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Cells of the developing central nervous system are particularly susceptible to formation of double-stranded
DNA breaks (DSBs) arising from physiological and/or environmental insults. Therefore, efficient repair of
DSBs is especially vital for maintaining cellular health and proper functioning in the developing brain. Here,
increased expression of DSB initiating and nonhomologous end joining repair machinery in newborn
neurons in the developing brains of both mouse and human are demonstrated. In parallel, the first char-
acterization is provided of the brain phenotype in the Lig4R278H/R278H (Lig4R/R) mousemodel of DNA Ligase 4
(LIG4) syndrome, in which a hypomorphic Lig4 mutation, originally identified in patients, impedes
nonhomologous end joining. It is shown that Lig4R/R mice develop nonprogressive microcephaly, resulting
primarily from apoptotic death of newborn neurons that is both spatially and temporally specific during peak
cortical neurogenesis. This apoptosis leads to a reduction in neurons throughout the postnatal cerebral
cortex, but with a more prominent impact on those of the lower cortical layers. Together, these findings
begin to uncover the pathogenesis of microcephaly in LIG4 syndrome and open avenues to more focused
investigations on the critical roles of DSB formation and repair in vulnerable neuronal populations of the
brain. (Am J Pathol 2019, 189: 2440e2449; https://doi.org/10.1016/j.ajpath.2019.08.010)
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Maintenance of genomic integrity is essential for normal
cellular function, but it is of particular importance in the
developing brain. On the one hand, when DNA damage goes
unrepaired, the central nervous system is disproportionately
affected in comparison to other organ systems.1,2 On the other
hand, recent evidence suggests that double-strand break
(DSB) formation is also a physiological event in both neural
progenitors3,4 and postmitotic neurons,5,6 potentially pro-
moting neuronal diversity and altering gene expression.1,7

Ultimately, an inability to repair these DSBs is detrimental,
resulting in p53-mediated, apoptotic cell death.8,9 Together,
these findings underscore the delicate balance that cells within
the central nervous systemmust strike betweenDNAplasticity
and integrity to maintain cellular heath and function.

Ligase 4 (LIG4) syndrome, a condition in which
reduced LIG4 activity impedes nonhomologous end
stigative Pathology. Published by Elsevier Inc
joining (NHEJ)-mediated DSB repair, serves as a devas-
tating example of the consequences of unrepaired DNA
damage.10,11 Along with immunodeficiency, microcephaly
is a hallmark feature of LIG4 syndrome in patients.12,13

Phenotypic variability of the disease has been reported in
patients, and it may reflect differences in the severity of the
underlying gene defect.14 The nonprogressive nature of
microcephaly in LIG4 syndrome suggests that the pathol-
ogy arises during neural development, but the mechanisms
. All rights reserved.
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Microcephaly in Ligase 4 Syndrome
by which microcephaly arises and the associated neuro-
developmental defects remain understudied. Systemic
Lig4�/� mice exhibit profound cell death and are embry-
onic lethal.9,15,16 To date, two additional mouse models of
LIG4 syndrome have been published. The first of these,
Lig4Y288C, was identified from a mutagenesis screen and
shows the immunodeficiency, radiation sensitivity, and
growth retardation features associated with LIG4 syn-
drome.17,18 The second, Lig4R278H, contains a knock-in of
the hypomorphic mutation first described in a LIG4 syn-
drome patient, who manifested primarily with leukemia
and increased cellular radiosensitivity and developmental
delay, but no overt immunodeficiency.10,19,20 The
Lig4R278H mutation occurs in the highly conserved active
site of the LIG4 enzyme, significantly reducing its enzy-
matic activity.10,20 Lig4R278H/R278H (Lig4R/R) mice
demonstrate many features of LIG4 syndrome.21 Here, the
brain phenotype in the Lig4R/R knock-in mouse model is
characterized, and a link between the mouse and human
neural development is established. Moreover, the effects of
the Lig4R278H mutation were compared with those previ-
ously reported for the Lig4Y288C variant18 on brain devel-
opment. This work uncovers a prominent spatiotemporal
gradient of cell death affecting a select population of
newborn cortical neurons, ultimately leading to micro-
cephaly, and identifies distinctive features that characterize
brain pathology in different models of the disease. These
findings open new avenues for investigating the patho-
physiology of LIG4 syndrome, as well as other syndromes
characterized by unrepaired DNA damage in the devel-
oping central nervous system.

Materials and Methods

MRI

Detailed clinical information for this case was previously
described,22 where it was noted that the individual was
homozygous for LIG4 mutation leading to a histidine to
arginine amino acid substitution at position 282 (H282R) in
the LIG4 active site. Magnetic resonance imaging (MRI)
was reviewed by S.K. and I.R.

Animals

Lig4R278H/R278H mice (referred to as Lig4R/R) and littermate
controls were obtained through heterozygous breedings.21

For embryonic mice, the day of plug was designated as
embryonic day (E) 0.5. For postnatal mice, the day of birth
was designated as postnatal day (P) 0. Wild-type (Lig4þ/þ),
heterozygous (Lig4R/þ), and knock-in (Lig4R/R) mice
were collected from each litter. All analyses were
performed using male and female mice. All animal experi-
mentation was performed under protocols (13-08-2472R;
17-10-3547R) approved by the institutional animal care and
use committee of Boston Children’s Hospital.
The American Journal of Pathology - ajp.amjpathol.org
Immunostaining

Paraffin sections (5 mm) of brains were dehydrated, and
antigen retrieval was performed using Antigen Unmasking
Solution (Vector Laboratories, Burlingame, CA). Sections
were blocked and permeabilized (0.04% Tween-20 in PBS,
5% serum), followed by primary antibody incubation
overnight at 4�C. Cryosections (embryonic samples at 5 mm
or 14 mm, and postnatal samples at 14 mm) were washed in
1� PBS followed by antigen retrieval using boiling His-
toVT One (Nicalai Tesque, Kyoto, Japan) or 100 mmol/L
sodium citrate with 0.05% Tween-20. Samples were
blocked and permeabilized (0.3% Triton X-100 in PBS, 5%
serum), then incubated with primary antibodies overnight at
4�C (antibodies diluted in 0.3% Triton X-100 in PBS, 5%
serum). After washing, slides were incubated with fluores-
cent secondary antibodies (Alexa Fluor series; dilution
1:500; Invitrogen, Carlsbad, CA), counterstained with
Hoechst 33258 (H3570; dilution 1:10,000; Fisher Scientific,
Hampton, NH), and then mounted with Fluoromount-G
(SouthernBiotech, Birmingham, AL). The following pri-
mary antibodies were used: anti-53BP1 (4937; dilution:
1:100; Cell Signaling Technology, Danvers, MA), antie5-
bromo-20-deoxyuridine (BrdU) (MCA2060; dilution: 1:200;
Bio-Rad, Hercules, CA), anti-cleaved caspase 3 (9661;
dilution: 1:100; Cell Signaling Technology), anti-Ctip2
(ab18465; dilution: 1:200; Abcam, Cambridge, MA), anti-
Cux1 (sc-13024; dilution: 1:200; Santa Cruz Biotechnology,
Dallas, TX), anti-Ki67 (550609; dilution: 1:50; BD Bio-
sciences, San Jose, CA), anti-Topoisomerase II b (TOP2B)
(ab109524; dilution: 1:100; Abcam), and anti-Tuj1
(801202; dilution: 1:200; BioLegend, San Diego, CA). All
image analyses were performed using FIJI (ImageJ software
version 2.0.0-rc-54; NIH, Bethesda, MD) and statistical
analyses were performed using Prism software version 7.04
(GraphPad Software, La Jolla, CA).

E14.5 BrdU Pulse

Timed-pregnant females at E13.5 were injected intraperi-
toneally with 50 mg/kg BrdU (Millipore Sigma, Burlington,
MA) and sacrificed 24 hours later. Embryos were fixed in
4% paraformaldehyde in PBS for 2 hours at room temper-
ature followed by sucrose gradient and embedding in OCT
as described.23 Brains were sectioned at 5-mm thickness.
Following immunostaining, FIJI (ImageJ version 2.0.0-rc-
54) was used to perform cell counts and quantification from
four consecutive sections from both hemispheres, and sta-
tistical analyses were performed using Prism software
version 7.04 (GraphPad Software) comparing averaged
counts from each brain.

Analysis of Human Single-Cell RNA-Sequencing Data

Data set was provided by Alex Pollen.24 Because these data
were zero-inflated (many cells had zero counts per million
2441
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Figure 1 Newborn neurons are uniquely equipped with nonhomologous end joining (NHEJ) machinery during development. A: Transverse T2-
weighted (left) and coronal fluid-attenuated inversion recovery (FLAIR) (right) brain MRIs of patient with homozygous LIG4 mutation leading to
H282R substitution reveal microcephaly with no gross malformations. B: Schematic of NHEJ versus homologous recombination (HR) repair pathway
choice, demonstrating interaction of TOP2B, gH2AX, 53BP1, BRCA1, and LIG4. C: Single-cell sequencing data of human radial glia (RG), intermediate
progenitor cells (IPCs), and neurons at gestational weeks 16 to 1824 demonstrate that TOP2B expression is increased among neurons, whereas 53BP1 and
BRCA1 expression is increased among progenitor cells. D: Expression of TOP2B (green) at E14.5 is enhanced in newborn neurons in the cortical plate of
the embryonic mouse cortex. The boxed area corresponds to the higher-magnification image on the right. E: Expression of 53BP1 (red) is enhanced in
the TUJ1þ (green) region that represents the cortical plate of the embryonic mouse cortex at E14.5. Asterisks indicate nonspecific labeling of
vasculature. The boxed area corresponds to the higher-magnification image on the right. F: Brca1 RNA expression is enhanced among cortical pro-
genitors in the ventricular and subventricular zones of the developing mouse cortex at E14.5. Image acquired from GenePaint (http://gp3.mpg.de, last
accessed August 9, 2019) (set ID: MH2991). Data are expressed as means � SEM (C). **P < 0.01, ****P < 0.0001 (two-part Wilcoxon with Bonferroni
correction). Scale bars: 200 mm (D and E, left panels); 50 mm (D and E, right panels). CP, cortical plate; GW, gestational weeks; scSeq, single-cell
sequencing; VZ, ventricular zone.

Lun et al
reads for the genes analyzed), to perform statistical analyses,
a two-part Wilcoxon test was used to test differences in gene
expression25 as described.26 Statistical analyses were per-
formed using the R statistical software RStudio version
1.0.143 (R Foundation for Statistical Computing, Vienna,
Austria).
2442
Results

Patients with LIG4 syndrome are reported to have small
head circumference, though MRI images have never been
reported. A brain MRI of a 3-montheold LIG4 syndrome
patient, with a head circumference of 33 cm (normal range
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 Lig4R/R mice recapitulate microcephaly and growth delay observed in patients with LIG4 syndrome. A: E14.5, P8, and P28 brains from wild-type
(Lig4þ/þ) and knock-in (Lig4R/R) mice. Dashed lines indicate the anterior and posterior ends of the cortex of the wild-type (Lig4þ/þ) mice at each age. At
P8 and P28, the cortices of knock-in (Lig4R/R) mice show a marked decrease in size compared to the wild-type (Lig4þ/þ) littermate controls. B: Lig4R/R mice show
decreased brain weight postnatally compared to wild-type (Lig4þ/þ) and heterozygous (Lig4R/þ) littermates. C: Lig4R/R mice have reduced body weight at P28. D:
Schematics demonstrate cortical length and area measurements taken from P28 gross brain samples. E: Cerebral cortical length in P28 Lig4R/R knock-in mice is
reduced compared with wild-type (Lig4þ/þ) and heterozygous (Lig4R/þ) littermates. F: Cerebral cortical hemispheric surface area in P28 Lig4R/R knock-in mice is
reduced compared with heterozygous (Lig4R/þ) and wild-type (Lig4þ/þ) littermates. Data are expressed as means � SEM (B, C, E, and F). **P < 0.01,
***P < 0.001, and ****P < 0.0001 (two-way analysis of variance); yP < 0.05, yyP < 0.01 (one-way analysis of variance). Scale bars Z 1 mm (A, E14.5 brains);
2 mm (A, P8 and P28 brains).

Microcephaly in Ligase 4 Syndrome
for an unaffected age-matched female is 36.8 to 41.7 cm)
was obtained. The MRI confirmed microcephaly and
revealed no gross malformations, atrophy, or tissue loss
(Figure 1A). The sulci appeared relatively normal with no
enlargements, and the gyral pattern was not unaltered.

To gain more insight into LIG4 activity requirements
during maturation of the developing cortex, spatial distri-
bution in expression of machinery involved in DSB for-
mation and NHEJ DNA repair in developing human brain
cells was first examined (Figure 1B). Analysis of a single-
cell RNA sequencing data set from the developing human
brain at 16 to 18 weeks gestation24 demonstrated varying
expression levels of DSB repair genes in progenitors and
The American Journal of Pathology - ajp.amjpathol.org
newborn neurons. For example, TOP2B, a protein respon-
sible for regulating transcription through DSB induction in
gene promoter regions,27e29 was expressed most highly in
newborn neurons (Figure 1C). TP53-binding protein
1 (53BP1) plays a vital role in DSB repair pathway choice
by binding to DNA damage sites and recruiting additional
DNA repair proteins that block resection of the DNA ends,
which ultimately promotes the NHEJ pathway while pre-
venting homologous recombination (HR).30 Surprisingly,
53BP1 expression was slightly increased in radial glia
compared with neurons, but expressed throughout the
developing cortex (Figure 1C). However, BRCA1, which
antagonizes 53BP1 at DSB sites to inhibit NHEJ and
2443
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Figure 3 Lig4R/R mutation leads to increased cell death in newborn neurons during cerebral cortical development, contributing to microcephaly phenotype.
A and B: Cleaved caspase 3 (CC3, red) staining reveals increased cell death in Lig4R/R knock-in mice at E14.5. C and D: In the E14.5 dorsolateral cortex, increase
in CC3þ (red) cells primarily occurs in Tuj1þ (green) neurons in the cortical plate. E and F: CC3 (red) staining reveals a medial-to-lateral gradient of cell death
with the majority of CC3þ (red) cells in the lateral cortex. Cortex was divided into six evenly spaced bins for quantification in F. Data are expressed as
means � SEM. *P < 0.05, **P < 0.01 (unpaired, two-tailed t-test); yP < 0.05 (one-way analysis of variance). Scale bars: 50 mm (A); 100 mm (C and E).
L, lateral; M, medial.

Lun et al
promote HR,30 also showed increased expression in radial
glial progenitors in the developing human brain but was
virtually absent from neurons (Figure 1C). No difference in
expression levels of the core NHEJ machinery proteins
(Ku70, Ku80, Artemis, DNA-PKcs) was observed between
radial glia, intermediate progenitor cells, and neurons (data
not shown). Together, these data support the model that
although NHEJ-pathway genes are expressed throughout the
cortex, newborn neurons simultaneously have reduced
expression of genes important for HR, suggesting that these
cells likely heavily rely on NHEJ for DNA repair.

During peak neurogenesis in the developing mouse
cerebral cortex (E14.5), expression pattern and localization
of the NHEJ-specific machinery recapitulated what was
2444
observed in the human cerebral cortex. Top2b was robustly
expressed among neurons populating the developing
cortical plate compared with progenitors along the ventric-
ular zone (Figure 1D). 53bp1 expression was similarly
concentrated among Tuj1-positive neurons (Figure 1E),
whereas Brca1 expression was limited to progenitors in the
ventricular and subventricular zones (Figure 1F). This
increased expression of Brca1 in progenitor cells may be
due to its role in promoting HR (Figure 1B), its role in
regulation of cell cycle progression, particularly through S
and G2 phases,

31 or a combination of both. Taken together,
these data suggest that newborn cortical neurons may incur
Top2b-mediated endogenous DSBs, and regardless of
timing of DSB formation, any DSBs present in postmitotic
ajp.amjpathol.org - The American Journal of Pathology
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Figure 4 Lig4R/R mice maintain normal progenitor proliferation rate. A:
BrdU (red) and Ki-67 (green) colabeling in E14.5 dorsolateral cortex following
24-hour BrdU pulse. B: No change is observed in total number of BrdUþ cells in
the Lig4R/R knock-in cortex compared with wild-type (Lig4þ/þ). BrdUþ cells
were counted in a 200-mmewide region of the dorsolateral cortex. C: Quan-
tification of proliferative fraction in the dorsolateral cortex reveals increased
cell cycle re-entry of Lig4R/R neural progenitors. Proliferative fraction: BrdUþKi-
67þ cells/total Ki-67þ cells in 200-mmewide region. Data are expressed as
means � SEM. *P < 0.05 (unpaired two-tailed t-test). Scale barZ 100 mm.

Microcephaly in Ligase 4 Syndrome
neurons are preferentially repaired via NHEJ, a biological
process that is conserved across species and for which
enzymatically active LIG4 is vital.

Homozygosity for the hypomorphic LIG4 R278H
mutation in humans has been reported in a patient
with leukemia, increased cellular radiosensitivity, and
global developmental delay, but no obvious immunodefi-
ciency.10,19,20 In a knock-in mouse for the homozygous
Lig4 R278H mutation (Lig4R/R), the immune deficiency,
radiosensitivity, and developmental delay have been care-
fully characterized,21,32 but the brain phenotype, an impor-
tant component of this devastating syndrome, has remained
uncharacterized. No differences in overall brain size were
observed between Lig4R/R and wild-type mice at E14.5;
however, brain size was markedly reduced by P8
(Figure 2A). Brain weight and body weight were also
reduced by P8 in knock-in mice compared to wild-type and
heterozygous littermates (Figure 2, B and C). Although P8
is a postnatal age in mice, it corresponds to approximately
36 to 40 gestational weeks in human brain development,33

suggesting that the microcephaly observed at P8 Lig4R/R

mice pathologically recapitulates primary microcephaly in
patients. Additionally, the decreased brain weight of knock-
in mice at P8 was nonprogressive, as the brain weights of all
The American Journal of Pathology - ajp.amjpathol.org
three genotypes followed the same growth trajectory post-
natally until P28 (Figure 2B). At P28, Lig4R/R brains were
smaller than wild-type and heterozygous littermates
(Figure 2A). P28 cerebral cortical length and hemispheric
surface area were also reduced in Lig4R/R mice compared
with littermate controls (Figure 2, DeF). However, both P8
and P28 heterozygous brains were not microcephalic
compared with wild-type (Figure 2, B, D, and E), suggest-
ing that a single allele provides sufficient Lig4 expression
for relatively normal brain development. Overall, these
observations parallel findings from LIG4 syndrome patients,
of which 26 of 28 patients presented with primary,
nonprogressive microcephaly,13 suggesting that the mech-
anisms underlying the phenotype are activated primarily
during fetal development.

The microcephaly observed postnatally in mice as well as
in patients may be ascribed to decreased proliferation,
increased rate of differentiation, and/or increased cell death.
Peak neurogenesis in the mouse cerebral cortex occurs at
E14.5, when global Lig4�/� mice have been reported to
undergo extensive cell death.9,15 Although gross compari-
son of E14.5 embryos and brains from knock-in mice
revealed no differences in brain weight or body weight at
E14.5 (Figure 2, B and C), evidence of activated patho-
logical mechanisms at this early stage were still investi-
gated. Analyses of cleaved caspase 3 (CC3) expression in
E12.5, E14.5, and E16.5 cerebral cortices revealed a peak of
cell death at E14.5 in Lig4R/R mice compared with littermate
controls (Figure 3, A and B). No differences in cell death
between Lig4R/R mice and controls were observed at E12.5,
consistent with normal brain size early on in forebrain
development. By contrast, some cell death persisted at
E16.5 (Figure 3B). Many of the dying cells were positioned
in the developing cortical plate, and some retained Tuj1
expression (Figure 3, C and D). Most remarkably, the cell
death occurred in a sweeping medial-to-lateral gradient
across the cerebral cortex, with more cell death occurring
laterally (Figure 3, E and F). Together, these findings sug-
gest both temporal and spatial differences in vulnerability to
cell death with impaired Lig4 activity.

It was tested whether alterations in proliferation and cell
cycle exit may also contribute to the smaller brain pheno-
type by pairing a 24-hour BrdU pulse with Ki-67 immu-
nostaining (Figure 4A). Although no difference was
observed in total BrdUþ cells (Figure 4B), quantification of
the ratio of BrdUþ/Ki-67þ to total BrdUþ cells suggested a
modest increase in proliferative fraction in the E14.5 Lig4R/R

dorsolateral cortex compared with wild-type littermate
controls (Figure 4C). However, the cell death observed in
newborn neurons in Lig4R/R mice (Figure 3), which would
constitute the BrdUþKi-67� population, may confound this
type of analysis. Together, these results were interpreted to
indicate that the primary cause of microcephaly observed in
Lig4R/R mice is apoptotic cell death of newborn neurons.

It was next tested whether the enhanced cell death observed
in Lig4R/R mice during embryonic development altered later
2445
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Figure 5 P8 Lig4R/R mice show reduction in cortical thickness post-
natally with decreased cellularity but largely intact laminar architecture. A:
Staining with Cux1 (upper layers, red) and Ctip2 (lower layers, green) at P8
reveal intact lamination of the anterior dorsolateral cortex but overall
decrease in total number of cells across the entire thickness of the cortex in
Lig4R/R mice. B: No significant reduction in percentage of Cux1þ cells is
found in the anterior dorsolateral cortex of Lig4R/R mice at P8. C: Mild
reduction in percentage of Ctip2þ cells was found in bins 2 and 4 of the
anterior dorsolateral cortex of Lig4R/R mice at P8. D: Total cell number
decreases throughout the dorsolateral cortex of Lig4R/R mice at P8. Cortex
was divided into six evenly spaced bins for quantification in BeD. Data are
expressed as means � SEM. *P < 0.05, **P < 0.01 versus wild type control
(unpaired two-tailed t-test). Scale bar Z 100 mm.

Lun et al
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cortical lamination. Staining was performed for Cux1, which
marks the upper cortical layers II to IV,34,35 and Ctip2, which
labels subcortical projection neurons residing primarily in the
deep cortical layers,36,37 at P8, when cortical lamination is
complete. Cux1þ and Ctip2þ cells in the dorsolateral region of
the anterior cortex were quantified by partitioning the cortex
into six equally sized regions (bins), because cortical thickness
may vary across individual sections and samples (Figure 5A).
The percentages of Cux1þ cells in each bin were slightly, but
not significantly, reduced in Lig4R/Rmice comparedwith wild-
type littermate controls, whereas percentages of Ctip2þ cells
were decreased in Lig4R/R mice to a greater degree. A large
reduction in total number of nuclei across all bins was also
observed (n Z 5 from 2 litters) (Figure 5, BeD), Together,
these data indicate a reduction in the numbers of neurons
populating all layers of the cerebral cortex, with neurons of the
lower layers being more severely affected. No evidence of
disrupted migration was observed. Together, our findings
indicate that Lig4 activity is critical for maintaining cellular
health, particularly in a select subset of newborn neurons,
destined to populate the entire radial extent of the cerebral
cortex.
Discussion

Our work demonstrates that the Lig4R/R knock-in mouse
model recapitulates the primary, nonprogressive micro-
cephaly observed in human LIG4 syndrome. The micro-
cephaly can be attributed largely to a spatiotemporal
gradient of apoptotic neuronal cell death during critical
stages of cerebral cortical development. The selective
vulnerability of neurons to NHEJ DNA repair deficiency is
matched by expression levels of DNA repair machinery in
the developing mouse and human brain, in which post-
mitotic neurons have increased expression of NHEJ
machinery compared with proliferating radial glia and
intermediate progenitor cells.
Apoptosis likely serves a protective mechanism that aids

proper brain development by preventing neurons with
persistent DNA damage from integrating into brain cir-
cuitry.1 In the developing neocortex, a marked increase in
apoptosis was observed at E14.5, a time when layer IV
pyramidal neurons are being born and deeper layer V and VI
ajp.amjpathol.org - The American Journal of Pathology
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neurons are migrating to their final destinations in the
neocortex.38 Compared with these findings, Lig4Y288C mice
display a smaller brain, with thinner neural epithelium and
increased apoptosis in the ventricular, subventricular zones
and intermediate zones already at day E14.5 to E15.5,18

indicating an earlier and more severe impact of the
p.Y288C Lig4 variant. On the other hand, Lig4R/R mice
displayed increased 53BP1 expression in cortical neurons,
and a similar gradient (from lower to higher expression in
the ventricular, subventricular, intermediate zones and in the
cortical plate) had been previously reported in Lig4Y288C

mice,18 suggesting that in both strains, repair of DNA DSBs
by NHEJ occurs predominantly in nonreplicating cells.

Recent work has shown that neurons of different layers
differ in their activity patterns in response to stimulation,
with neurons of deeper layers activating gene expression
quickly but briefly.39 DSB generation may represent one
mechanism by which neurons can induce expression of
early response genes.5,6 Thus, it is likely that DSB for-
mation may play a role in facilitating the ability of these
deep-layer neurons to rapidly induce gene expression,
which may selectively predispose this neuronal population
to apoptotic cell death in the absence of DNA repair
machinery. This hypothesis is consistent with our obser-
vation that, though Lig4R/R mice suffer loss of neurons
throughout the cortex, the Ctip2þ deep-layer neurons
were disproportionately affected (Figure 5C). Production
of reactive oxygen species provides another interesting
hypothesis for the particular susceptibility of Lig4-defi-
cient deep-layer neurons to apoptosis. Reactive oxygen
species are known to both induce DSBs40 and play
physiological roles in neuronal differentiation, maturation,
and plasticity.41 It remains to be determined whether
neurons born at different times and destined for different
cortical layers have varying metabolic demands that may
result in the differential production of reactive oxygen
species, ultimately leading to apoptosis in the absence of
sufficient NHEJ.

Though an increase was observed in cell death in neurons
destined for lower layers, many neurons in these layers
nevertheless survive. Paired with the observed spatiotem-
poral gradient of cell death, these data raise intriguing
questions regarding cell vulnerability. Both Lig4 splice
variants contain the full coding region of the gene, including
the portion manipulated in the Lig4R/R mouse, suggesting
that differential expression of Lig4 isoforms is not likely
the cause of the observed gradient of apoptosis across
neurons of the developing cortex. However, many questions
remain regarding both differential susceptibility to DNA
damage under homeostatic conditions as well as the
ability of surviving neurons to employ alternative, nonca-
nonical DNA repair mechanisms that do not require Lig4,
such as microhomology-mediated end joining.42 Future
studies should focus on these selectively vulnerable neu-
ronal populations to begin to unravel the molecular patho-
genesis of Lig4 syndrome. High-throughput, genome-wide,
The American Journal of Pathology - ajp.amjpathol.org
translocation sequencing, a technique widely used in
cancerous cells43,44 and recently used in cultured neural
progenitor cells,3,4 may prove useful for identifying
genomic locations of endogenous DSBs in vivo in the
developing central nervous system.

Beyond genetic contributions to microcephaly, environ-
mental triggers, including viral infections (eg, Zika and
Dengue viruses), have suggested up-regulation of DNA
repair pathway machinery.45,46 The Lig4R/R mouse may,
therefore, serve as an ideal model for investigating and
therapeutically combating microcephaly pathogenesis in a
variety of contexts.
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