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Abstract

Electronic cigarette (e-cigarette; e-cig) use has grown exponentially in recent years despite their 

unknown health effects. E-cig aerosols are now known to contain hazardous chemical compounds, 

including carbonyls and reactive oxygen species (ROS), and these compounds are directly inhaled 

by consumers during e-cig use. Both carbonyls and ROS are formed when the liquid comes into 

contact with a heating element that is housed within an e-cig’s atomizer. In the present study, the 

effect of coil resistance (1.5 Ω and 0.25 Ω coils, to obtain a total wattage of 8±2 W and 40±5 W, 
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respectively) on the generation of carbonyls (formaldehyde, acetaldehyde, acrolein) and ROS was 

investigated. The effect of the aerosols generated by different coils on the viability of H1299 

human lung carcinoma cells was also evaluated. Our results show a significant (p<0.05) 

correlation between the low resistance coils and the generation of higher concentrations of the 

selected carbonyls and ROS in e-cig aerosols. Moreover, exposure to e-cig vapor reduced the 

viability of H1299 cells by up to 45.8%, and this effect was inversely related to coil resistance. 

Although further studies are needed to better elucidate the potential toxicity of e-cig emissions, 

our results suggest that these devices may expose users to hazardous compounds which, in turn, 

may promote chronic respiratory diseases.
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1. Introduction

Electronic cigarettes (e-cigarettes, e-cigs) have been on the consumer market for almost a 

decade and are marketed as an alternative to conventional combustion cigarettes. E-cigs have 

been promoted as a potential approach to aid in smoking cessation (Franks et al., 2018). Of 

particular concern, e-cig popularity has grown rapidly among young people worldwide. In 

2014, e-cig use among US adolescents surpassed the use of conventional cigarette for the 

first time (Arrazola et al., 2014). While e-cigs do not produce carcinogenic combustion 

products such as polycyclic aromatic hydrocarbons, and e-cig liquids do not contain tobacco 

associated carcinogens (e.g., nitrosoamines), there is growing evidence that e-cigs do 

generate harmful substances during their use. Several authors have reported the presence of 

reactive carbonyls, including formaldehyde, acetaldehyde, acetone and others, in e-cigarette 

vapor (Goniewicz et al., 2014; Ogunwale et al., 2017; Bitzer et al., 2019). In addition, both 

stable, long-lived radicals (Lerner et al., 2015a; Lerner et al., 2015b; Sussan et al., 2015) and 

short-lived, highly reactive radicals (Goel et al., 2015) have been found in e-cig vapor. 

Oxidative stress induced by cigarette smoke has been shown to play a key role in the 

pathogenesis of cancer (Pryor et al., 1997), cardiovascular disease (Messner and Bernhard, 

2014), and chronic obstructive pulmonary disease (COPD) (Centers for Disease Control and 

Prevention, 2010; Domej et al., 2014; Kirkham and Rahman, 2006). Likewise, e-cig vapor 

can induce oxidative stress that can lead to inflammation (Lerner et al., 2015a; Muthumage 

et al., 2018; Scott et al., 2018), cytotoxicity in vitro (Scott et al., 2018; Vasanthi 

Bathrinaraynan et al., 2018; Scheffer et al., 2015; Zhanh et al., 2012) and toxicity in vivo 
that may increase cancer risk (Canistro et al., 2017).

In contrast to conventional cigarettes, which differ primarily in terms of nicotine content, 

tobacco variety and filter type, e-cigs are highly customizable with respect to their operating 

parameters and the chemical composition of their liquids. These liquids are available in a 

wide-variety of flavors and nicotine levels, and e-cig devices can be programmed to achieve 

variable power output and variable heating coil resistance levels. Unlike conventional 

cigarettes, the possibility to choose among such different flavors (e.g., fruit, dessert, 
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tobacco) is particularly appealing to adolescents and young adults (Harrel et al., 2017; 

Yingst et al., 2017).

In most cases, modern e-cig devices consist of a mouthpiece, a refillable cartridge, a lithium 

battery and a heating atomizer. Users activate the heating coil in the atomizer by depressing 

the device’s power button during inhalation; thus, the flavored liquid is rapidly vaporized by 

passing through the heating element. With new generation devices, users can modulate the e-

cig liquid vaporization process by selecting atomizers with different coil resistances, by 

applying different voltages across the coils, and/or by controlling the operating temperature 

of the atomizer. According to recent reports, the design and operation settings of e-cigs may 

have a significant impact on human health (Chausse et al., 2015). Contrary to the initial 

hypothesis that voltages higher than 3.3 V and up to 5 V are responsible for formaldehyde 

generation in e-cig aerosols (Jensen et al., 2015), it is now well established that 

formaldehyde is produced even under lower powered, breath-activated devices (Bitzer et al., 

2019). Most of the hazardous carbonyls detected in e-cig vapors are produced during the 

thermal decomposition of vegetable glycerol (VG) and propylene glycol (PG), the major 

chemical constituents of most e-cig liquids. In a recent study, significant amounts of 

formaldehyde and acetaldehyde were detected at temperatures greater or equal to 215 °C 

when PG and VG were vaporized by an e-cig, while acrolein was observed when VG was 

subjected to a temperature in excess of 270 °C (Wang et al., 2017). The heating power of the 

device is a function of the combination of the coil’s resistance value and the voltage applied 

by the e-cig’s battery (i.e., the Joule effect) (Chausse et al., 2015). As such, consumers who 

use a low-voltage device are able to obtain the same power of a high-voltage e-cig by 

selecting an appropriate coil.

The aim of the present study was to determine the effect of coil resistance (1.5 Ω and 0.25 Ω 
coils, to obtain a total wattage of 8±2 W and 40±5 W, respectively) on carbonyl and ROS 

generation by e-cigs and to evaluate the biological effects of the resulting e-cig vapors on the 

viability of H1299 human lung adenocarcinoma cells following exposure using an in vitro 
air-liquid interface (ALI) exposure system.

2. Material and Methods

2.1. E-cigarette devices and settings

A commercially available Eleaf Pico e-cig consisting of a 2.5 mL liquid tank made of Pyrex 

glass and a rechargeable lithium battery (MXJO IMR 18650 3000 mAh 35A 3.7 V High 

Drain Flat Top Rechargeable Battery) was used for all studies (Figure 1). The voltage value 

was set at 3.5 V and two different coils (Joyetech™, 1.5 Ω and 0.25 Ω) were used to obtain a 

total wattage of 8±2 W and 40±5 W, respectively. In order to prevent the confounding effect 

of coil aging, a new element was used for each experiment.

2.2. E-liquids

Studies to determine carbonyl compounds in e-cig aerosols used a PG/VG base solution 

(50/50, v/v) (Fumador S.r.l., Milan, Italy) without nicotine (eL-N) and with nicotine (18%; 

eL+N). A red fruits flavor concentrate (Chemfont S.r.l., Rome, Italy) was then added to a 
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final concentration of 10% (v/v). For studies examining ROS production and effects cell 

viability, the e-cig liquid was composed of a PG/VG base (50/50, v/v) (NicVape, USA) 

without nicotine to which a raspberry flavor concentrate (NicVape, USA) was added at a 

concentration of 10% (v/v).

2.3. Detection of carbonyl compounds: formaldehyde, acetaldehyde and acrolein

To establish the presence of formaldehyde, acetaldehyde and acrolein, a 30-L propylene box 

was filled using the following puff profile: puff on 6 s, puff off 5 s; the puffing sequence was 

repeated twice (9Goel et al., 2015; Canistro et al., 2017; Cardenia et al., 2018). 

Formaldehyde, acetaldehyde and acrolein were determined by headspace-solid phase 

microextraction (HS-SPME) coupled to gas chromatography-mass spectrometry (GC/MS), 

as reported in our previous study (Canistro et al., 2017) with some modifications. A SPME 

device having a fused-silica fiber (10-mm length) coated with DVB/CAR/PDMS (50/30 mm 

thickness), was used. After conditioning at 270 °C for 60 min, the SPME fiber was exposed 

to the box headspace at room temperature. After a 2-min exposure, the fiber was desorbed at 

250 °C for 10 min in the injector of the GC/MS system (Q2010 Plus, Shimadzu, Japan). The 

sample was injected into a RTX-WAX column (30 m, 0.25 mm i.d., 0.25 μm film thickness, 

Restek, USA) in split mode (1:20 split ratio). Helium was used as carrier gas with a linear 

velocity of 36.2 cm/sec. The oven temperature was kept at 35 °C for 10 min, then raised to 

240 °C at 30 °C/min. Injector and interface temperatures were set at 250 and 230 °C, 

respectively. Compounds were recognized by comparing their mass spectra and retention 

time with those of the corresponding chemical standards. The quantification of 

formaldehyde, acetaldehyde and acrolein signal was carried out by Single Ion Monitoring 

(SIM), using 29 m/z, 44 m/z and 56 m/z, respectively. The construction of the calibration 

curves in this case could not provide reproducible results, due to the difference of vapor 

pressure of carbonyls when used alone or in presence of other compounds (Liu et al., 2016). 

Therefore, as suggested in literature (Wang et al., 2017; Geiss et al., 2016), a normalized 

response factor (Rf) was calculated based on the concentration of carbonyls present in the 

environment as basal level, according to the following expression:

Rf = Ax − Ay /Ay

where Ax and Ay represent the peak areas of carbonyls detected after and before (basal) the 

vaping process in the exposure box, respectively.

2.4. Cell-free ROS

The ROS production was estimated using the dye 2’,7’-dichlorodihydrofluorescein diacetate 

(DCFH-DA), as previously reported by Lerner et al. (Lerner et al., 2015a). To catalyze the 

reaction between DCFH and ROS, horseradish peroxidase (HRP) was added. Vapor was 

pulsed into the bubbler (Ace Glass Inc., Vineland, NJ) at room temperature using the 

following puffing topography: puff on 4 s, puff off 26 s, flow rate 1.5 L/min; this puffing 

sequence was repeated 15 times, for a total time of exposure of 7.5 min (total number of 

puffs: 15). The oxidized dichloro-fluorescein (DCF) fluorescence was measured using a 

Fluroskan Ascent FL spectrofluorometer (Thermo Fisher Scientific Inc., Waltham, MA) at 
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absorbance/emission maxima of 485 nm/535 nm. H2O2 standards were used to calibrate the 

fluorescence intensity units (FIU) and DCF fluorescence data are expressed as μM of H2O2 

equivalents. The assay was conducted using both phosphate buffer (PBS) and cell medium 

as reaction mixture.

2.5. Air-liquid interface cell culture and exposure

H1299 human lung adenocarcinoma cells were purchased from ATCC (Manassas, VA). The 

cells were cultured in RPMI 1640 basal media supplemented with 10% fetal bovine serum, 

1% penicillin and 1% streptomycin at 37°C under a 5% CO2 atmosphere. Before aerosol 

exposure, cells were plated in 60-mm dishes and grown to 50–70% confluence. Cells were 

then exposed to air or e-cig vapor in a modified vacuum desiccator (500 mL volume, SP 

Scienceware, Warminster, PA) using the following puffing topography: puff on 4 s, puff off 

26 s, flow rate 15 L/min; this puffing sequence was repeated 15 times, for a total time of 

exposure of 7.5 min (total number of puffs: 15). In addition to the analytical needs, this 

topography was also more representative of the real human use of e-cig and allowed us to 

reinforce the correlation between our results and the actual health risks for e-cig consumers 

(Norton et al., 2014; Robinson et al., 2015). This treatment protocol was repeated once after 

2 h. Cells were exposed to a total number of 30 puffs.

2.6. Cell viability measurement

The 3-(4,5-dimethylthiazol-3-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay 

(Cat#M5655, Sigma Aldrich, St. Louis, MO) was used to assess cell viability 24 h after e-

cig vapor exposure. Briefly, 24 h after exposure, H1299 cells were washed twice with PBS 

and then incubated with MTT (1 mg/mL) in RMPI 1640 medium at 37 °C for 30 min. The 

medium was then removed and dimethyl sulfoxide (DMSO) was added to solubilize the 

formazan dye; the absorbance was measured at 550 nm using a Multiskan GO microplate 

spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA). The viability of cells 

exposed to e-cig vapor was normalized to the viability of air-exposed cells.

2.7. Statistical analysis

Data referred to as carbonyls compounds are expressed as mean ± standard deviation (SD) 

of three independent replicates (n=3) and analyzed by means of one-way ANOVA to 

evaluate the influence of different conditions tested (p<0.05). Data referred to as DCFH-DA 

assay in PBS (vapor condensate and air-liquid interface) are expressed as mean ± standard 

deviation (SD) of six independent replicates. For DCFH-DA assay in cell medium, results 

are indicated as relative percentage of the ROS content in control samples arbitrarily set at a 

value of 100% (mean ± SD of six independent replicates). Cell viability determined by MTT 

assay is expressed as percentage variation of viable cells relative to control group arbitrarily 

set at 100% (mean ± SD of six independent replicates). One-way ANOVA, followed by 

Tukey’s multiple comparison test, was carried out at a 95% confidence level (p ≤ 0.05), to 

separate means of parameters that were statistically different.
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3. Results

3.1. Formaldehyde, acetaldehyde and acrolein levels

In general, eL-N generated higher levels of carbonyls than eL+N. Formaldehyde was the 

main aldehyde produced in both liquids, followed by acetaldehyde and acrolein; however, 

the observed concentrations of carbonyls were strictly related to both the composition of 

liquids and the resistance value. For eL-N, acrolein, acetaldehyde and formaldehyde levels 

generated by 0.25 Ω coil were three- to seven-fold higher than those generated by the 1.50 Ω 
coil (Figure 2A). In contrast, the carbonyl content was higher with the 1.50 Ω coil compared 

to 0.25 Ω coil when eL+N was used (Figure 2B). Figure 2B shows that when the eL+N was 

used, the 1.50 Ω coil resulted in the highest generation rate of carbonyls, especially 

formaldehyde, which was significantly (p<0.05) higher than acetaldehyde and acrolein; 

however, the latter was not significantly affected by the resistance value. Since the eL-N led 

to the highest production of hazardous carbonyls, an eL-N was chosen for subsequent ROS 

generation and cell viability experiments.

3.2. ROS levels generated by e-cig vapor in PBS

ROS levels generated by e-cigs were determined by collecting vapor in PBS and measured 

in both the bubbler (vapor condensate) and at the ALI using the exposure chamber described 

above. Results obtained by analyzing the vapor condensate (Figure 3A) showed more than 

six-fold higher levels of ROS in samples obtained with the 0.25 Ω coil compared to air 

control, and about three-fold higher if compared with 1.5 Ω (p<0.01). The same trend was 

found when ROS levels were measured at the ALI (Figure 3B).

3.3. ROS levels generated by e-cig vapor in cell medium

To determine if e-cig vapor produces ROS under cell culture conditions, the DCFH-DA 

assay was conducted using cell media as solvent under the experimental conditions 

mentioned previously. In both the bubbler and the ALI exposure chamber, the results 

followed the same trend as those obtained with PBS. The 0.25 Ω coil produced significantly 

higher levels of ROS when compared to control in both experimental conditions (+82.9%, 

p<0.001 in vapor condensate; +46.3%, p<0.05 in the air-liquid interface) (Figure 3C and 

3D). When compared to the control, the 0.25 Ω coil produced increased ROS levels: 143.9% 

in condensate (p<0.0002) and 136.2% in air-liquid interface (p<0.0001) (Figure 3C and 3D).

3.4. Cell viability

H1299 cell viability was measured 24 h after exposure in the experimental chamber. Results 

from the MTT assay (Figure 4A) showed that cell survival was inversely related to the total 

wattage of the devices. The effect of the 1.5 Ω coil group (10% reduction) had borderline 

statistical significance (p=0.058). Cell viability decreased to 45.8% (p<0.0001) when cells 

were exposed to the vapor generated by using the 0.25 Ω coil. Cell viability was observed to 

be inversely correlated to ROS production in cell medium revealed in the exposure chamber 

(Figure 4B).
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4. Discussion

E-cigs are composed of several components which, in many cases, can be modulated or 

modified according to a consumer’s preferences. Among the modifiable components, the 

coil that is present in the atomizer is the element that, in combination with the applied 

voltage, is responsible for heating the liquid, which is generally composed of variable 

percentages of PG, VG, flavors and nicotine. It is well-established that thermal 

decomposition of the PG-VG mixture leads to the formation of toxic and carcinogenic 

carbonyls, such as formaldehyde, acetaldehyde and acrolein (Paschke et al., 2014; Uchiyama 

et al., 2013). Several studies have also reported that e-cig vapor contains relatively high 

levels of free radical species (Lerner et al., 2015a; Lerner et al., 2015b; Sussan et al., 2015; 

Pryor et al., 1997), which are known to be important causal factors in many tobacco related 

diseases and disorders, such as cardiovascular diseases, COPD and cancer (11Messner et al., 

2014; Dekhuijzen, 2004; MacNee and Rahman, 2001).

In the present study, we investigated the role of an e-cig’s heating coil resistance with 

respect to the generation of carbonyls and ROS. Here, we report for the first time that the 

levels of selected hazardous carbonyls and ROS increases as coil resistance is reduced. The 

presence or absence of nicotine was also observed to affect the production of carbonyls with 

eL-N producing higher levels of carbonyls than eL+N. As reported by Kosmider et al. 

(2014), the composition of e-cig significantly affects the composition of the released 

carbonyl compounds. In general, the composition of the volatile fraction is strictly linked to 

the thermodynamic equilibrium between the vapor and condensed (liquid) phases; for this 

reason, when the number and/or the concentration of e-cig liquid ingredients decreases, the 

competition between molecules in the headspace decreases as well, thus leading to an 

increase and accumulation of some volatile compounds in the headspace, such as the 

revealed carbonyl compounds that are characterized by a high vapor pressure. Our results are 

consistent with previous studies demonstrating that the level of carbonyl compounds in e-cig 

vapors is affected by presence of nicotine and battery voltage (Kosmider et al., 2014). The 

latter is a relevant issue considering that e-cigs have become popular during the past decade 

(Korzun et al., 2019) for having the capacity of modulating the nicotine content of the liquid. 

Human exposure to these low molecular weight carbonyls represents a risk factor for 

occurrence of neoplastic diseases. In particular, formaldehyde and acetaldehyde are 

classified as Group 1 and Group 2B carcinogens, respectively, by the International Agency 

for Research on Cancer (IARC, 2012). Acrolein is listed as a hazardous air pollutant by the 

United States Environmental Protection Agency (U.S. EPA, 2003). The presence of higher 

carbonyls levels in eL-N liquid overturns the idea that the absence of nicotine makes the 

liquid safer. There is no doubt that nicotine is the molecule responsible for addiction and its 

employment in e-cig is considered a gateway towards the consumption of tobacco cigarette. 

However, the toxic carbonyls detected in this study represent a risk factor for the onset and 

development of neoplastic and chronic diseases (Primack et al., 2015; Soneji et al., 2018). 

This is of particular concern considering that, in many Countries, the nicotine-free e-cig can 

be sold to adolescent younger than 18 years old.

The generation of carbonyls is related to the formation of radicals (e.g., hydroxyl radicals), 

which are responsible for the oxidation and fragmentation of glycols (Geiss et al., 2016). For 
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this reason, the ROS levels were measured in both vapor and cell medium using the DCFH-

DA assay in a cell-free system. Although the exposure profile was different from the one 

used for detecting the selected carbonyl compounds, the results exhibited the same trend. 

The reduction of the coil resistance, and thus the increase of the heating and the total 

wattage of the device, played an important role in terms of ROS formation. Our results 

appear to confirm the hypothesis of Lerner et al. (Lerner et al., 2015a) who reported that one 

of the possible sources of ROS could be the heating element. We examined the biological 

implications of the ROS and carbonyls by examining the effect of e-cig vapor on the 

viability of H1299 human lung adenocarcinoma cells. We found that vapor from eL-N 

significantly reduced cell viability and that these effects were directly related to the levels of 

ROS produced.

High levels of ROS represent a risk factor for the onset of several diseases and pathological 

conditions, including cancer and inflammation (Waris and Ahsan, 2006). ROS are able to 

create DNA strand breaks, cross-links, and can cause modification to the purine, pyrimidine 

and deoxyribose components of DNA (Halliwell and Gutteridge, 2015). In an in-vivo study, 

e-cig aerosol caused accumulation of 8-hydroxy-deoxyguanosine (8-OH-dG) which can lead 

to mutations, with a significant correlation with ROS content, thus probably resulting in 

inflammatory response and neoplastic development (Canistro et al., 2017).

Others have previously examined the impact of e-cig vapor and e-cig extract on the 

morphology and viability of lung cells using both air-liquid interface or direct exposure to e-

cig extract (Lerner et al., 2015b; Cervellati et al., 2014; Higham et al., 2018). Ex vivo 
treatment of bronco-epithelial cells from both patients with COPD and healthy subjects with 

e-cig extracts increased some inflammatory responses including altered cytokine and 

chemokine production (Higham et al., 2018).

In support of these data, epidemiological studies have indicated an association between e-cig 

use and respiratory disorders, especially asthma, bronchitis and COPD (Choi and Bernat, 

2018; McConnell et al., 2017; Schweitzer et al., 2017; Wills et al., 2019). Altogether, these 

findings confirm the pivotal role of oxidative stress induced by e-cig use in the onset and 

development of respiratory diseases in healthy subjects or in the transition of initial 

symptomatology in chronic disorders.

5. Conclusion

In conclusion, the technology of newer generation e-cigs allow users to easily switch among 

heating elements in order to generate more or less aerosols and/or to intensify or reduce the 

flavor intensity of e-liquids. The ability to manipulate these parameters, together with the 

option that consumers have to select different e-liquid flavors and nicotine content, allows 

users to use e-cigs without any indication on its potential risks. Since the device and liquids 

used in this study are commercially-available, we believe that the exposure conditions, and 

consequently the generated carbonyls and ROS levels, are relevant to public health. Based 

on the results of this present study, the use of lower resistance coils coupled with an 

intermediate voltage setting (i.e., 3.5 V) can potentially represent a considerable health 

concern. Our results indicate how the generation of thermal degradation by-products 
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depends not only on the applied voltage but also on resistance. Our study demonstrates the 

need for e-cig consumers to be cautious when assuming that low-voltages may be 

synonymous with “safer” devices (Thomson and Lewis, 2015), and in a broader sense, 

reiterates that after more than a decade of research, a “safe level” of exposure from e-cig 

aerosols cannot yet be established.
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Abbreviations

ROS reactive oxygen species

COPD chronic obstructive pulmonary disease

PG propylene glycol

VG vegetable glycerol

DCFH-DA 2’,7’-dichloro-dihydro-fluorescein diacetate

HRP horseradish peroxidase

DCF dichloro-fluorescein

H2O2 hydrogen peroxide

MTT 3-(4,5-Dimethylthiazol-3-yl)-2,5-diphenyl Tetrazolium Bromide

FIU fluorescence intensity units

IARC International Agency for Research on Cancer

U.S. EPA United States Environmental Protection Agency

HS-SPME headspace-solid phase microextraction

GC/MS gas chromatography/mass spectrometry

Rf response factor

eL-N liquid without nicotine

eL+N liquid with nicotine

ALI air-liquid interface
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Highlights

• Nicotine-free liquid led to higher levels of carbonyl compounds in vapor.

• Low resistance coil is associated with higher levels of carbonyls and ROS.

• 0.25 Ω coil vapor was more toxic to lung cancer cells than 1.5Ω coil vapor.

• Cell viability in each exposed group inversely correlates vs ROS generation.
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Figure 1. 
Schematic representation of the e-cig device used for the study.
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Figure 2. 
Effects of resistance value (0.25 Ω and 1.5 Ω) on formaldehyde, acetaldehyde and acrolein 

levels in vapors released by eL-N (without nicotine) (A) and eL+N (with nicotine) (B). Data 

represent mean ± SD of three independent replicates. Different letters (a-b) for each 

aldehyde denote statistically different means (Tukey’s test; p<0.05) related to the resistance 

values; different letters (x-z) for each resistance value denote statistically different means 

(Tukey’s test; p<0.05) related to carbonyls.
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Figure 3. 
Effect of resistance values on ROS levels in e-cig vapor. Fresh air control and e-cig vapor 

were pulsed through DCFH-HRP ROS indicator solution in (A, B) phosphate buffer and (C, 
D) cell culture media in (A, C) vapor condensate and (B, D) the ALI during a 7.50 min 

exposure. Data represent mean ± SD of six independent replicates.

**p<0.01; ***p<0.0002 significant results between 1.5 Ω/0.25 Ω groups and control group 

using one-way ANOVA (Tukey’s multiple comparison test).

°p<0.05; °°p<0.01 significant results between 0.25 Ω and 1.5 Ω group using one-way 

ANOVA (Tukey’s multiple comparison test).
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Figure 4. 
Relationship between cell viability, coil resistance and ROS generation. (A) Effect of vapor 

generated from e-cigs equipped with 1.5 Ω and 0.25 Ω coils on viability of H1299 cells by 

MTT assay. Data are expressed as percentage relative to viable cells in control arbitrarily set 

at a value of 100%; Data represent mean ± SD of six independent replicates. **p<0.01; 

***p<0.0002 significant results between 1.5 Ω/0.25 Ω groups and control group using one-

way ANOVA (Tukey’s multiple comparison test).

°p<0.05; °°p<0.01 significant results between 0.25 Ω and 1.5 Ω group using one-way 

ANOVA (Tukey’s multiple comparison test). (B) Cell viability in each group inversely 

correlates vs ROS generation (R=0.8795; p<0.0001).
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