 

SNP-gene interactions (five interaction types using data from four sources, namely, 

4DGenome,45 GTEx, Ensembl, and ENCODE) and gene-gene interactions (three sources) in 

order to maximize the connectedness of the network. Third, under the premise that different 

data sources are likely to have different degrees of relevance/informativeness for the rSNP 

prediction task, we assigned edges numerical weights according to the relation types they 

represented (see colored edges in Fig. 1); we treated these weights as hyperparamters of our 

classifer that we tuned empirically to maximize performance (see Sec. Machine learning 

pipeline and hyperparameter tuning). To construct the CERENKOV3 network, we used as 

vertices the pruned OSU18 SNP set and all human genes from Ensembl (release GRCh37). 

We mapped Ensembl gene IDs to NCBI IDs using BioMart as needed for integrating gene-

gene interaction data sources.

Detailed procedure for obtaining SNP-gene edges:

• For any single SNP s, if among all candidate gene vertices there is a gene g 
whose transcription start site (TSS) lies closest downstream to that gene, we 

drew an edge between s and g. We call this a “nearest-gene” SNP-gene relation, 

as it is based on SNP-TSS proximity.

• 4DGenome is a public database of chromatin interaction records that contains 

over three million human chromatin interactions curated from a comprehensive 

collection of 3C, 4C, 5C, ChIA-PET, Hi-C and IM-PET49 studies. If a SNP s and 

the TSS of a gene g exclusively located in two interacted regions reported by 

4DGenome, we added a s–g connection in the network. Furthermore, for any 

gene g, we defined the promoter region to span the range from 2000 bp upstream 

to 500 bp downstream of its TSS. Similarly, for any pair of interacted regions 

reported by 4DGenome, if the genomic region contains a SNP s and partially 

overlaps with a gene g’s promoter section exclusively, such an s-g edge will also 

be included in our CERENKOV3 network. We call these two types of relations 

4DGt (for TSS proximity) and 4DGp (for promoter proximity), respectively.

• GTEx is a comprehensive public resource to study tissue-specific gene 

expression and regulation. GTEx defines “eGenes” as genes with at least one 

SNP in cis significantly associated, at a false discovery rate (FDR) of ≤ 0.05, 

with expression differences of that gene. We used single-tissue cis-eQTL data 

from GTEx Analysis V7 and we incorporated all SNP-eGene associations into 

our CERENKOV3 network as edges.

• The last set of SNP-gene edges were obtained from connections through 

overlapping transcription factor binding sites (TFBS) using the UCSC Genome 

Browser and MyGene.info application programming interface (API). First, we 

used an inner join between the All SNP (build 146) and Transcription Factor 
ChIP-seq Clusters V3 tables of the GRCh37 assembly from the UCSC Genome 
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Browser to obtain all TFBS symbols overlapping with our pruned OSU18 SNP 

set; then we used MyGene.info API in order to find all genes that are translated 

into the corresponding transcription factors.

Detailed procedure for obtaining gene-gene edges:

We directly obtained gene-gene edges from BioGRID,46 Coexpedia47 and HumanNet.48

• BioGRID is an online biological interaction repository with data compiled 

through comprehensive curation efforts. We used version 3.5.171 to extract all 

gene-gene pairs which participates in the interactions reported and augmented 

our network.

• Coexpedia and HumanNet (v2) are two gene co-expression databases and serve 

as a natural source of gene-gene edges.

Network-derived features

Once the molecular network was constructed and a set of edge weight hyperparameters 

assigned (within the context of a hyperparameter search algorithm), we used node2vec44 to 

extract low-dimension continuous representations for each network vertex. Specifically, 

through a set of parameters controlling the usage of breadth-first and depth-first searches, 

node2vec provides a way of balancing the exploration-exploitation tradeoff when generating 

random walks for each vertex. Once the random walks are completed, node2vec calls 

word2vec,50 a word embedding algorithm, to generate embeddings on the string 

representations of the random walks. The dimension of node2vec’s output, i.e., the number 

of network-derived features, is not determined in advance; instead we optimized it within the 

hyperparameter search.

Machine learning pipeline and hyperparameter tuning

As shown in Fig. 2, the pipeline of CERENKOV3 includes three major steps:

1. The unweighted network is saved in edge-list format and then assigned weights 

dynamically according to the types of edges, i.e., the types of SNP-gene or gene-

gene relations.

2. The weighted network is sent to node2vec and the embeddings are generated and 

output as new features for the classifier.

3. The network-derived features and clustering-derived feature, locus sizes, are 

integrated with the baseline 248-dimension SNP features. The combined feature 

matrix is input to the XGBoost classifier within the context of a replicated, locus 

sampling-based, five-fold cross-validation training process, with performance 

measures obtained on the validation sets.

The whole pipeline is wrapped into a custom scikit-learn estimator object, whose three sets 

of hyperparameters are as follows:

1. Edge weights, i.e., wNG (for the nearest-gene relations), w4DGt, w4DGp (for SNP-

gene relations extracted from 4DGenome data), wGTEx, wTFBS (for SNP-gene 

relations extracted through overlapping TFBS), wbg, wcoexp and whn (for gene-
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gene relations extracted from BioGRID, Coexpedia and HumanNet, 

respectively).

2. The hyperparameters of node2vec, including d (the number of output 

dimensions), r (the number of random walks for each vertex), l (the length of 

each random walk), k (the context window size when calling word2vec), p (the 

“return” degree, controlling the probability to go back to the visted vertex) and q 
(the “inout” degree, controlling the probability to explore undiscovered parts of 

the network).

3. The hyperparameters of XGBoost as below: max_depth (the maximum tree 

depth for base learners), learning_rate, n_estimators (the number of trees to fit), 

gamma (the minimum loss reduction required to make a further partition on a 

leaf node of the tree), subsample (subsample ratio of the training instance) and 

colsample_bytree (the subsample ratio of columns when constructing each tree).

Considering high dimensionality (20) of the hyperparameter space, we used a random search 

method51 to approximate the optimal configuration. The random search works on the 

assumption that 1% of the hyperparameter configuratoins will lead to close-to-optimal 

performance. Based on this assumption, with n ≥ 240 trials, we would expect to find a close-

to-optimal configuration with a high probability of 1 − (1 − 0.01)n > 0.99.

For the CERENKOV3 machine learning pipeline, we used a combination of bash, bedtools 

(v2.25.0), the R statistical computing environment (version 3.4.4), scikit-learn (version 

0.21.2) and Python 3.5.2, all under Ubuntu 16.04. In addition, for the purpose of 

comparison, we also generated features for the pruned OSU18 SNP set with the GWAVA19 

program and then applied Random Forest algorithm with R package ranger version 0.6.0 

with the published hyperparameters. To make a fair comparison, we adapted the same cross-

valiation settings, fold assignments, and performance measurements for all classifiers.

3. Results

Random search in hyperparameter space

We carried out a 240-trial random search on hyperparameters with XGBoost on a basis of 

ten-fold replicated, locus sampling-based, five-fold cross-validation and esetimated the 

optimal hyperparameters as shown below.

1. For edge weights, wNG = 0.1, w4DGt = 0.3, w4DGp = 3.0, wGTEx = 0.3, wTFBS = 

0.1, wbg = 3.0, wcoexp = 0.3 and whn = 0.3.

2. For node2vec, d = 2, r = 12, l = 6, k = 4, p = 4 and q = 8.

3. For XGBoost, max_depth=10, learning_rate=0.1, n_estimators=100, gamma=10, 

subsample=1.0 and colsample_bytree=0.3.

For edge weights, we set the options for random search within a set of real numbers {0.0, 

0.1, 0.3, 1.0, 3.0}. The optimized edge weights appear to emphasize snp-gene promoter-

proximity edges through 4DGenome data and gene-gene edges from BioGRID. In terms of 

node2vec parameters, we found in general that lower dimensions of output (d) and longer 
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distances of random walks (l) perform best. In addition, the optimal combination of p = 4 

and q = 8 means probablistically in our constructed network, more breadth-first searches 

were carried out than depth-first ones in the optimal configuration.

Analysis of newly engineered features

For each SNP, we obtained the locus size and the optimal two-dimensional embedding 

returned by node2vec. We first analyzed these three new features for the two SNP classes 

(rSNPs and cSNPs) using kernel density estimation for feature values conditioned on the 

class label (rSNP or cSNP) of the reference SNP. As seen in Fig. 3, there are evident 

likelihood differences (particularly reflecting differences in the skewness and kurtoses of the 

distributions) that could be exploited by XGBoost. For locus sizes, the feature distribution 

for rSNPs are slightly more left-shifted and more leptokurtic than the distributions for 

cSNPs; in terms of the first network-derived feature, the distribution for rSNPs is more 

shifted to the right; for the second network-derived feature, both of the distributions are 

more leptokurtic than those of the first features and similarly the distribution for rSNPs are 

more right-shifted.

Comparison of performance

Using the above-described optimal hyperparameters and cross-validation framework, we 

compared the performance of GWAVA, CERENKOV, CERENKOV2, and CERENKOV3 in 

terms of AUPVR, AUROC, and AVGRANK (Fig. 4). CERENKOV3 was the best-

performing algorithm overall, significantly outperforming GWAVA (which was the best-

performing of the nine competing algorithms in our previous study17). Comparing the 

performance of CERENKOV3 with CERENKOV2, we see that the inclusion of the three 

new features improved validation-set AUPRC from 0.418 to 0.459 (p < 10−35) and AUROC 

from 0.858 to 0.870 (p < 10−19); in terms of AVGRANK, although the improvement is not 

statistically significant (p = 0.30) when compared to that of CERENKOV2, AVGRANK 

decreased from CERENKOV’s 7.873 to a lower 7.726 in CERENKOV3 (lower is better for 

AVGRANK;17 p < 0.001). These results indicate that the addition of the three SNP 

clustering and molecular network-based features significantly improve rSNP recognition 

performance.

4. Conclusion and discussion

We have demonstrated, using side-by-side comparisons on identical assignments of SNPs to 

cross-validation folds, that CERENKOV3’s performance exceeds that of our previous 

CERENKOV, by both classical global rank-based measures (AUPRC and AUROC) and by 

the GWAS-oriented performance measure, AVGRANK. In particular, CERENKOV3’s 

validation-set AUPRC performance, 0.459, is a significant improvement over 

CERENKOV2’s AUPRC of 0.418 on the same pruned reference SNP set. These results 

reveal CERENKOV3’s ability, by virtue of its novel features based on clustering and 

molecular networks, to contribute to solving the problem of identifying candidate causal 

noncoding SNPs in GWAS summary regions.
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We anticipate that CERENKOV3’s performance may be further improved through several 

possible enhancements. An appealing extension would be to combine deep neural network-

based approaches based on the local 1 kbp sequence haplotype (recognizing that the local 

haplotype provides important correlates of functional SNP alleles52), with CERENKOV3’s 

current set of 251 SNP features. Our previous work31 has demonstrated that a classifier 

(Res2s2am) based on a deep residual network architecture has state-of-the-art performance 

on the related problem of discriminating trait-associated noncoding SNPs from control 

noncoding SNPs. Another direction of improvement is to continue feature engineering from 

clustering and networks. For example, currently, graph neural networks (GNN) are showing 

promise for integrating the SNP annotaion features and the connections between them. With 

GNN, it is possible to carry out representation learning on annotation features through graph 

embedding. The complete source code for CERENKOV3 is publicly available under an 

open-source license via GitHub at https://github.com/ramseylab/cerenkov3.
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Fig. 1. 
Data sources and types of relations used in to construct CERENKOV3 network.
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Fig. 2. 
Pipeline of CERENKOV3 machine learning approach.
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Fig. 3. 
Kernel density estimated distributions of locus sizes and two network-derived features, for 

the two sets of ground-truth SNPs, rSNPs (solid line) and cSNPs (dashed line).
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Fig. 4. 
Performance of GWAVA, CERENKOV, CERENKOV2 and CERENKOV3 on the OSU18 

reference SNP set, by three performance measures. Error bars denote ± two standard errors 

from ten replications of five-fold CV.
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