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Abstract

Fig (Ficus carica) trees are among the oldest plants on earth. The chemopreventive properties of 

constituent polyphenols and fiber that implicate figs in having a functional role in averting cancer 

have not been fully elucidated. We therefore hypothesized that fig leaf extract would inhibit (or 

attenuate) DES-induced DNA single-strand breakage in MCF10A human breast epithelial cells. To 

test this hypothesis, MCF10A cells were treated with DES (1, 10, 100 μM), crude fig leaf extract 

(5, 10, 15 μL), or concomitant doses of DES (100 μM)/fig leaf extract (5, 10, 15 μL). The cells 

were analyzed for DNA strand breakage using the SCGE/COMET assay with mean olive tail 

moment as a marker of DNA damage. DES induced DNA strand breaks at all treatment levels 

compared to DMSO and non-treatment controls. DES at concentrations of 1, 10, and 100 μM 

produced mean olive tail moments of 1.2082 (177.6%), 1.2702 (186.7%), and 1.1275 (165.7%), 

respectively, which were statistically significantly (p<0.05) higher than the DMSO control value 

(0.6803). Exposure to fig leaf extract produced no DNA damage. Rather, a desirable dose-

dependent reduction in DES-induced DNA strand breaks was observed. Composite treatment of 

MCF10A cells with DES and fig leaf extract attenuated DES-induced DNA strand breaks. Taken 

together, these results suggest a potential mechanism for cancer chemoprevention. Additional 

studies are necessary to identify relevant active ingredients, confirm the mechanism of action, and 

further elucidate the therapeutic potential of fig leaf extract for early-stage breast cancer 

chemoprevention.
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Introduction

Cancer, ranked the second leading cause of mortality in the United States [1] and Florida [2], 

is further segregated to attribute to breast cancer the designation of No. 1 cause of death 

among women [3,4]. The most recent global cancer statistics (September 12, 2018) point out 

an escalating pattern in cancer incidence and mortality based on 36 types of cancer 

measured in 185 countries of the world. Roughly 18.1 million new cases and 9.6 million 

cancer deaths are expected globally in 2018 alone. Of these cases, the incidence and 

mortality of cancer in the Americas (North, South and Central America, and the Caribbean), 

is estimated at 21.0% (~3.8 million) and 14.4% (~1.4 million) cases, respectively. The 

incidence of breast cancer ranks second (11.6%) and deaths fifth (6.6%) among the most 

commonly diagnosed cancers (lung, breast, colorectal, stomach, liver and prostate) in both 

sexes. Female victims of cancer represent 24.2% (8.6 million) of new cases and roughly 

15.0% (4.2 million) of deaths [5]. Overall, from 2017-2018, in situ cases are the primary 

form (28%) of breast cancer in women between 50-69 years old; invasive cases prevail 

(27%) between 60-69 years old; and deaths are most prevalent (27%) ≥ 80 years old [1,6,7].

Disparities exist in the incidence of female breast cancer based on data from 1975-2014, 

which indicate a higher rate of smaller (<2.0 cm) tumors per 100,000 Blacks compared to 

White females with larger tumors (2.0 – 4.9 cm). A closer review of the overall death toll 

among Black females with breast cancer from 1975-2015 revealed a more subtle overall 

decline in mortality than the more prominent reduction in mortality rates noted among White 

females. In 2015, Black women experienced ~39% higher death rates (29.5 per 100,000) 

than Whites (20.8 per 100,000), a difference possibly attributed to differences in associated 

risk factors (e.g., socioeconomic conditions, comorbidities such as obesity. The 5-year 

survival rate was a meager 9% following diagnosis [6].

Early intervention is imperative for increasing the chance of recovery from treatment of 

breast cancer. Ductal or lobular malignancies may initially be detected as a lump or other 

visible change in the morphology of the breast. General risk factors that increase the chance 

of developing breast cancer may include: family history of the disease in immediate female 

family members; personal history of benign breast tumor; personal history of invasive, in 
situ or lobular malignancy; dense mammary tissue; inherited genetic mutations of breast 

cancer genes (e.g., BRCA1, BRCA2); early onset of menarche; older age of first birth; 

exposure to radiation; obesity; alcohol consumption; sedentary lifestyle; hormonal treatment 

of menopause [8], and high fat consumption [9]. Current clinical interventions for breast 

cancer include screening measures such as: clinical breast exam; screening mammography; 

breast tomosynthesis; breast ultrasound; breast MRI [10]; thermography; tissue sampling via 

fine-needle aspiration, nipple aspiration, or ductal lavage; chemotherapy; adjuvant therapy; 

surgical removal of the breast or relevant area of tissue [8]. An annual mammogram is 

recommended for women ≥ 40 years old, and certain high-risk (e.g., history of breast cancer 

in immediate family; genetic predisposition) subgroups of women ≥ 30 years old may be 

subject to varying combinations of mammography, MRI or ultrasound procedures annually 

[6]. Due to the invasive nature of some existing screening methods, as well as the increased 

risk of cancer growth from radiation exposure, alternative approaches are needed both to 

prevent and treat female breast cancer. Since the 1990s, alternative medicine has helped to 
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bridge gaps in therapy left by modern pharmaceuticals [11,12], which in part, have been 

unable to cure longterm conditions (e.g., bronchitis, arthritis, rheumatism, heart disease, 

back pain, high blood pressure, ulcers, etc.) and sometimes chronic degenerative diseases of 

aging [ 13]. Hitherto, a wide array of studies has demonstrated an inverse correlation 

between cancer incidence and the intake of fruits and vegetables [8,14].

Edible fig (Ficus carica L.) trees are dicotyledonous, perennial plants belonging to the 

Moraceae (Mulberry) family. Native to Egypt or Western Asia, fig trees were introduced into 

Middle Eastern and European civilizations, as well as various regions of the United States: 

New England (MA); Mid-Atlantic (NY, PA); South Atlantic (FL, NC, SC, VA, DC); East 

South Central (AL, MS, TN); West South Central (LA, TX); and Pacific (CA) [15–19]. The 

United States, Turkey, Greece and Spain are among the largest producers of fig in the world 

[15]. In the U.S. consumption of figs is measured both by imports and exports of this 

commodity. Approximately 27 million pounds of fresh or dried fig valued at roughly $47 

million was imported from 2017-2018. National agricultural statistics for the same period 

showed that 6.9 million pounds of fig were exported for a new gain of almost $14 million 

[17,18]. Production in the state of California accounts for 98% of U.S.-grown figs [20], 

which may be incorporated into fig paste, concentrate, powder, or nuggets, or simply diced 

or sliced [15,21].

Medicinal [22,23], folkloric [24] and biblical [25] uses of figs have been documented for 

centuries. Figs are fat-free, low in sodium, and cholesterol-free [15]. Figs are a nutrient-rich 

dietary source of natural sugar, vitamins (A, Bl, B2, B3 and C), minerals (potassium, zinc, 

magnesium, iron, nitrogen, calcium, phosphorus), fiber and antioxidants (polyphenols) 

[15,26]. Non-nutrient components found in figs include: benzaldehyde and coumarins (i.e., 

angelicin, marmesin, psoralen, umbelliferone, and bergapten) [15]. Constituents of fig leaf 

include: phytosterols such as beta-sitosterol and taraxasterol; and furanocoumarins such as: 

psoralen and bergapten, [15,23,27]. Latex (a white milk) may be obtained from fig fruit, 

twigs, as well as from fig leaves. Ficin, a proteolytic enzyme capable of dissolving growths 

such as corns and warts [22–24], is found in fig leaves.

The biological and ecological importance of the fig tree cannot be overlooked. Wild fig is 

revered as a “keystone fruit,” meaning that it is essential for the survival of other plants and 

animals [28]. The fig plant is described as a remedy for at least forty different health 

conditions and its health benefits are associated with cardiovascular, respiratory, digestive, 

urinary, integumentary, muscular, immune, hepatic, reproductive and endocrine systems of 

the human body [27]. Medicinal and biological uses of fig leaves, fruit, roots, or bark 

include its application as follows: aphrodisiac for sterility, endurance, or erectile dysfunction 

[29,30], laxative [22], relief for sores and sore throat [22], antibacterial, antiviral, antifungal, 

anti-diabetes [22,31], antioxidant, anti-cancer, hepatoprotective, hypoglycemic, 

hypolipidemic, anti-HSV, antipyretic, anti-tuberculosis, nematicidal, anti-spasmodic, anti-

platelet, anti-helmintic, and anti-mutagenic activity [22,29,32–34]. Figs have also been 

found to lower the risk of Alzheimer’s disease [35], treat piles (hemorrhoids), and restore 

skin and hair health [36]. Fig is a folkloric emmenagogue, which can stimulate menstrual 

flow in the absence of a regular period (amenorrhea) [24]. In ancient biblical days, it was 

known as the “forbidden fruit” in the Garden of Eden [37], and later King Solomon is said to 
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have applied fig juice to boils [24]. Because of its broad reach, the fig plant is thought to 

hold great promise for the future of phytomedicine.

Although the mechanisms of fig action on human health have not been fully elucidated, the 

ubiquity of polyphenols and its high flavonoid content suggest a strong anticancer potential. 

These substances, common to citrus fruits, are known for protections afforded through: 

exertion of antioxidant effects; enhancement of the body’s innate detoxification system via 

cytochrome P450 (CYP450) monooxygenase system; and regulation of enzymes produced 

by cancer cells [13,15]. Known health benefits attributed to figs include: weight loss; 

lowering cholesterol; prevention of constipation, heart disease, colon cancer, hypertension, 

macular degeneration; diabetes control; throat pain relief; urinary calcium loss; venereal 

disease; strengthens bones; bronchitis; aphrodisiac for sexual dysfunction.

Issues surrounding the treatment of breast cancer are challenging and controversial. Early 

detection of breast cancer is made possible through the administration of a low-dose x-ray 

(mammogram), which for many years was recognized as the only screening tool proven to 

decrease breast cancer mortality rates [10,6]. The Radiological Society of North America 

(RSNA) reported on December 1,2009 that exposure to therapeutic, low-dose radiation 

during annual mammograms, as well as repeated exposures, may actually enhance the risk 

developing cancer in non-diagnosed individuals who may have a familial or genetic 

predisposition [10]. Odds ratios among high-risk subjects were 1.5× higher than that 

observed in similar high-risk females devoid of radiological exposure [10,38,39]. On 

considering breast screening [40–43], several researchers found that supplementing the 

mammogram with tomosynthesis dramatically enhances the detection of breast cancer 

[42,43]. Similarly, RSNA [10] reports that more breast cancers are detected with combined 

digital measures than with any one alone [44]. Commonly observed comorbidities have also 

been reported among breast cancer survivors [45]. In other postoperative uses of adjuvant 

radiotherapy to eradicate residual cancer cells, radiotherapy was found to reduce breast 

cancer mortality, but rather increase cardiovascular disease and lung cancer in the United 

States [46] and in Germany [47]. Death from heart disease after longterm radiotherapy for 

breast cancer was also observed by Bouillon and associates [48]. It is possible that the 

medicinal properties of figs in almost every system of the human body may attenuate breast 

cancer as well as other comorbidities.

To elicit their protective effects, phytochemicals interact with a variety extracellular 

structural components as well as intracellular molecules, pathways and organelles, thereby 

counteracting the development of cancer and non-cancer, chronic diseases in the human 

body. Cancer is a disease commonly characterized by genetic mutation, unregulated cellular 

proliferation, and aberrant tumor growth and development. The relevance of plant chemicals 

in cancer prevention is of particular interest to researchers who recognize the importance of 

identifying specific areas of the multistage process of carcinogenesis where they are most 

effective. Mammary cancer is also a multi-stage process (Figure 1) that can be induced by 

chemicals, radiation, viruses, or genetic factors [49]. Absent the timely detoxification and 

elimination of procarcinogenic chemicals from the body, subsequent absorption and 

metabolism of cancer-causing agents can lead to the formation of reactive metabolites that 

may impose more deleterious effects than the parent compound from which they were 
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derived. In recognition of the critical interface between phytochemicals and the process of 

carcinogenesis, Michael Sporn coined the term ‘chemoprevention’ [50,51] to describe 

substances capable of inhibiting, reversing or retarding tumorigenesis [14].

The term ‘chemoprevention’ also embodies the two major functional classes of 

chemopreventive agents: those that either block procarcinogenic insult of normal cells (e.g., 

ellagic acid, indole-3-carbinol and flavinoids) and those that suppress or retard the 

transformation of initiated cells into neoplastic lesions (beta-carotene, curcumin, genistein, 

resveratrol and capsaicin) [14]. However, based on these findings, there remained a gap in 

the discovery of agents capable of inhibiting, reversing, or retarding that rate-limiting, rapid, 

irreversible first stage of carcinogenesis (i.e., initiation) through which heritable genetic 

changes may occur. It is in the initiation stage of carcinogenesis that physical interaction of a 

procarcinogenic, promutagenic substance with DNA leads to DNA damage [52]. Direct 

action of electrophilic carcinogens can produce highly reactive, nucleophilic metabolites that 

covalently bind to DNA, causing DNA-adduct formation, and exerting genotoxic effects. 

Interactions with reactive oxygen, nitrogen or sulfur species may also be genotoxic [52,14]. 

At the time of this research, the mechanism of natural products derived from plants, and 

having chemopreventive properties, had not been fully elucidated. Moreover the focus of 

understanding mechanisms of action of chemopreventive substance such as the Ficus carica 
leaf extract we studied relative to malignant neoplasms versus benign conditions was still in 

its infancy.

Diethylstilbestrol has generally been classified as a non-genotoxic (epigenetic) chemical 

carcinogen with a hormonal mode of action [52]. Epigenetic carcinogens are sad to exert 

their effects via mechanisms that “[do not involve] DNA binding, damage, or interaction of 

the chemical or its metabolites with DNA” [52]. In the wake of these controversies, we 

hypothesized that fig leaf extract would abrogate or attenuate DES-induced DNA stand 

breaks. Using the single-cell gel electrophoresis and the comet assay, the objectives of the 

associated pilot study towards realizing this goal led us to: (1) establish baseline 

deoxyribonucleic acid (DNA) damage in untreated human breast epithelial cells; (2) 

determine the effect of fig leaf extract alone on MCF10A cells; (3) assess the integrity of 

DNA following carcinogen exposure of MCF10-A cells to DES, or its metabolite, DESQ; 

and (4) assess the ability of fig leaf extract to eradicate DES-induced nuclear effects in 

MCF10A cells. These preliminary data form the basis of our suggestion that fig leaf extract 

demonstrates both chemoprotective and chemopreventive properties. Our findings not only 

warrant reconsideration of DES as a genotoxic agent, but also provide evidence for a 

phytochemical intervention directly targeting carcinogenesis stage 1 (initiation). The insights 

from this study fuel the need for more breast cancer research involving this agent, and show 

promise for the future clinical utility of Ficus carica leaf extract for combating early-stage 

breast cancer development.

Materials and Methods

Cells and chemicals

Immortalized, non-transformed, non-tumorigenic (benign) human breast epithelial 

(MCF10A) cells derived from a 36 year-old, Caucasian female with fibrocystic breast 
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disease were purchased from American Type Cell Culture Collection (ATCC), Rockville, 

MD). Chemicals used included Dulbecco’s Modified Eagle’s Medium (DMEM), 

streptomycin, phosphate-buffered solution (PBS), and trypsin, and were purchased with 

disposable supplies purchased from Sigma Chemical Company (St. Eouis, MO). All 

refrigerated solutions were brought to room temperature before use.

Cell culture

Human breast epithelial (MCF10A) cells were sub-cultured twice weekly in serum-free 

Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with streptomycin. Incubator 

settings were 5% CO2, 95% air at 37 °C, and 100% humidity. The cells were maintained as 

exponentially-growing monolayers until confluency was achieved. The cells were washed in 

PBS, trypsinized, and resuspended in DMEM before treatment.

Aqueous extraction of the leaves of Ficus carica

Fig leaf extract was prepared and refrigerated for future use in research experiments. 

According to lab protocol, fig leaves were weighed and twice-boiled in water for 30 minutes 

and the extract vacuum filtered. The extract was treated with 3 ml of 1% HCl per gram of 

leaf, centrifuged at 3000 rpm for 10 minutes, and the supernatant filtered by vacuum 

filtration. The extract was concentrated to 50 ml and the pH adjusted to 7.4.

Analysis of DNA strand breaks by COMET assay

Single-cell gel electrophoresis (SCGE) or the ‘comet a assay’ is a rapid, sensitive, and 

reliable biochemical technique (Figure 2) for identifying and quantify DNA damage in 

individual mammalian cells. In the current study, the comet assay was used to detect varying 

levels of carcinogen-induced DNA fragmentation in normal breast epithelial (MCF10A) 

cells. The cells were exposed to varying doses of DES dissolved in dimethyl sulfoxide 

(DMSO), different volumes of fig extract, or a combination of both for 6 hours. Next, 

MCF10A cells mixed with low-melting point agarose were coated onto frosted slides. 

Following overnight incubation in an alkaline lysis buffer, the cells underwent 

electrophoresis in a fresh alkaline rinse solution at 25V/300mA for 30 minutes. The cells 

were then neutralized and air-dried in preparation for microscopy. Slides were visualized at 

20× magnification using propidium iodide as the fluorochrome. The olive tail moment 

(OTM) was calculated for 40 randomly selected cells from each sample (n=3) using 

Kinetic® Imaging Komet software.

Phase contrast microscopy

The growth of cultures of MCF10A cells and comets resulting from chemical treatment were 

observed by phase-contrast microscopy using a Zeiss fluorescence microscope. DNA stained 

with propidium iodide was filtered with green-light (excitation ≈546 nm). Where available, 

photographs of comets were taken to establish DNA damage and/or repair, and to visualize 

the migration of tail fragments, which form the pattern of a comet during gel 

electrophoresis.
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Statistical analysis

The quantitative data (Table 1) represent triplicate assays (mean ± SEM) of samples 

obtained from independent, in vitro experiments. Of the 34 parameters measured, olive tail 

moment (OTM) – the product of percent tail DNA and the distance between the centers of 

gravity in the head and the tail [53], was selected. A total of 2000 comets from 51 slides 

were assessed. SAS® software was used to perform statistical analyses of mean olive tail 

moment, by treatment group. The distribution of the continuous variable (“treatment”) was 

investigated using the PROC UNIVARIATE procedure. For all treatment groups, there 

existed a statistically significant difference between treatment means and zero (p<.0001, 

denoted ‘***’). Differences between specific treatment groups determined by one-way 

analysis of variance (ANOVA) were further assessed using the Tukey, multiple comparisons, 

post-hoc test. Statistical significance was set at an alpha level of p<.05 (denoted ‘*’). Where 

appropriate and convenient, some graphs were sketched in Microsoft Excel.

Results

Sensitivity of COMET assay

The SCGE/COMET assay is a sensitive, non-radiometric procedure. This technique was 

effective in assessing DES-induced DNA damage in benign human breast epithelial 

(MCF10A) cells as well as measuring the extent of nuclear insult imposed on MCF10A by 

environmental estrogens and their metabolites. The protective effects of fig leaf extract in 

mediating these genotoxic effects were measurable following 6 hours of carcinogen 

treatment. Microliter quantities of fig leaf extract were also sufficiently potent to evoke 

cellular changes resulting in DNA repair that was detectable by COMET analysis. 

Morphological changes in cell structure, particularly intact or disrupted DNA, were visually 

observed by dark-field microscope (Figure 3).

Analysis of means

Based on the MEANS procedure in SAS®, the null hypothesis that the average olive tail 

moment (OTM) for 17 different treatment groups is equal to zero was rejected (p<.00005), 

versus the alternative hypothesis that individual treatment means are not equal to zero. We 

conclude that the average OTM is different for each type of treatment, indicating that the 

true mean is greater than zero. This conclusion was also confirmed via the ANOVA 

procedure in SAS®. Data are presented as Mean ± SEM.

Baseline DNA damage in untreated MCF10A cells—To measure the occurrence of 

baseline (spontaneous) DNA stand breaks within human epithelial breast cells, untreated 

MCF10A cells incubated in growth medium were monitored for comets. The average olive 

tail moment for comets scored in 120 untreated MCF10A cells was 0.81 ±0.09 (p<.00005). 

A score above zero in untreated cells confirms that damage (and repair) has spontaneously 

occurred to DNA within these cells, which is consistent with self-regulated endogenous 

processes of homeostasis.

Nuclear cryoprotection in DMSO-treated MCF10A cells—Dimethyl sulfoxide is 

routinely added to mammalian cells to preserve and protect proteins from denaturing during 
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freezing. The effect of cryopreservation on DNA integrity within human epithelial breast 

(MCF10A) cells suspended in DMSO was monitored for comets. The average olive tail 

moment for comets scored in 120 DMSO-treated MCF10A cells was 0.68 ± 0.06 (p<.

00005). This score attests to the added benefit of DMSO, as 16.4% less DNA damage 

resulted following DMSO treatment compared to untreated controls (0-81 ± 0.09).

Effect of DES on MCF10A cells—DES (the parent compound) induced cell death in 

MCF10A cells, evidenced by the uptake of propidium iodide by cellular nuclei. Moreover, 

administration of DES at a concentration of 1 μM (1.21 ± 0.25), 10 μM (1.27 ± 1.14), or 100 

μM (1.13 ± 0.10) had the greatest impact in OTM (p<.00005) than all other treatment 

groups. Although the mean OTM increased in a linear fashion at the lower doses of DES, a 

slightly lower response is seen at the high dose level. These average scores were respectively 

148.7%, 156.3%, and 138.7% above untreated control cell levels (0-81 ± 0.09). Compared to 

DMSO controls (0-68 ± 0.07), the mean OTM was 178%, 187% and 166% higher in 

respective DES treatment groups. The dose of DES with the lowest amount of DNA damage 

was DES 100 μM for this treatment group.

Effect of DES-Quinone on MCF10A cells—The extent to which DESQ (a metabolite 

of DES) induced cell death in MCF10A cells was less than that observed for all doses of 

DES-treated cells. Administration of DESQ at a concentration of 1 μM (0.87 ± 0.09), but not 

at concentrations of 10 μM (0.59 ± 0.06), or 100 μM (0.62 ±0.05), significantly increased 

OTM (107.4%) above untreated control values (0-81 ± 0.09). The latter dose levels were less 

effective (72.3% and 76.0%, respectively) in causing DNA strand breaks. The reduction seen 

in mean OTM with increasing dose levels of DESQ was not linear, although the DES 

metabolite was notably less effective in causing strand breaks than the parent compound. 

These average scores were respectively 128%, 86%, and 91% of DMSO control values (0-68 

± 0.07). The dose of DESQ with the lowest amount of DNA damage was DESQ 10 μM for 

this treatment group.

Effect of fig leaf extract on MCF10A cells—Aqueous fig leaf extract administered 

alone attenuated DNA damage at all study volumes (5 μL, 10 μL, and 15 μL). Mean OTM 

values were 0.71 ± 0.09 (86.9%), 0.69 ± 0.06 (84.3%), and 0.79 ± 0.08 (96.7%), respectively 

when compared to untreated controls (0-81±0.09). Compared to the DMSO-controls (0-68 

± 0.07), dosing with 5 μL, 10 μL, or 15 μL fig leaf extract elicited roughly comparable 

differences in average OTM (104%, 101% and 116%, respectively) The volume of fig leaf 

extract producing the lowest amount of DNA damage was Fig 10 μL for this treatment 

group.

Combined effects of DES (Parent Compound) and fig leaf extract on MCF10A 
cells—As above, DES administered alone (1, 10, or 100 μM) produced OTMs of 1.21, 1.27, 

and 1.13, respectively. The effect of high-dose DES (100 μM) was offset by administration 

of fig leaf extract in volumes of 5 μL (1.01 ± 0.10), 10 μL (0.52 ± 0.04), or 15 μL (0.63 

± 0.07), indicating generally tangible reductions in DNA damage and fig leaf extract-

mediated protection at higher doses. Tow volume extract only marginally reduced the 

amount of DNA strand breaks elicited by high dose DES (Table 2).
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OTMs resulting from combined treatments were 124.7% (DES 100-Fig5), 63.5% (DES100-

Fig10), and 77.6% (DES100-Figl5) of untreated control levels, and 149% (DES100-Fig5), 

76% (DES100-Fig10) and 93% (DES100-Figl5) of DMSO control values. With the 

exception of the DES100-Fig 5 group, the reductions in DNA damage (comet formation, 

DNA strand breaks) were substantial. Tow dose fig marginally attenuated DNA strand 

breaks caused by 100 μM DES. However, doubling or tripling the volume of fig extract 

significantly abrogated DES-induced DNA damage. The combination of DES 100 μM with 

Fig 10 μL produced the least amount of DNA damage observed by comet assay for this 

treatment group.

Combined effects of DESQ (Metabolite) and fig leaf extract on MCF10A cells—
Following induction of DNA damage by pre-exposure to the metabolite of a carcinogenic 

xenoestrogen, administration of fig leaf extract resulted in a reversal of these effects, below 

the level of DNA damage observed in untreated controls. Mean OTM following co-

administration of DESQ (10 μM) with increasing volumes of fig leaf extract were 0.66 

± 0.06 (5 μL), 0.715 ± 0.07 (10 μL), and 0.59 ± 0.06 (15 μL), respectively. These values 

were respectively 81.6%, 107.8%, and 82.2% compared to untreated controls (0-81 ± 0.09), 

versus 98%, 105% and 86% when compared to DMSO controls (0-68 ± 0.07). High volume 

fig leaf extract (15 μL) was most successful in inhibiting DES-Q (10 μM)-induced DNA 

strand breakage.

Multiple comparisons of OTMs across treatment groups in MCF10A cells—In 

ANOVA posthoc multiple comparisons of OTM means, Tukey’s studentized range test 

identified the following groups as being statistically significantly different from each other:

• DES 1 μM was significantly different from: DMSO control; Fig 5; Fig 10; 

DES100-Fig10; DESQ-10; DESQ-100; DESQ10-Fig5; DESQ10-Fig10; and 

DESQ10-Figl5 treatment groups (p<.05).

• DES 10 μM was significantly different from: DMSO control; Fig5; Fig10; 

DES100-Fig10; DES100-Figl5; DESQ-10; DESQ-100; DESQ10-Fig5; 

DESQ10-Fig10; DESQ10-Figl5 (p<.05).

• DES-100 μM was significantly different from: DES100-Fig10; DESQ-10; 

DESQ-100; and DESQ10-Figl5 (p<.05).

• DES-100 μM-Fig 5 μL was significantly different from: DES 100-Fig10 (p<.05).

Discussion

This in vitro pilot study was uniquely designed to investigate the utility of Ficus carica L. 

(fig) leaf extract in lowering the risk for human breast cancer. We hypothesized that fig leaf 

extract would inhibit DES-induced DNA single strand breakage in normal breast epithelial 

(MCF10A) cells at a time when the anti-mutagenic potential of figs had only been suggested 

[54] but not exhaustively researched in the open literature. The pilot study affirmed our 

hypothesis, providing the first such preliminary experimental data that fig leaf extract 

attenuates DES-induced DNA strand breaks in MCF10A human breast epithelial cells 

during the initial stage of cancer development.
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In the multi-step model of carcinogenesis, damage to nuclear deoxyribonucleic acid (DNA) 

is an essential initiating event for the production of genetic lesions that lead to instability of 

the genome. Exposure to carcinogenic agents may cause mutations and alter DNA repair and 

cell cycle control genes. Diethylstilbestrol (DES) is an example of a synthetic estrogenic 

hormone that is toxicologically characterized as a complete carcinogen. It is known to 

induce and promote the development of malignant tumors in human breast epithelial cells as 

well as rodent models. DES is actively biotransformed by cytochrome P450 drug-

metabolizing enzymes into its primary metabolically active intermediate, DES-4,4’-quinone 

(DESQ). The interaction of DESQ with DNA results in the formation of DNA adducts and 

strand breaks [55]. In the absence of repair, alterations in genes regulating these processes 

may cause normal cells to be transformed into malignant phenotypes. Replication of these 

cells can promote the progression of tumorigenesis. The current pilot study showed a 

stronger potency of the parent compound, DES, than its metabolite, DESQ, where induction 

of DNA damage was concerned. The destructive effects elicited by the parent compound 

were consistently more pronounced than those of the metabolite and/or phytochemicals used 

for chemoprevention. This paradox is interesting because of the three processes commonly 

implicated in the initiation of cancer in a single cell: metabolism, DNA repair, and cell 

proliferation [56]. DESQ may be metabolized to either the O- or S- reactive nucleophile 

(Figure 4) and both are capable to inducing DNA damage [55]. This current finding is also 

controversial because it intimates that either metabolism is not mandatory for DES to 

produce genotoxic effects in human breast epithelial cells, or like the traditional view of 

longterm (≈30 years) development of cancer, the graded effects of low doses of carcinogens 

over a long time still amount to the same outcome of neoplasm development. Alternatively, 

it is plausible to consider the presence of a discriminate mechanism whereby DES binds 

with high affinity to mitogenic ER-alpha, while the action of DESQ is mediated by a 

‘deceptively protective’ mechanism at ER-beta [57–61]. Further research is necessary to 

elucidate these matters.

In this study, low level, DNA damage spontaneously generated within human breast 

epithelial (MCF10A) cells without exposure to hazardous substances, or with the advantage 

of exposure to the cryoprotective agent, DMSO. This finding is consistent with limited 

evidence suggesting endogenous estrogen under certain conditions can itself serve as an 

initiator of DNA damage [62,63] and increases risk of breast cancer in premenopausal and 

post-menopausal women [64]. Shifting the microenvironment of cells from estrogen-

responsive breast tissue by addition of micoliter quantities of Ficus carica leaf extract 

produced minimal DNA damage relative to experimental controls, implicating its benefits in 

suppressing tumor cell transformation [65], a potential preference for ER-beta [66], and the 

well-established observation that a much weaker estrogenic effect is characteristic of 

phytoestrogens (Figure 5) [66]. These findings also suggest that the fig leaf extract 

employed in these experiments was roughly as safe as controls, permitting differentiation of 

its biological activity when used in combination with carcinogens. It is likely that the high 

phenolic content of fig leaves and the oxygen-scavenging, protective, healing properties of 

Ficus species [67,68] acts in conjunction with routine innate repair mechanisms of 

homeostasis within human breast epithelial cells that are benign but capable of activation 
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[63]. In studies by Zhang and associates [69], treatment with Ficus carica leaf extract did not 

compromise the viability of MCF10A cells.

The mechanism of action of DES, its metabolites or analogs is controversial and efforts to 

elucidate same relative to carcinogenesis continue to emerge. Due to structural similarities, 

the presence of a phenolic A-ring is critical to receptor binding and estrogenic activity at the 

estrogen receptor, but not other steroid receptors [9]. Compared to DES, which has two 

phenol groups at 3-OH and 17-OH, 12.1 Å apart, the distance between these moieties in 

estradiol is 10.9Å [9]. DES metabolites or analogs that retain these characteristics exhibit 

significant activity at the ER, but estrogenic activity is abolished without them [9]. DES and 

estradiol share similar binding affinities (Ka of 1.0 × 1010 ± 0.8 and 1.5 × 1010 ± 0.3, 

respectively) for the estrogen receptor. DES binds to both ER-alpha and ER-beta [70], while 

most phytoestrogens exert their anti-estrogenic effects through ER-beta [60,59]. However, 

whether the carcinogenic potential of the molecule is fueled by the parent compound, or by 

an oxidative metabolite, has long been unclear [71]. Past research has show DESQ to have 

tangibly greater activity than DES under certain conditions [72].

In the present study evaluating the carcinogenic properties of DES, it was DES (the parent 

compound) whose biological activity produced the greater quantity of DNA strand breaks, 

rather than here weaker DESQ, one of its many reactive oxidative metabolites [72,73]. Here, 

the necessity for metabolism of this procarcinogen to produce genomic instability was 

perhaps not the sole determinant of the genotoxic response observed. Both DES and DESQ 

are able to cross the lipophilic cytoplasmic membrane to enter the cytosol, prior to being 

translocated into the nucleus for further binding to the estrogen receptor (ER). Rapid 

metabolism of DESQ by the cytochrome P450 (CYP450) monooxygenase system also 

provokes a weaker physiological response in affected cells. DESQ binds irreversibly and 

with only a fraction of the binding affinity of DES, providing a weaker yet persistent 

stimulus to the ER [74]. DES and DESQ are differentially induce estrogenic and 

carcinogenic effects, albeit with vastly different rates. The longer stay and persistent low 

action of DESQ at the ER increases the probability of genomic interactions and may 

eventually contribute to the promotion of cancer [75]. These findings may also attest to the 

specific and sensitive nature of single-cell gel electrophoresis (“comet assay”) for detection 

of superior structural alignment of DES with the estrogen receptor and the resultant genomic 

disruption [76,77].

On considering the susceptibility of estrogen-sensitive cells to DNA damage, the present 

study implicates environmental estrogens in triggering the neoplastic process. In our study, 

MCF10A cells from benign human breast tumor underwent DNA damage without the 

influence of external stimuli. Addition of DES accelerated the production of DNA strand 

breaks at all doses. On addition of fig leaf extract to the growth medium, antioxidant 

constituents of the extract suppressed the DNA damage, thereby preventing the 

accumulation of DNA strand breaks at all dose levels. In contrast, Zhang and colleagues [69] 

used Ficus carica leaf extracts to suppress neoplastic cell survival, cell cycle and migration 

in triple-negative breast cancer MDA-MB-231 cells. Besides our reported finings, no other 

attempt to utilize a Ficus carica leaf extract to target the initiation stage of human breast 

cancer development in non-transformed, human breast epithelial cells was found. Successful 
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Ficus carica L. chemoprevention was evidenced by the inhibition and/or reversal of DNA 

damage (DNA strand breaks) and the apparent promotion of DNA repair following exposure 

of MCF10A cells to the first synthetic estrogen known to man.

Conclusion

Diethylstilbestrol, the first synthetic estrogen with non-steroidal carcinogenic potential, has 

been shown to disrupt the genomic and morphological integrity of non-transformed (benign) 

human epithelial breast tumor (MCF10A) cells, causing extensive DNA damage (strand 

breaks and fragmentation) characteristic of the onset of cancer. Cellular metabolism of this 

carcinogen to its oxidative quinone intermediate (DESQ) was also potent to MCF10A cells.

The prospective contribution of phytoestrogens in alleviating the public health burden of 

breast cancer is gaining momentum. This pilot study specifically targeted the initiation stage 

of carcinogenesis, for which natural chemopreventive agents were unavailable in the open 

literature at the time of this study. From this research, we report that treatment with Ficus 
carica leaf extract inhibits spontaneous DNA damage and reverses non-steroidal estrogen 

(DES)-induced DNA strand breaks in individual, non-transformed (benign), human 

epithelial breast tumor cells (MCF10A). Ficus carica differentially promotes DNA repair 

and ameliorates comet formation due to the irreversible interaction of oxidative quinine 

metabolites of DES (DESQ) with the nuclear apparatus. To our knowledge, this is among the 

first studies to implicate Ficus carica leaf extract in having both a chemopreventive and 

cancer therapeutic role in early-stage breast cancer.

We, therefore, conclude that Ficus carica L. leaf extract is biologically reactive in vitro and 

interacts with the nuclear complex to abrogate DNA strand breaks in MCF10A cells in the 

presence or absence of diethylstilbestrol (DES) and its oxidative quinine metabolite, 4’,4”-

diethylstilbestrol quinine (DESQ).
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Figure 1: 
Stages of breast cancer development. Progression of breast cancer in females over four 

medically recognized stages: Stage 0 (early diagnosis of localized malignancy in breast 

ducts or milk glands); Stage 1 (cancer dislodges and can invade healthy, intact tissue such as 

fatty breast tissue, or to a lesser extent, lymph nodes); Stage 2 (onset of cancer growth, 

spread or both); Stage 3 (cancer is more resistant to treatment but has not contacted bones or 

organs); Stage 4 (cancer has metastasized from breast and lymph to other parts of body). 

Figure adapted from http://www.arimedex.com.
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Figure 2: 
Stepwise COMET assay procedure. The multistep process begins with cell growth and 

treatment. Suspended cells are fixed to slides prior to alkaline lysis, unwinding and 

electrophoresis. Neutralized slides can be stored in the refrigerator and away light until 

imaging is necessary. Slide are individually stained with propidium iodide immediately 

before fluorescence imaging and comet scoring.
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Figure 3: 
Comet profiles of MCF10A cells in the presence or absence of stimulus. Sample gallery of 

comets representing DNA strand breaks, fragmentation, and migration of fragments.
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Figure 4: 
Metabolism of Diethylstilbestrol. Conversion of DES to the highly active metabolite, DES-

quinone (DES-Q) is a potent initiator of mutations in the DNA structure that cause cancer.
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Figure 5: 
Chemically-induced DNA Damage in Benign Human Breast Epithelial (MCF10A) Cells as 

Measured by Comet Assay.

Effects of DES, fig extract, or combined treatments on MCF10A cells. Induction or 

attenuation of DNA damage in human breast epithelial (MCF10A) cells with DES (0.1 – 10 

μM), fig extract (5 – 15 μL), or high-dose DES plus fig combinations for up to 6 h.

NoTrtCtrl = No treatment control; DMSOCtrl = Dimethyl sulfoxide preserved control; DES 

= Diethylstilbestrol; FIG = Ficus carica leaf extract; DES-1, DES-10, DES-100 = DES 1, 10, 

and 100 μM, respectively; FIG-5, FIG-10, FIG-15 = FIG 5, 10, and 15 μL, respectively.

* Compared to DMSO control, p<.05

+ Compared to DES-10, p<.05

Δ Compared to DES-1, p<.05

# Compared to DES-100, p<.05

▼ Compared to DES 100-Fig 10
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Table 1:

Effect of diethylstilbestrol (DES), a xenoestrogen, and its quinone metabolite on human breast epithelial cell 

(MCF10A) DNA integrity.

Olive Tail Moment (OTM)

By Slide By Treatment Group

Treatment ID n Mean SEM N Mean SEM

NoTrtCtrl

1a 40 0.863 ± 0.169 120 0.813 ± 0.090

1b 40 0.817 ± 0.165

1c 40 0.759 ± 0.132

DMSO Ctrl

2a 40 0.707 ± 0.114 120 0.680 ± 0.068

2b 40 0.767 ± 0.109

2c 40 0.568 ± 0.132

DES-1 μM

3a 40 2.003 ± 0.667 120 1.208 ± 0.246

3b 40 0.754 ± 0.257

3c 40 0.868 ± 0.144

DES-10 μM

4a 40 1.007 ± 0.249 120 1.270 ± 0.142

4b 40 2.089 ± 0.285

4c 40 0.715 ± 0.117

DES-100 μM

5a 40 0.822 ± 0.144 120 1.128 ± 0.105

5b 40 0.984 ± 0.121

5c 40 1.576 ± 0.240

DESQ-1 μM

6a 40 0.574 ± 0.111 120 0.873 ± 0.089

6b 40 0.559 ± 0.122

6c 40 1.486 ± 0.177

DESQ-10 μM

7a 40 0.754 ± 0.142 120 0.588 ± 0.059

7b 40 0.459 ± 0.065

7c 40 0.550 ± 0.079

DESQ-100 μM

8a 40 0.678 ± 0.081 120 0.618 ± 0.055

8b 40 0.649 ± 0.128

8c 40 0.527 ± 0.066
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