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Abstract

The evolutionary processes that drive universal therapeutic resistance in adult patients with diffuse 

glioma remain unclear1,2. Here, we analyzed temporally separated DNA sequencing data and 

matched clinical annotation from 222 patients with glioma. Through mutational and copy number 

analyses across the three major subtypes of diffuse glioma, we observed that driver genes detected 

at initial disease were retained at recurrence, while there was little evidence of recurrence-specific 

gene alterations. Treatment with alkylating-agents resulted in a hypermutator phenotype at 

different rates across glioma subtypes, and hypermutation was not associated with differences in 

survival. Acquired aneuploidy was frequently detected in recurrent gliomas characterized by 

presence of an IDH mutation but without 1p/19q codeletion and further converged with acquired 

cell cycle alterations and poor outcomes. We show that the clonal architecture of each tumor 

remains similar over time and that absence of clonal selection was associated with increased 

survival. Finally, we did not observe differences in immunoediting levels between initial and 

recurrent glioma. Our results collectively argue that the strongest selective pressures occur early 

during glioma development and that current therapies shape this evolution in a largely stochastic 

manner.

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
¥Correspondence to roel.verhaak@jax.org.
CONTRIBUTIONS
D.M.A., D.A., P.B., J.S.B., R.B., C.B., P.K.B., D.J.B., A.B., A.C., E.J.C., J.C., G.F., M.N.F., Antonio I., M.D.J., M.K., P.S.L., M.L., 
P.L., K.L.L., T.M.M., A.M.M., D.N., N.N., H.N., C.Y.N., S.P.N., Houtan N., D.R.O., C.P., L.M.P., G.R., B.R., J.K.S., S.C.S., A.E.S., 
M.S., L.F.S., H.S., E.G.V.M., C.W., M.W., G.W., A.W., contributed to sample acquisition and processing, sequencing data 
coordination was performed by H.K, F.P.B and K.C.J., and clinical data coordination by A.D.M., and O.A.. Data analysis was led by 
F.P.B. and K.C.J. in collaboration with S.B.A., P.B., B.C., J.H.C., H.K., E.K, T.M.M., H.N., J.N., M.S., L.F.S., G.T., F.S.V. and 
R.G.W.V.. Clinical analysis was performed by A.D.M., L.M.P., and C.W.. Pathology review was completed, in part, by Aruna 
Chakrabarty, J.T.H., Azzam Ismail., and A.W.. F.P.B., K.C.J., A.D.M., F.S.V., and R.G.W.V. wrote the manuscript. K.D.A. and J.F.D. 
took charge in coordinating GLASS-MDACC; L.F.S. was the lead coordinator of the GLASS-Leeds cohort and B.A.W. of GLASS-
Netherlands. R.G.W.V was the project lead and coordinator. Funding for the project was received by K.D.A., E.B.C., H.G., J.T.H., 
S.C.S., L.F.S.. All co-authors discussed the results and commented on the manuscript and Supplementary Information.

CONFLICTS OF INTEREST
R.G.W.V. declares equity in Boundless Bio, Inc. M.K. receives research grants from BMS and ABBVie. P.K.B. is a consultant for 
Lilly, Genentech-Roche, Angiochem and Tesaro. P.K.B. receives institutional funding from Merck and Pfizer and honoraria from 
Merch and Genentech-Roche. W.K.A.Y serves in a consulting or advisory role at DNAtrix Therapeutics. M.W. receives funding from 
Acceleron, Actelion, Bayer, Isarna, Merck, Sharp & Dohme, Merck (EMD, Darmstadt), Novocure, OGD2, Pigur and Roche as well as 
honoraria from BMS, Celldex, Immunocellular Therapeutics, Isarna, Magforce, Merck, Sharp & Dohme, Merck (EMD, Darmstadt), 
Northwest Biotherapeutics, Novocure, Pfizer, Roche, Teva and Tocagen. G.R. receives funding from Roche and Merck (EMD, 
Darmstadt) as well as honoraria from AbbVie. M.S. is a central reviewer for Parexel Ltd and honoraria are paid to the institution. G.T. 
reports personal fees from Bristol-Myers-Squibb, personal fees from AbbVie, personal fees from Novocure, personal fees from 
Medac, travel grants from Bristol-Myers-Squibb, education grants from Novocure, research grants from Roche Diagnostics, research 
grants from Medac, membership in the National Steering board of the TIGER NIS (Novocure) and the International Steering board of 
the ON-TRK NIS (Bayer).

HHS Public Access
Author manuscript
Nature. Author manuscript; available in PMC 2020 May 20.

Published in final edited form as:
Nature. 2019 December ; 576(7785): 112–120. doi:10.1038/s41586-019-1775-1.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

Diffuse glioma is the most common malignant brain tumor in adults and invariably relapse 

despite treatment with surgery, radiotherapy, and chemotherapy. The molecular landscape of 

glioma at diagnosis has been extensively characterized 3-9. While these efforts have led to 

the identification of driver genes and clinically relevant subtypes10,11, it is unknown how the 

glioma genetic landscape evolves over time and in response to therapy.

Intratumoral heterogeneity is a well-recognized characteristic of gliomas and results from 

selective pressures such as a limited availability of nutrients, clonal competition, and 

treatment12-15. Tumors are thought to circumvent these growth bottlenecks via dynamic 

competition of subclones resulting in the most favorable environment for tumor sustenance1. 

Recent studies have suggested that stochastic changes in clone frequency (i.e. neutral 

evolution) and immunogenic surveillance may further contribute to the observed 

intratumoral heterogeneity1617. An understanding of evolutionary dynamics at multiple time 

points is needed to develop strategies aimed at delaying or preventing the onset of tumor 

progression.

To investigate clonal dynamics over time and in response to therapeutic pressures, we 

established the Glioma Longitudinal Analysis (GLASS) Consortium. GLASS is a 

community-driven effort that seeks to overcome the logistical challenges in constructing 

adequately powered longitudinal genomic glioma datasets by pooling datasets from patients 

treated at institutions worldwide 18. We have analyzed longitudinal profiles across the three 

molecular glioma subtypes to identify the molecular processes active at initial and recurrent 

time points. These analyses identified few common features of glioma evolution across 

subtypes, and instead pointed toward highly variable and patient-specific trajectories of 

genomic alterations.

RESULTS

GLASS cohort

We pooled existing and newly generated longitudinal DNA sequencing datasets from 288 

patients treated at 35 hospitals (Supplementary Table 1, Extended Data Fig. 1). After 

applying quality filters, tumor samples from 222 patients with high-quality data in at least 

two time points were classified according to molecular markers into three major glioma 

subtypes: 1. IDH-mutant and chromosome 1p/19q co-deleted (IDHmutant-codel; n = 25) 2. 

IDH-mutant without chromosome 1p/19q codeletion (IDHmutant-noncodel; n = 63) and 3. 

IDH wild type (IDHwt; n = 134), in alignment with the World Health Organization 

classification of Central Nervous System tumors 10,11. For each patient we selected two 

time-separated tumor samples, henceforth initial and recurrence, for further analysis.

Mutational burdens and processes over time

We first evaluated temporal changes in mutational burden and processes to understand 

general patterns of glioma evolution. Mutation burdens in initial tumors were comparable 

with previously reported rates 6,7,19. 2.20 mutations (single-nucleotide variants and small 

insertions/deletions) per Megabase (Mutations/Mb) for IDHmutant-codels; 2.52 
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Mutations/Mb for IDHmutant-noncodels; and 2.85 Mutations/Mb for IDHwt glioma (Fig. 

1a; Extended Data Fig. 2a). Excluding DNA hypermutation cases (> 10 Mutations/Mb, n = 

35), the mutation burden increased after recurrence in 70% of the cohort (Extended Data 

Fig. 2a). To study changes during tumor progression, we separated mutations into three 

fractions: initial only, recurrence only, or shared. Interestingly, private fraction but not shared 

fraction mutation burdens were comparable between subtypes (Extended Data Fig. 2b). 

Patient age at diagnosis was significantly associated with the shared mutational burden and 

to a lesser extent the mutation burden private to the initial tumor (Extended Data Fig. 2c). 

On average, tumors with longer time to recurrence had slightly higher mutation burdens 

(Extended Data Fig. 2d).

These fraction-specific differences in mutation burden suggested that the activity of distinct 

mutational processes may also be time-dependent. We therefore classified mutations in each 

fraction according to the Catalogue of Somatic Mutations in Cancer (COSMIC) signature 

database20. As expected, signature activity was closely related to subtype and fraction (Fig. 

1b, Extended Data Fig. 3a). Signature 1 (aging) was nearly always the dominant signature 

amongst shared mutations in IDHwt tumors, whereas the shared fraction in IDHmut-

noncodel and IDHmut-codel tumors - tumor subtypes associated with a younger age of 

diagnosis - additionally showed a strong presence of signature 16 (unknown etiology). 

Signatures 3 (double strand break repair) and 15 (mismatch repair) along with signature 8 

(unknown etiology) were mostly confined to the private fractions, suggesting that these 

processes were of lesser importance to tumor maintenance than those associated with aging.

Treatment of glioma includes alkylating agents that can induce post-treatment 

hypermutation21-23. We observed enrichment of the associated signature 11 in recurrent 

tumors with a mutational load exceeding 10 Mutations/Mb and treated with alkylating 

agents (Fig. 1a, Extended Data Fig. 3b). Treatment-associated hypermutation occurred most 

frequently among IDHmutant-noncodels (47%), followed by IDHmutant-codels (25%), and 

IDHwt gliomas (16%) (Fig. 1c). The difference in the proportion of hypermutation events 

was significantly different between the three glioma subtypes (Fisher’s exact-test P = 

2.0e-03), suggesting that IDHmutant noncodels are most sensitive to developing a 

hypermutator phenotype 24.

Treatment-induced hypermutation has been associated with disease progression23. We did 

not find overall survival differences between alkylating agent-treated hypermutators and 

alkylating agent-treated non-hypermutators independent of age, subtype, and MGMT 
methylation status (Fig. 1d, Supplementary Table 2a-b). In order to further assess the 

pathogenicity of acquired mutations, we studied their clonality25. Newly acquired clonal 

mutations have penetrated most of the tumor (i.e., a selective sweep) between initial and 

recurrence and mark clonal expansion 26. Conversely, acquired subclonal mutations are less 

prevalent, and therefore less likely to drive disease progression. Previous reports have 

suggested that alkylating agent-associated mutations hypermutation are frequently clonal27. 

We found that in 48% of hypermutated tumors a majority of the recurrence-only mutations 

were clonal, potentially reflecting cases where a selective sweep occurred (Extended Data 

Fig. 4a). However, IDHmut-noncodel hypermutators with predominantly clonal mutations 

did not show differences in survival compared with those harboring predominantly subclonal 
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mutations (log-rank test P = 0.38, Extended Data Fig. 4b). Alkylating agents such as 

temozolomide prolong survival of adult patients with glioma28,29. Our results show that 

treatment-induced hypermutation is common across subtypes and does not associate with a 

reduced overall survival supporting the noted benefit of alkylating agent therapy.

Selective pressures during glioma evolution

Environmental and treatment-induced pressures may drive changes in clonal architecture at 

recurrence. To evaluate selection over time we clustered copy number changes and 

mutations based on their cancer cell fraction (CCF). CCF values represent the fraction of 

cancer cells harboring a given alteration and reflect the relative timing of events, since 

alterations that are present in a subset of cancer cells likely occurred later than events present 

in all cancer cells (Fig. 2a). Most tumors (84%) demonstrated a mutational cluster with CCF 

> 50% that persisted from the initial tumor into recurrence, likely reflecting the tumor trunk 

and harboring the tumor-initiating driver mutations (Fig. 2b, Extended Data Fig. 5a)30. To 

determine changes in clonal dominance over time we ranked clusters within each sample by 

their CCF and found similarities in clonal architecture throughout the course of disease 

(Kendall rank correlation, tau = 0.20, P = 3.76E-24, Fig. 2b, Extended Data Fig. 5b-d). 

These results suggested that the clonal structure at initial disease mostly persisted into 

recurrence.

To deepen our assessment of selective pressures, we evaluated selection in initial and 

recurrent tumors by determining the normalized ratio between non-synonymous and 

synonymous mutations (dNdScv). Higher ratios (> 1) suggest positive selection, and ratios 

less than one suggest negative selection . We found evidence for positive selection at both 

time points despite differences between subtypes (Fig. 2c). Separating mutations into 

mutational fractions demonstrated that shared but not private mutations showed positive 

dN/dS ratios in all three glioma subtypes indicating that only shared mutations (including 

truncal mutations) are likely subject to positive selection (Fig. 2c). The dN/dS ratio of 

initial-only mutations showed that these are neither positively nor negatively selected for, 

while recurrence-only mutations were subject to negative selection in IDHwt.

To verify the reduced selective pressure in the private mutations we used an orthogonal 

method to test for evidence of selection (neutralitytestr)31. The method uses variant allele 

frequency distributions and estimated mutation rates to detect whether profiles significantly 

deviate from a model of neutral evolution (i.e. as depicted by a linear relationship in Fig. 

2d). In accordance with dNdScv results, private mutations demonstrated dynamics consistent 

with neutral evolution (Fig. 2d). Shared subclonal mutations deviated from linearity and 

were consistent with selection both in non-hypermutators and hypermutators (Fig. 2d, 

Extended Data Fig. 6a-b), providing additional evidence that the strongest selective forces 

occur early in gliomagenesis.

Cohort-level analysis of selection masks the heterogeneity that exists in individual 

evolutionary trajectories. To determine the selective effects at each tumor time point we used 

a Bayesian framework (SubClonalSelection) which simultaneously provides sample-specific 

probabilities for both selection and neutrality while modeling sources of noise in sequencing 

data. The classification of a sample as “selection” or “neutral” is determined by whichever 
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model has the greater probability. Classification as “neutral” reflects the accumulation of 

random mutations that are not subject to selection. Given the stringent algorithm 

requirements, 183 patients were included in this analysis with at least one time point, and 

104 patients with both time points (16 IDHmutant-codels, 29 IDHmutant-noncodels, 59 

IDHwt, Supplementary Table 3). Neutral to neutral was the most common evolutionary 

trajectory across all three subtypes (52%), and IDHwt tumors displayed the highest observed 

selection at any time point with selection detected in 64% of tumors (Fisher’s exact test P = 

0.01, Fig. 2e, Supplementary Table 3). IDHwt gliomas with evidence for selection at 

recurrence had a shorter overall survival than IDHwt gliomas classified as neutral at 

recurrence (P = 2.7E-02; log-rank statistic, Fig. 2f), suggesting that subclonal competition 

associates with more aggressive tumor behavior. To address the limitations of smaller 

sample sizes in the IDH-mutant subtypes, we performed a Cox proportional hazards model 

including age at first diagnosis, all three glioma subtypes, and mode of selection at 

recurrence. This analysis revealed that selection at recurrence was significantly associated 

with shorter survival across subtypes (HR = 1.53 95% CI 1.00–2.41, P = 4.8E-02, 

Supplementary Table 4). We next investigated whether radiation and chemotherapy imposed 

a selective effect, by comparing the evolutionary status at recurrence with treatment and 

other clinical variables. We did not observe significant associations between subclonal 

selection and radiation therapy or chemotherapy (Fisher’s exact-test P > 0.05, 

Supplementary Table 5), suggesting that standard therapeutic approaches for glioma have 

limited impact on the subclonal tumor architecture. While high-depth sequencing datasets 

may be required to detect subtle selective effects26, our analyses raise the possibility that the 

survival benefit derived from standard chemoradiation results from tumor cell elimination 

where treatment sensitivity of individual cells is not determined by genetic factors.

Driver alteration frequencies across time

We evaluated how stability, acquisition, and loss of mutation and copy number drivers6 over 

time impact glioma evolution. We used dNdScv to nominate 12 candidate mutation driver 

genes at both time points (Q < 0.05, Fig. 3a, Extended Data Fig. 7a) and determined 

significant copy number alterations that recapitulated previously identified drivers (Extended 

Data Fig. 7b). Mutations in IDH1 and co-occurring 1p/19q chromosome-arm loss have been 

suggested as glioma-initiating events1, which was corroborated by the observation that these 

events were never lost or acquired during the surgical interval (Fig. 3a, Extended Data Fig. 

8a). Similarly, we observed that TERT promoter mutations were almost always shared in the 

IDHmutant-codel and IDHwt, though many samples lacked sufficient coverage in this GC-

rich region. Chromosome 7 gains and chromosome 10 losses were present in a large 

majority of IDHwt initial tumors and persisted into recurrence.

Shifts in the fraction of cancer cells harboring an event may also indicate a time dependency 

of drivers. We determined changes in cellular prevalence of shared driver events by ordering 

events in each sample by their CCF (Extended Data Fig. 9). ATRX mutations in IDHmutant-

noncodel initial tumors demonstrated lower CCFs than TP53 (P = 0.03) and IDH1 (P = 0.10) 

mutations, suggesting IDH1 and TP53 mutations precede ATRX inactivation1. There was no 

difference in CCF between IDH1 and TP53 amongst initial gliomas (P = 0.98), however, 

IDH1 mutations demonstrated significantly lower CCFs compared with TP53 (P = 0.0018) 
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in recurrent gliomas. We did not observe any CCF differences among driver mutations 

detected in IDHwt tumors at either time point. Chromosome 10 deletion CCFs were higher 

compared to chromosome 7 amplifications (P = 0.0036) implying that chromosome 10 

deletions arise earlier 32. Similarly, there was no difference in CCF between CDKN2A 
deletion and EGFR amplification (P = 0.70). EGFR and chromosomal arm events 

significantly differed (i.e. 10p del vs EGFR amp, P = 0.0019) but not CDKN2A deletion and 

chromosomal events (i.e. 10p del vs CDKN2A del, P = 0.33). The consistently high CCF for 

EGFR amplifications could indicate that these events precede even some larger 

chromosomal aberrations, while not excluding the possibility that high levels of 

extrachromosomal EGFR 33 artificially inflate CCF.

Longitudinal changes in CCF values provide additional insights into evolutionary dynamics. 

For instance, the CCF value may increase when a driver event is linked to clonal expansion, 

or conversely, decrease when a clone is outcompeted. Most individual drivers did not 

demonstrate significant consistent CCF changes between the initial tumor and recurrence 

(Extended Data Fig. 10a). A notable exception was the TP53 mutation CCF that increased 

over time (P = 0.037) in IDHmut-noncodels, but not IDHwt gliomas (P = 0.13, Extended 

Data Fig. 10b). We did not observe any differences in IDH1 CCF over time among IDHmut-

noncodel tumors, possibly because the general trend of these tumors to increase in CCF is 

counteracted by the biological loss of relevance of mutant IDH1 over time (Extended Data 

Fig. 10c). Indeed, a gross comparison of all shared mutation CCFs revealed an increase in 

recurrent IDHmut-noncodel tumors (P < 0.0001), which may reflect increased clonality and 

a reduction in intratumoral heterogeneity (Extended Data Fig. 10d). In contrast, shared CCFs 

decreased in IDHwt tumors, potentially indicating a general increase in intratumoral 

heterogeneity at recurrence (P < 0.0001, Extended Data Fig. 10d). We confirmed that 

IDHmutant-noncodel CCF increases and IDHwt decreases were not biased by patients with 

high mutation burden through the classification of patient-specific shared mutation CCF 

change (Extended Data Fig. 10e).

We next investigated whether specific somatic alterations were acquired or lost over time. 

Gene-specific enrichment of many recurrence-only mutations was found in hypermutated 

tumors, but there was no enrichment for somatic gene alterations in non-hypermutators 

suggesting that glioma recurrence is not directed by particular sets of mutations (Extended 

Data Fig. 8b). Within subtypes we detected an enrichment in CDKN2A homozygous 

deletions (Fig. 3a, Extended Data Fig. 8a) in recurrent IDHmutant-noncodels, which was 

corroborated by additional cell cycle gene alterations (focal gain of CCND2, CDK4, CDK6, 

and mutation or homozygous loss of RB1). Mutations in cell cycle checkpoint control genes 

are associated with genomic instability 34. Therefore, we analyzed aneuploidy levels by 

determining the proportion of the genome that had undergone aneuploidy events (Extended 

Data Fig. 11a-b). We observed that IDHmutant-noncodel tumors had a higher level of 

aneuploidy at recurrence (Wilcoxon rank sum test P = 1.4E-06 total aneuploidy, p = 8.6E-03 

arm-level aneuploidy, Extended Data Fig. 11c-d) with tumors carrying acquired cell cycle 

gene alterations displaying the largest increases in aneuploidy (P = 7.6E-06; Wilcoxon rank 

sum test, Fig. 3b). We reasoned that CDKN2A deletions may precede aneuploidy. 

Homozygous CDKN2A deletions had significantly higher CCFs compared to average CNV 

CCF across the genome (as a surrogate for aneuploidy related copy number changes), 
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suggesting that CDKN2A loss occurred prior to aneuploidy (Fig. 3c). These alterations may 

hasten disease progression as patients with either cell cycle alterations or the largest 

increases in aneuploidy at recurrence demonstrated significantly shorter survival than 

patients without these alterations (log-rank test P < 0.0001, Fig. 3d). Taken together, the 

persistence of drivers over time and the paucity of consistent change imply that therapy does 

not result in selection of specific sets of molecular changes.

Immunoediting activity in glioma

We next investigated how the immune microenvironment affects evolutionary trajectories. 

The immune system may prune tumor cells carrying immunogenic (neo-)antigens, resulting 

in the selection of subclones capable of evading the immune response. Evidence of this 

immunoediting process has been shown in several cancer types, including glioma 35-38, and 

suggests active immunosurveillance that may be therapeutically exploited 39. We 

computationally predicted neoantigen-causing mutations40. As expected, the neoantigen 

load across the GLASS cohort was strongly correlated with exonic mutation burden 

(Spearman’s Rho = 0.89), with 42% of nonsynonymous exonic mutations giving rise to 

neoantigens on average. This fraction did not significantly differ by glioma subtype or 

between initial and recurrent tumors (P > 0.05, Wilcoxon rank-sum test; Fig. 4a). The most 

common neoantigen arose from the clonal R132H mutation in IDH1 and was present in of 

22 out of 88 IDH-mutant initial and recurrent tumors. Beyond mutations in IDH1, no 

mutations gave rise to a neoantigen found in more than three tumors at a given timepoint 

(Supplementary Table 6). Across the dataset, neoantigens and non-immunogenic mutations 

exhibited similar changes in cancer cell fractions between initial and recurrent tumors 

indicating a lack of neoantigen-specific selection processes over time (Extended Data Fig. 

12a).

We then examined the extent to which immunoediting occurred by comparing each sample’s 

observed neoantigen rate to an expected rate that was empirically derived from our dataset. 

The output of this approach is a normally distributed set of ratios centered at 1. Samples 

with an observed-to-expected neoantigen ratio < 1 exhibit evidence of neoantigen depletion 

relative to the rest of the dataset, and thus are more likely to have been immunoedited. We 

found that none of the three glioma subtypes harbored observed-to-expected ratios that 

significantly differed from 1 (P > 0.05, one sample t-test), though IDHwt tumors exhibited 

significantly lower scores compared to IDHmut-noncodels (t-test, P = 0.04; Fig. 4b). We 

additionally did not observe an association between the observed-to-expected ratio and 

survival when adjusting for subtype and age (Wald test, P > 0.05), nor was there a difference 

between samples with neutral evolution dynamics compared to those exhibiting evidence of 

subclonal selection. When comparing samples longitudinally, we found that the observed-to-

expected neoantigen ratio was strongly correlated between initial and recurrent tumors of 

each patient (Pearson’s R = 0.73, P = 5E-38), suggesting that the neoantigen depletion level 

in the recurrence reflects that of the initial tumor (Fig. 4c).

Immunoediting is most likely to take place in the tumors with high cytolytic activity and low 

levels of immunosuppressive activity38. Hypermutators, which have high neoantigen loads, 

have previously been associated with highly cytolytic microenvironments 37. However, we 
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did not observe any differences in the observed-to-expected neoantigen ratio between 

hypermutated recurrent tumors and their initial counterparts, nor did we observe differences 

between hypermutated and non-hypermutated recurrent tumors, indicating that 

immunoediting activity is not related to the total number of mutations in a sample (Wilcoxon 

rank-sum test P > 0.05; Extended Data Fig. 12b). To more directly determine whether there 

were immunologic factors associated with neoantigen depletion, we analyzed CIBERSORT 

immune cell fractions from a subset of samples that had undergone expression profiling in a 

previous study (n = 84 from 42 tumor pairs) 37,41. Initial tumors with an observed-to-

expected neoantigen ratio >1 exhibited significantly higher levels of CD4+ T cells than those 

with a ratio < 1, while recurrent tumors with a ratio > 1 exhibited significantly higher levels 

of macrophages, neutrophils, and significantly lower levels of plasma cells relative to those 

with ratio < 1 (P < 0.05, Wilcoxon rank-sum test; Extended Data Fig. 12c).

While we did not detect many factors associated with the observed-to-expected neoantigen 

ratio, we did observe that the ratio was significantly associated with the total number of 

unique HLA loci in a patient (Spearman’s Rho = 0.28, P = 2E-9), reflecting similar findings 

in lung cancer42. This may bias analyses comparing the ratio across patients. To determine 

whether immunoediting varies over time in a patient-agnostic manner, we compared the 

observed-to-expected neoantigen ratio derived from a sample’s clonal mutations, which 

likely arose earlier in tumor evolution, to that derived from their subclonal mutations, which 

likely arose later. We did not observe a significant difference in the observed-to-expected 

neoantigen ratio of each patient’s clonal and subclonal neoantigens, regardless of glioma 

subtype or whether the sample was an initial tumor or recurrence (P > 0.05, paired t-test; 

Fig. 4d). Together, these analyses suggest that neoantigens in glioma are not exposed to 

differing levels of selective pressure throughout their development.

DISCUSSION

We reconstructed the evolutionary trajectories of 222 patients with glioma to better 

understand treatment failures and tumor progression. The longitudinal molecular profiles 

revealed common features such as acquired hypermutation and aneuploidy, but highlighted 

the individualistic paths of post-treatment glioma evolution. Our results provide evidence 

that current standard of care therapies do not frequently coerce glioma down predictable 

paths. Instead, an unexpected number of gliomas appeared to stochastically evolve following 

early driver events. We expect that continuing to profile patient tumors over time using 

comprehensive sequencing approaches will identify additional common evolutionary paths. 

Our results here highlight the exciting prospects of several ongoing efforts that may inform 

new glioma therapies.

The observation that treatment-induced hypermutation occurred across subtypes, but did not 

confer a detrimental effect on patient survival leaves the clinical significance of glioma 

hypermutation uncertain21-24,27. Future analyses that consider the number of therapy cycles 

and MGMT DNA methylation status will help to elucidate factors that predispose tumors to 

hypermutation and identify therapies that effectively exploit this phenotype’s vulnerabilities 

(e.g., high mutation burden). Acquired cell cycle alterations and aneuploidy in recurrent 

IDHmut-noncodel gliomas also provide a rationale to target these more aggressive 
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phenotypes with CDK inhibitors43 or with compounds that disrupt microtubule dynamics44. 

Finally, our analyses revealed that immunoediting activity does not vary in glioma over time, 

though we did observe variation between individual patients. Additional molecular and 

immunological data are needed to fully understand the impact this variability has on glioma 

evolution and to devise therapies directed at a glioma’s immunogenicity17. To this end, we 

found that clonal neoantigens arising from the IDH1 R132H mutation persisted from the 

initial tumor into the recurrence, justifying neoantigen vaccine approaches as treatments for 

initial and recurrent glioma45,46.

Collectively, these findings help shape our perspective on what constitutes an optimal 

treatment, and what approaches would result in the greatest removal or killing of glioma 

cells possible. Genomic characterization efforts such as TCGA have greatly increased our 

understanding of glioma biology, but were limited to a single snapshot in evolutionary time. 

The GLASS resource provides a framework to study the patterns of glioma evolution and 

treatment response.

Methods

Data reporting

No statistical methods were used to predetermine sample size.

DNA sequencing and data collection

The GLASS dataset consists of both unpublished and published sequencing data as outlined 

in Supplementary Table 1. Among the cohort were exomes from 436 glioma samples (200 

patients), whole-genome from 165 glioma samples (78 patients), with overlapping exome/

whole-genome data on 78 glioma samples (38 patients). A matching germline sequence was 

available for all patients. The dataset includes 257 sets of at least two time-separated tumor 

samples, seventeen standalone recurrences, and 19 patients with at least two geographically 

distinct tumor portions. More specifically, the dataset includes exome or whole-genome 

sequencing data on 211 primary gliomas, 234 first recurrences, 32 second recurrences, 11 

third recurrences and one fourth recurrence (Supplementary Table 7).

Newly generated whole genome sequencing data for the Chinese University of Hong Kong 

(HK), Northern Sydney Cancer Centre (NS) and MD Anderson Cancer Center (MD) cohorts 

were subjected to 150 base paired-end sequencing. The HK samples were sequenced using a 

HiSeqX while the NS and MD cohorts were sequenced using a NovaSeq according to 

Illumina’s protocols. Whole exome capture was performed using the following platforms as 

reported in previous publications. Agilent SureSelect Human All Exon 50Mb capture kit 

was used for patients SF-0001- SF-0021, Agilent SureSelect Human All Exon V4 capture 

kit was used for patients SF-0024 – SF-0029 in the UC San Francisco cohort. Agilent 

SureSelect Human All Exon v4 or v5 was used to capture samples in the Kyoto University 

cohort. Samsung Medical Center cohort reported using Agilent SureSelect kit for patients 

SM-R056 – SM-R071, SM-R075, SM-R076, SM-R095- SM-R114 while Illumina TruSeq 

Exome-capture kit was used for patient SM-R072. Exome capture was performed using 

Agilent SureSelect Human All Exon 50 Mb in The Cancer Genome Atlas (TCGA)-GBM 
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cohort and Agilent SureSelect Human All Exon v2.0, 44Mb kit in the TCGA-LGG cohort. 

Columbia University cases were captured using Agilent V3 50M kit, sequencing 90bp PE 

for samples R009-TP, R009R1, R011TP, R011R1, R014TP, R014R1, R017-R1, R018-R1, 

R019-R1. Mapping files of initial tumor and normal samples of patients R017 – R019 were 

obtained from TCGA through CG-hub. All other samples were captured using Agilent 

SureSelect XT Human All Exon v4 Kit, PE, 80M reads, 150X on target coverage. Samples 

in the Henry Ford Hospital cohort were multiplexed and sequenced using Illumina HiSeq 

2000 by the Sequencing and Microarray Facility at an average target exome coverage of 

100× using 76-bp paired-end reads. Samples in the HK cohort were subjected to 75 base 

paired-end sequencing for HK-0001 – HK-0004 as performed NextSeq in high output mode. 

In the Leeds Cohort (LU) SureSelectXT V5 kit (PE100) was used to construct exome 

libraries. Illumina TruSeq Exome capture kit was used for samples at the Medical University 

of Vienna – CeMM.

GLASS identifiers

A GLASS barcode system was created, based on TCGA barcode design, in an effort to de-

identify patient information and provide an organized framework for the different pieces of 

the dataset.

GLASS barcodes are composed of 24 characters. The first four characters specify the project 

(either GLSS or TCGA). All datasets submitted to the GLASS consortium, published and 

unpublished, were given the GLSS project ID. Samples that were part of the TCGA cohorts 

(TCGA GBM and TCGA LGG) were given a TCGA designation. The next two characters 

designate the center where the samples were either acquired or sequenced (Supplementary 

Table 7). This is followed by the four-character center specific patient identification that was 

kept as close as possible to the patient identification provided by the collaborators to allow a 

simplified trace back process. Patient data is divided by a relative sample type, such as initial 

tumor (TP), recurrent tumor (R1), normal tissue (NB, NM, etc), or metastatic tumor sample 

(M1). If there was more than one recurrence the relative number was specified following 

“R”. Some patients had surgeries for which a biospecimen was unavailable. Thus, a surgical 

number was also provided to indicate temporal ordering (Supplementary Table 8). To 

include spatially separated samples the portion designation was added, which is followed by 

one character specifying the type of analyte, either DNA (D) or RNA (R). As there is 

variation in the sequencing analysis, a three-character designation represents either whole 

genome (WGS) or whole exome sequencing (WXS). The last part of the GLASS barcode is 

a six-character designation unique to each barcode that was randomly generated.

Computational pipelines

All pipelines were developed using snakemake 5.2.2 47. Unless otherwise stated, all tools 

mentioned are part of the GATK 4 suite 48. All data was collected at a central location (The 

Jackson Laboratory) and was analyzed using homogenous pipelines capable of processing 

both raw fastq files as well as re-process previously analyzed bam files.
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Alignment and pre-processing

Data pre-processing was conducted in accordance to the GATK Best Practices using GATK 

4.0.10.1. Briefly, aligned BAM files were separated by read group, sanitized and stripped of 

alignments and attributes using ‘RevertSam’, giving one unaligned BAM (uBAM) file per 

readgroup. Uniform readgroups were assigned to uBAM files using 

‘AddOrReplaceReadgroups’. Similarly, unaligned fastq files were assigned uniformly 

designated readgroup attributes and converted to uBAM format using ‘FastqToSam’. uBAM 

files underwent quality control using ‘FastQC 0.11.7’. Sequencing adapters were marked 

using ‘MarkIlluminaAdapters’. uBAM files were finally reverted to interleaved fastq format 

using ‘SamToFastq’, aligned to the b37 genome (‘human_g1k_v37_decoy’) using ‘BWA 

MEM 0.7.17’, attributes were restored using ‘MergeBamAlignment’. ‘MarkDuplicates’ was 

then used to merge aligned BAM files from multiple readgroups and to mark PCR and 

optical duplicates across identical sequencing libraries. Lastly, base recalibration was 

performed using ‘BaseRecalibrator’ followed by ‘ApplyBQSR’. Coverage statistics were 

gathered using ‘CollectWgsMetrics’. Alignment QC was performed running 

‘ValidateSamFile’ on the final BAM file and QC results were inspected using ‘MultiQC 

1.6a0’ 49. A haplotype database for fingerprinting was generated using a modified version of 

the code on https://github.com/naumanjaved/fingerprint_maps. The tool 

‘CrosscheckFingerprints’ was used to confirm that all readgroups within a sample belong to 

the same individual, and that all samples from one individual match. Any mismatches were 

marked and excluded from further analysis.

Variant detection

Variant detection was performed in accordance to the GATK Best practices using GATK 

4.1.0.0. Germline variants were called from control samples using Mutect2 in artifact 

detection mode and pooled into a cohort-wide panel of normals. Somatic variants were 

subsequently called in individual tumor samples (single-sample mode) and in entire patients 

using GATK 4.1 Mutect2 in multi-sample mode. Mutect2 was given matched control 

samples, the aforementioned panel of normals and the gnomAD germline resource as 

additional controls. Cross-sample contamination was evaluated using ‘GetPileupSummaries’ 

and ‘CalculateContamination’ run for both tumor and matching control samples. Read 

orientation artifacts were evaluated using ‘CollectF1R2Counts’ and 

‘LearnReadOrientationModel’. Somatic likelihood, read orientation, sequence context, 

germline and contamination filters were applied using ‘FilterMutectCalls’.

Variant post-processing

BCFTools 1.9 was used to normalize, sort and index variants50. A consensus VCF was 

generated from all variants in the cohort, removing any duplicate variants. The consensus 

VCF file was annotated using GATK 4.1 Funcotator and the v1.6.20190124s annotation data 

source. Allele frequencies (AFs) from multi-sample Mutect2 were used to compare AFs 

between related samples. Multi-sample Mutect2 calls and filters mutations across a patient 

as a whole and does not determine mutation calls in a single samples. Single-sample 

mutation calls were overlaid on the multi-sample calls to infer whether variants were called 
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in individual samples. Single-sample called variants that were not present in the multi-

sample callset were discarded.

Mutational burden

Mutational burden was calculated as the number of mutations per megabase (Mb) 

sequenced. A minimum coverage threshold of 15x was required for each base. DNA 

hypermutation was defined for recurrent tumors with greater than 10 mutations per Mb 

sequenced as these values were considered outliers (1.5 times the interquartile range above 

the upper quartile). Notably, there were a few initial gliomas that demonstrated a mutational 

frequency above 10 mutations per Mb. However, the “hypermutation” classification was 

restricted to only patients with this level at recurrence since these likely reflect different 

evolutionary paths.

Mutational signatures

The relative contributions of the COSMIC mutational signatures were determined from a 

patient’s initial-only, recurrence-only, and shared mutations by solving the non-negative-

least squares (NNLS) problem for each set of mutations using the 30 signatures from version 

2 (March 2015). Six signatures were dominantly enriched in at least 3% of the fractions and 

we resolved the NNLS using the reduced six-signature model to increase accuracy and 

reduce noise.

Copy number segmentation

Copy number identification was performed according to the GATK Best Practices and is 

outlined briefly here. The pipeline differs slightly for whole genomes and whole exomes. 

For genomes, the genome was segmented into 10kb bins using ‘PreprocessIntervals’. For 

exomes, overlapping regions between several commonly used capture kits (Broad Human 

Exome b37, Nextera Rapid Capture, TruSeq Exome, SeqCap EZ Exome V3, Agilent 

SureSelect V4, Agilent SureSelect V7) were identified using ‘bedtools multiIntersectBed’. 

The tool ‘PreprocessIntervals’ was used to apply 1kb padding and to merge overlapping 

intervals. In parallel, ‘SelectVariants’ was used to subset the gnomAD resource of germline 

variants to variants with a population AF greater than 5%. Next, ‘CollectReadcounts’ was 

used to count reads in the bins generated by ‘PreprocessIntervals’ separately for autosomes 

and allosomes. In parallel, ‘CollectAllelicCounts’ was used to count reference and alternate 

reads at gnomAD variant sites with a population AF greater than 5%. The cohort was 

subsequently split into batches determined by sequencing center and 

‘CreateReadCountPanelOfNormals’ was used to create a panel of normal (PON) for each 

batch. PONs were created separately for allosomes and autosomes, and allosomes were 

separated further by sex. To further improve the panel of normals, GC content annotation of 

each interval as determined by ‘AnnotateIntervals’ were given. Next, ‘DenoiseReadCounts’ 

was used to denoise the binned readcounts output by ‘CollectReadCounts’, given a PON 

determined by batch, chromosomes (allosomes or autosomes) and sex. Denoised copy ratios 

were plotted and inspected for quality concerns using ‘PlotDenoisedCopyRatios’. The tool 

‘ModelSegments’ is an implementation of a gaussian-kernel binary-segmentation algorithm 

and was used to merge contiguous segments and assign copy and allelic ratios. The results of 

et al. Page 12

Nature. Author manuscript; available in PMC 2020 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



this segmentation were plotted using ‘PlotModeledSegments’ and inspected for quality 

concerns.

Copy number calling

A copy number caller loosely based on GATK ‘CallCopyRatioSegments’ (which in turn is 

based off of ReCapSeg) and GISTIC was implemented to call both arm-level and high-level 

copy number changes, respectively51,52.

Segments (from ‘ModelSegments’) with a non-log2 copy ratio between 0.9 and 1.1 were 

determined to be neutral. These segments were then weighted by length and a weighted 

mean and standard deviation (sd) non-log2 copy ratio (once-filtered) were determined again. 

Outlier segments are removed and once again a weighted mean and sd non-log2 copy ratio 

(twice-filtered) were determined. Segments with a non-log2 copy ratio between 0.9 and 1.1 

and segments within two standard deviations of the twice-filtered mean were determined to 

be neutral, and segments outside of these boundaries were determined to have a low-level 

amplification or deletion, depending on the direction.

The weighted mean and sd of the non-log2 copy ratio (once-filtered) was then determined 

individually for each chromosome arm. Outlier segments were removed and the weighted 

mean and sd of the non-log2 copy ratio (twice-filtered) was determined again. In order to 

determine a high-level amplification and deletion threshold, the most highly amplified and 

deleted chromosome arms were selected, respectively. The twice-filtered mean plus (high 

level amplification) or minus (high level deletion) two times the sd of the selected arms were 

used as high-level thresholds.

Gene level copy number were called by intersecting the gene boundaries with the segment 

intervals and by calculating the weighted non-log2 copy ratio for that gene. The copy 

number call for that gene was then determined by comparing the gene-level non-log2 copy 

ratio to the previously determined thresholds.

dNdScv

The R package dNdScv53 (https://github.com/im3sanger/dndscv) was run using the default 

and recommended parameters for all mutations in initial tumor samples, recurrent tumor 

samples, and for each mutational fraction (unique to initial, unique to recurrent and shared). 

All analyses were conducted separately within the three main tumor subtypes.

Aneuploidy calculation

The most reductive metric of aneuploidy was computed by taking the size of all non-neutral 

segments divided by the size of all segments. The resulting aneuploidy value indicates the 

proportion of the segmented genome that is non-diploid.

In parallel, an arm-level aneuploidy score modeled after a previously described method was 

computed54. Briefly, adjacent segments with identical arm-level calls (−1, 0 or 1) were 

merged into a single segment with a single call. For each merged/reduced segment, the 

proportion of the chromosome arm it spans was calculated. Segments spanning greater than 

80% of the arm length resulted in a call of either −1 (loss), 0 (neutral) or +1 (gain) to the 
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entire arm, or NA if no contiguous segment spanned at least 80% of the arm’s length. For 

each sample the number of arms with a non-neutral event was finally counted. The resulting 

aneuploidy score is a positive integer with a minimum value of 0 (no chromosomal arm-

level events detected) and a maximum value of 39 (total number of autosomal chromosome 

arms excluding the short arms for chromosomes 13, 14, 15, 21, and 22).

Estimates of evolutionary pressures

Evolutionary pressures were evaluated both by variant status and glioma subtype using the 

neutralitytestr algorithm as previously described (R-package: neutralitytestr version: 0.0.2, 

https://github.com/marcjwilliams1/neutralitytestr)31. Individual variant allele frequency 

vectors were merged at the level of glioma subtype by variant status. Only mutations found 

in copy-neutral regions should were included in these analyses. For all else, default 

parameters were used. Merged VAF distributions were deemed to be selected when the 

neutral null hypothesis was rejected using several metrics. Tests for neutrality required that 

both R2 values < 0.98 and the area between the two curves of 1) merged VAF data and 2) a 

normalized distribution expected under neutrality to be significantly different.

The SubclonalSelection algorithm was applied to GLASS mutation data to measure the 

selection strength in individual tumor samples (Julia package: SubclonalSelection, https://

github.com/marcjwilliams1/SubClonalSelection.jl)16. Patients that had samples at both 

timepoints with a TITAN-defined purity estimate >= 0.5 and >= 25 subclonal mutations in 

non-diploid regions were included. Mean coverage across all mutations was used as the 

“read_depth” input parameter and the model was run with the recommended 106 iterations 

and 1000 particles. Samples were classified as neutral or selected based on the model that 

had the highest probability, in line with the prior applications to TCGA data16. Classification 

based on the highest model probability yielded stable results there was not a significant 

change in proportions when setting a higher classification probability threshold (P > 0.05, 

Pearson’s Chi-square test, for both probability thresholds of 0.6 and 0.7). At all three 

probability thresholds (0.5, 0.6, and 0.7), Kaplan-Meier survival analyses between selection 

at recurrence and overall survival continued to indicate that patients with IDHwt tumors that 

were selected had a worse overall survival (P = 0.03 (n=81), P = 0.01 (n=66), P = 0.01 

(n=56) respectively).

Mutation clonality

Each patient’s clonal architecture was inferred using PyClone (version 0.13.1) by grouping 

SNVs into clonal clusters (https://github.com/aroth85/pyclone)55. The patient-level input 

mutation matrix was reduced by limiting to sites with at least 30x coverage across all 

samples. PyClone was subsequently ran using a binomial density model, connected 

initiation, and 10000 iterations. Sample purities were provided for each patient and parental 

copy number (minor and major allele counts) from TITAN were given. PyClone results were 

post-processed using a burn-in of 1000, thin of 1, minimum cluster size of 2 and a maximum 

number of clusters per patient of 12. Individual mutations were determined to be clonal if 

the PyClone cancer cell fraction (CCF) values were >= 0.5, subclonal for mutations with 

CCF >= 0.1 and CCF <0.5, mutations were considered non-clonal when CCF < 0.1 as 

previously described 56.
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CNV clonality

Allele specific copy number, tumor purity and ploidy estimates were derived using a 

probabilistic model (TITAN, version 1.19.1) for both whole genome and whole exome 

sequencing samples 57. TITAN was supplied with the tumor denoised readcounts output by 

GATK DenoiseReadCounts and the tumor allelic counts at loci found to be heterozygous in 

control samples output by ModelSegments. An ‘alphaK’ (and ‘alphaKHigh’) parameter of 

2500 and 10000 was used for exomes and genomes, respectively. The patient sex was 

provided in order to improve fitting allosomes. For each tumor-control pair TITAN was ran 

assuming an initial ploidy of two or three, and assuming 1 to 3 clusters, resulting in a total of 

six possible solutions per tumor/control pair. To select the optimal solution, TITAN’s 

internal selectSolution function was used with a threshold of 0.15 giving additional weight 

to diploid solutions.

Timing analysis

The CCF values output by TITAN or PyClone were used for separately timing copy number 

changes or mutations. To time specific copy number changes in genes, the average CCF for 

that gene was calculated. When timing mutations in genes, the highest CCF amongst the 

non-synonymous mutations was taken.

Neoantigen analyses

Neoantigens in this analysis were defined as all 8–11-mer peptides that arose from an exonic 

nonsynonymous SNV or indel and bound their respective patient’s HLA class I molecules at 

a binding affinity score (IC50) that was ≤ 500 nM and better than or equal to the wild-type 

form of the peptide. Each patient’s 4-digit HLA class I types were inferred using OptiType 

(version 1.3.1, https://github.com/FRED-2/OptiType) run on each patient’s matched normal 

sample58. VCF files for each tumor sample were annotated using Variant Effect Predictor 

(ensembl) with the Downstream and Wildtype plugins. Neoantigens from these VCFs were 

then called using pVACseq (version 4.0.10, https://github.com/griffithlab/pVAC-Seq)40 run 

using netMHCpan (version 2.8, http://www.cbs.dtu.dk/services/NetMHCpan-2.8/)59. For 

each pVACseq run, epitope length was set to 8, 9, 10, or 11, minimum binding affinity fold-

change was set to 1, and downstream sequence length was set to full, with default 

parameters used for all other settings.

Downstream neoantigen analyses were performed using the pVACseq output linked to its 

respective mutation information. Neoantigen-causing mutations were defined as all 

mutations that gave rise to at least one neoantigen. The observed-to-expected neoantigen 

ratio was calculated using a previously developed approach that compares each tumor’s 

observed neoantigen rate to an empirically derived expected rate that assumes no selection 

against neoantigen-causing mutations38: From the gold set samples in the GLASS cohort (n 

= 222), define Ns to be the expected number of nonsynonymous missense SNVs per 

synonymous SNV with trinucleotide context s. Bs is then defined as the expected number of 

neoantigen-generating missense SNVs per nonsynonymous missense SNV with 

trinucleotide context s. For a given sample i, define Yi as the sample’s set of synonymous 

SNVs and s(m) to be a synonymous SNV with trinucleotide context m. The expected 
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number of nonsynonymous missense SNVs, Npred, and neoantigen-causing mutations, Bpred, 

can then be calculated as follows:

N pred, i = ∑
m ∈ Yi

Ns(m)

Bpred, i = ∑
m ∈ Yi

Ns(m)Bs(m)

To obtain sample i’s final neoantigen depletion ratio Ri, the observed number of neoantigen-

causing mutations in the sample, Bobs,i is divided by the sample’s observed number of 

nonsynonymous missense SNVs, Nobs,i, and then this ratio is divided by the ratio of Bpred,i 

and Npred,i. Thus:

Ri =
Bobs, i ∕ Nobs, i

Bpred, i ∕ N pred, i

For analyses examining clonal/subclonal neoantigen ratios, the observed and expected 

numbers were calculated by subsetting a sample’s SNVs by the respective criteria and then 

recalculating the ratio as described above. To mitigate overfitting, all analyses presented here 

utilized samples from patients with at least 3 neoantigen-causing mutations in their primary 

and recurrent tumors.

Immune cell analyses

CIBERSORT relative immune cell fraction data used in downstream neoantigen analyses 

were downloaded from a previous publication37.

Statistical methods

All data analyses were conducted in R 3.4.2, Python 2.7.15, PostgreSQL 10.5, and Julia 0.7. 

All survival analyses including Kaplan-Meier plots and Cox proportional hazards models 

were conducted using the R packages survival and survminer.

Data availability

All deidentified, non-protected access somatic variant profiles and clinical data are 

accessible via Synapse (http://synapse.org/glass). Raw data of the various sequencing 

datasets can be obtained per the overview provided in the Supplement.

Code availability

All custom scripts and pipelines are available on the project’s github page (https://

github.com/TheJacksonLaboratory/GLASS).

Extended Data
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Extended Data Fig. 1 ∣. Sample Selection.
a. Quality control workflow steps identifying all GLASS samples available as a resource and 

the identification of the highest quality set of patient pairs (n = 222) used for the presented 

mutational and copy number analyses. b. Additional available datasets.
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Extended Data Fig. 2 ∣. Mutation burden by time point and subtype.
a. Boxplots and paired lines depicting coverage adjusted mutation frequencies in initial and 

matched recurrent samples across three subtypes. Wilcoxon signed-rank test P-values and 

sample sizes are indicated. b. Bee swarm plot depicting coverage adjusted mutation 

frequencies in fractions by subtype. Dashed line indicates the mean. One-way ANOVA P-

values comparing three subtypes are indicated. c. Scatter plot showing the relationship 

between age at diagnosis and coverage adjusted mutation burdens by subtype and fraction. 

Linear model P-values are indicated and were adjusted by subtype. d. Similar to the analysis 

presented in c, but showing the relationship between time to recurrence and coverage 

adjusted mutation burdens.
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Extended Data Fig. 3 ∣. Mutational signatures by fraction and subtype.
a. Correlation plot showing the Pearson’s chi-squared (X2) residuals for each signature by 

fraction and subtype. A X2 was performed for each subtype and P-values are indicated. 

Positive residuals (blue) indicate a positive correlation, whereas negative residuals (red) 

indicate an anticorrelation. The point size reflects the contribution to X2 estimate. b. The 

same ordered of patients as Fig. 1a along with relevant clinical information is provided 

alongside the fraction-specific mutational signatures. PyClone mutational clusters are also 

presented.
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Extended Data Fig. 4 ∣. Hypermutator clonality.
a. Bar plots represent counts of recurrence-only mutations per hypermutator tumor that were 

known to receive alkylating agent therapy and were successfully run through the PyClone 

algorithm. Colors indicate mutation clonality and color intensity indicates whether the 

mutations resulted in coding changes. b. Kaplan-Meier curve comparing alkylating agent-

treated patients with IDHmut-noncodel hypermutator tumors that were predominantly clonal 

(n = 8), predominantly subclonal (n = 7), versus IDHmut-noncodel non-hypermutators 

known to be treated with alkylating agents and had available PyClone data (n = 17). Log-

rank P-value is shown.

et al. Page 20

Nature. Author manuscript; available in PMC 2020 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 5 ∣. Clonal structure evolution over time.
a. The minimum cancer cell fraction of the most persistent (shared between initial and 

recurrence) PyClone cluster. b. Comparison of PyClone clusters ranked by CCF in matched 

initial and recurrent tumors, as Fig. 2b but separated by subtype. c-d. Examples of cluster 

CCF dynamics over time in three separate samples, including (c) two multi-timepoint 

samples (d) and one multi-sector sample. These additional data are available in the GLASS 

resource, but only two time-separated samples were used throughput the manuscript to 

ensure clarity.
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Extended Data Fig. 6 ∣. Variant allele fraction distribution
(a) Non-hypermutator variant allele fraction distributions for copy neutral variants in coding 

regions (n = 181 patients). Variants are separated by subtype, fraction, and also whether the 

variant was non-synonymous or synonymous mutation in a coding region. R2 goodness-of-

fit measure and associated P-values are shown for both mutation types. Note that this data 

considers only the coding portion of genome while Fig. 2d presents both coding and non-

coding. (b) The cumulative distribution of the subclonal mutations in copy-neutral regions 

for hypermutators (n = 31 patients). For each variant fraction and subtype, the R2 goodness-

of-fit measure and P-values are shown.
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Extended Data Fig. 7 ∣. Driver gene nomination.
a. Local (gene-wise) dNdScv estimates by subtype (rows) and fraction (columns). Genes are 

sorted by Q-value and P-value. The Q-value is shown in color, whereas the P-value is 

indicated in light gray. The Q-value threshold of 0.05 is indicated by a horizontal red line. b. 
GISTIC significant amplification (red) and deletion (blue) plots in initial (left) and recurrent 

tumors (right). Chromosomal locations are ordered on the y-axis, Q-values are shown on the 

x-axis, and selected drivers are indicated by their chromosomal location on the right.
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Extended Data Fig. 8 ∣. Driver acquisition over time
a. Tabulated numbers of SNV (top) and CNV (bottom) driver events that were shared, 

initial-only, or recurrence-only. P-values were obtained using a two-sided Fisher test 

comparing the initial-only fraction to the recurrence-only fraction testing for acquisition. b. 
One-sided Fisher test comparing the initial-only fraction to the recurrence-only fraction 

amongst previously implicated glioma drivers testing for driver acquisition. P-values were 

adjusted for multiple testing using the FDR (x-axis). Hypermutators (red) and non-

hypermutators (black) were separately analyzed.
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Extended Data Fig. 9 ∣. Intra-tumor CCF comparison.
Ladder plots comparing the CCF of co-occurring drivers in single tumor samples. The color 

of the lines and points indicates whether the sample shown is an initial (brown) or recurrent 

(green) tumor. Two-sided Wilcoxon rank-sum test P-values are shown for all initial samples, 

all recurrent samples, as well as all samples (black).

et al. Page 25

Nature. Author manuscript; available in PMC 2020 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 10 ∣. Between time point intra-patient CCF comparison.
a. Driver-gene CCF comparison between initial and matched recurrences. Lines are colored 

by variant classification. Two-sided Wilcoxon rank-sum test P-values are shown. b. TP53 
CCF by subtype, otherwise as in (a). c. IDH1 CCF by subtype, otherwise as in (a). d. Ladder 

plot visualizing CCF change across all SNVs between initial and recurrent tumors, separated 

by subtype. Wilcoxon rank-sum test was used to test for differences between time points. e. 
Initial and recurrent mutations in each patient were compared using a Wilcoxon rank-sum 

test. Bar plot with counts of patients in each subtype are shown. Patients lacking significant 

change are shown in yellow, those with a significant increase or decrease are shown in dark 

and light blue, respectively.
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Extended Data Fig. 11 ∣. Aneuploidy calculation
a. Heatmap displaying the chromosomal arm-level events (x-axis) with patients represented 

in each row. Patients are placed in the same order for both the initial (left) and recurrence 

(right). White space was inserted as a break between the three subtypes. b. Distribution of 

total aneuploidy difference. Acquired aneuploidy determination (upper-quartile) indicated 

with a red line. c. Comparison of aneuploidy score between initial and recurrent tumors 

separated by subtype d. As (c), comparing aneuploidy value.
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Extended Data Fig. 12 ∣. Neoantigen evolution and cellular analysis
a. Bar plots representing the number of shared mutations that give rise to neoantigens (top 

row, “immunogenic”) and those that do not give rise to neoantigens (bottom row, “non-

immunogenic”) stratified by longitudinal clonality (“(clonality in initial)-(clonality in 

recurrence)”) and further separated by subtype. Percentage of longitudinal clonality per 

subtype and mutation immunogenicity are presented above the respective bars. b. Left: 
Ladder plot depicting the difference in observed-to-expected neoantigen ratio between the 

initial and recurrent tumors of patients with hypermutated tumors at recurrence. Each set of 

points connected by a line represents one tumor (n = 70). Right: Boxplot depicting the 

distribution of observed to expected neoantigen ratios in recurrent tumors stratified by 

hypermutator status (n = 35 and 183 for hypermutators and non-hypermutators, 

respectively). Each box spans quartiles, with the lines representing the median ratio for each 

group. Whiskers represent absolute range, excluding outliers. P-values for panel b were 
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calculated using a paired and unpaired two-sided t-test, respectively. c. Stacked bar plots 

depicting the average relative fraction of 11 CIBERSORT cell types in the neoantigen 

depleted (< 1) and non-depleted (> 1) initial and recurrent tumor subgroups. Asterisks to the 

right of each plot indicate a significant difference (P < 0.05, Wilcoxon rank-sum test) 

between the depleted and non-depleted groups for the noted cell type at that time.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 ∣. Temporal changes in glioma mutational burden and processes.
a. Each column represents a single patient (n = 222) at two separate timepoints grouped by 

glioma subtype and ordered left-to-right by decreasing mutation frequency at recurrence. 

Top, mutation frequency differences between initial and recurrent tumors. Blue dotted line 

indicates increased mutation frequency while a red dotted line indicates decreased 

mutational frequency. Stacked bar plot reflects the proportion of total mutations shared 

(mustard), private to initial (magenta), or private to recurrence (blue). Clinical information 

including hypermutation status, therapy, and grade changes. b. Stacked bar plot (n=219) 

indicating the dominant mutational signature among initial, recurrent and shared mutation 

fractions stratified by glioma subtype. c. The proportion of glioma recurrences with 

alkylating agent-related hypermutation, grouped by glioma subtype. Fisher’s exact test was 

used to compare proportions between subtypes. d. Kaplan-Meier curve depicting overall 

survival in hypermutant (red) versus non-hypermutant (blue) alkylating agent treated 
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patients amongst IDHwt (left, n = 99) and IDHmut-noncodel (right, n = 32) tumors. Log-

rank test P-values are shown.
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Fig. 2 ∣. Quantifying selective pressures during glioma evolution.
a. Schematic depiction of cancer cell fraction (CCF) values during tumor evolution 

indicating clonality and associated relative timing. b. Comparison of PyClone clusters 

ranked by CCF in matched initial and recurrent tumors. c. Left: dN/dS ratio for all variants 

(i.e. global) in initial and recurrent tumors for each subtype. Hypermutators were not 

included (n = 187). Dots represent the global dN/dS ratio with associated Wald confidence 

intervals. Right: global dN/dS ratios for variant fractions per subtype. d. Cumulative 

distribution of subclonal mutations by their inverse variant allele frequency. Mutations were 

separated by timepoint, variant fraction, and glioma subtype. Deviation from a linear 

relationship, significant Kolmogorov-Smirnov P-values and R2 below 0.98 indicate 

selection. e. Sankey plot indicating the breakdown of SubClonalSelection evolutionary 

modes by subtype and therapy (n = 104). The sizes of the bands reflect sample sizes and 

band colors highlight the glioma subtype. Gray coloring reflects instances when treatment 

information was not available. f. Kaplan-Meier curve showing survival differences between 
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IDHwt recurrent tumors demonstrating selection (n = 39) compared with neutrally evolving 

tumors (n = 44). Log-rank P-value is indicated.
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Fig. 3 ∣. Patterns of glioma driver frequencies over time.
a. Driver dynamics for SNVs nominated by the dNdScv and CNVs nominated by GISTIC (n 
= 222). Each column represents a single patient at two separate time points stratified by 

subtype and ordered left-to-right by the number of driver alterations. The degree of 

aneuploidy difference (recurrence – initial) offers a summary metric for increases (> 0) or 

decreases (< 0) in aneuploidy at recurrence. Variants are marked and different shapes 

indicate whether a variant was shared or private. The variant type is depicted by its color. 

Stacked bar plots accompanying each gene/arm provide cohort-level proportions for whether 

the alteration was shared, lost, or acquired. b. Aneuploidy comparison in matching initial 

and recurrent IDHmut-noncodel tumors. c. Within-sample CCF comparison of CDKN2A 
homozygous deletion (homdel) to genome-wide CCF as a proxy for aneuploidy. A relative 

higher CCF indicates temporal precedence. Wilcoxon signed-rank test P-value is indicated. 

d. Kaplan-Meier curve comparing survival in IDHmut-noncodel tumors with an alteration in 

the cell cycle, acquired aneuploidy, or both (shades of red) versus unaltered IDHmut-

noncodel tumors (blue). Log-rank P-value is shown.
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Fig. 4 ∣. Neoantigen selection during tumor progression.
a. Mean proportion of coding mutations giving rise to neoantigens (neoantigens/

nonsynonymous) stratified by glioma subtype and timepoint (n = 222). Error bars represent 

standard deviation. b. Boxplot depicting the distribution of observed to expected neoantigen 

ratios in the GLASS cohort stratified by glioma subtype. P-value was calculated using the 

Wilcoxon rank-sum test. Each box spans quartiles, with the lines representing the median 

ratio for each group. Whiskers represent absolute range, excluding outliers. c. Scatterplot 

depicting the association between the observed-to-expected neoantigen ratio in a patient’s 

initial versus recurrent tumor. Each point represents a single patient. R represents Pearson 

correlation coefficient. Panels b and c only include samples with at least 3 neoantigens in the 

initial and recurrent tumors (n = 131, 63, and 24 for IDHwt, IDHmut-noncodel, and 

IDHmut-codel, respectively). d. Ladder plot depicting the difference in observed-to-

expected neoantigen ratio between a tumor’s clonal and subclonal neoantigens. Each set of 

points connected by a line represents one tumor. Tumors are stratified by whether they were 

a patient’s initial or recurrent tumor. Lines are colored by each patient’s glioma subtype. 

Panel d only includes samples with at least 3 clonal neoantigens and at least 3 subclonal 

neoantigens in both the initial and recurrent tumors (n = 35, 20 and 9 for IDHwt, IDHmut-

noncodel, and IDHmut-codel, respectively). P-value was calculated using a paired two-sided 

t-test. Colors in each panel represent the glioma subtype and are denoted at the bottom of the 

figure.
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