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Abstract In many daily tasks, we make multiple decisions before reaching a goal. In order to

learn such sequences of decisions, a mechanism to link earlier actions to later reward is necessary.

Reinforcement learning (RL) theory suggests two classes of algorithms solving this credit

assignment problem: In classic temporal-difference learning, earlier actions receive reward

information only after multiple repetitions of the task, whereas models with eligibility traces

reinforce entire sequences of actions from a single experience (one-shot). Here, we show one-shot

learning of sequences. We developed a novel paradigm to directly observe which actions and

states along a multi-step sequence are reinforced after a single reward. By focusing our analysis on

those states for which RL with and without eligibility trace make qualitatively distinct predictions,

we find direct behavioral (choice probability) and physiological (pupil dilation) signatures of

reinforcement learning with eligibility trace across multiple sensory modalities.

Introduction
In games, such as chess or backgammon, the players have to perform a sequence of many actions

before a reward is received (win, loss). Likewise in many sports, such as tennis, a sequence of muscle

movements is performed until, for example, a successful hit is executed. In both examples, it is

impossible to immediately evaluate the goodness of a single action. Hence the question arises: How

do humans learn sequences of actions from delayed reward?

Reinforcement learning (RL) models (Sutton and Barto, 2018) have been successfully used to

describe reward-based learning in humans (Pessiglione et al., 2006; Gläscher et al., 2010;

Daw et al., 2011; Niv et al., 2012; O’Doherty et al., 2017; Tartaglia et al., 2017). In RL, an action

(e.g. moving a token or swinging the arm) leads from an old state (e.g. configuration of the board,

or position of the body) to a new one. Here, we grouped RL theories into two different classes. The

first class, containing classic Temporal-Difference algorithms (such as TD-0 Sutton, 1988) cannot

support one-shot learning of long sequences, because multiple repetitions of the task are needed

before reward information arrives at states far away from the goal. Instead, one-shot learning

requires algorithms that keep a memory of past states and actions making them eligible for later,

that is delayed reinforcement. Such a memory is a key feature of the second class of RL theories –

called RL with eligibility trace –, which includes algorithms with explicit eligibility traces (Sut-

ton, 1988; Watkins, 1989; Williams, 1992; Peng and Williams, 1996; Singh and Sutton, 1996)
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and related reinforcement learning models (Watkins, 1989; Moore and Atkeson, 1993;

Blundell et al., 2016; Mnih et al., 2016; Sutton and Barto, 2018).

Eligibility traces are well-established in computational models (Sutton and Barto, 2018), and sup-

ported by synaptic plasticity experiments (Yagishita et al., 2014; He et al., 2015; Bittner et al.,

2017; Fisher et al., 2017; Gerstner et al., 2018). However, it is unclear whether humans show one-

shot learning, and a direct test of predictions that are manifestly different between the classes of RL

models with and without eligibility trace has never been performed. Multi-step sequence learning

with delayed feedback (Gläscher et al., 2010; Daw et al., 2011; Walsh and Anderson, 2011;

Tartaglia et al., 2017) offers a way to directly compare the two, because the two classes of RL mod-

els make qualitatively different predictions. Our question can therefore be reformulated more pre-

cisely: Is there evidence for RL with eligibility trace in the form of one-shot learning? In other words,

are actions and states more than one step away from the goal, reinforced after a single rewarded

experience? And if eligibility traces play a role, how many states and actions are reinforced by a sin-

gle reward?

To answer these questions, we designed a novel sequential learning task to directly observe

which actions and states of a multi-step sequence are reinforced. We exploit that after a single

reward, models of learning without eligibility traces (our null hypothesis) and with eligibility traces

(alternative hypothesis) make qualitatively distinct predictions about changes in action-selection bias

and in state evaluation (Figure 1). This qualitative difference in the second episode (i.e. after a single

reward) allows us to draw conclusions about the presence or absence of eligibility traces indepen-

dently of specific model fitting procedures and independently of the choice of physiological corre-

lates, be it EEG, fMRI, or pupil responses. We therefore refer to these qualitative differences as

’direct’ evidence.

We measure changes in action-selection bias from behavior and changes in state evaluation from

a physiological signal, namely the pupil dilation. Pupil responses have been previously linked to deci-

sion making, and in particular to variables that reflect changes in state value such as expected

reward, reward prediction error, surprise, and risk (O’Doherty et al., 2003; Jepma and Nieuwen-

huis, 2011; Otero et al., 2011; Preuschoff et al., 2011). By focusing our analysis on those states for

which the two hypotheses make distinct predictions after a single reward (’one-shot’), we find direct

behavioral and physiological signatures of reinforcement learning with eligibility trace. The observed

one-shot learning sheds light on a long-standing question in human reinforcement learning

(Bogacz et al., 2007; Daw et al., 2011; Walsh and Anderson, 2011; Walsh and Anderson, 2012;

Weinberg et al., 2012; Tartaglia et al., 2017).

Results
Since we were interested in one-shot learning, we needed an experimental multi-step action para-

digm that allowed a comparison of behavioral and physiological measures between episode 1

(before any reward) and episode 2 (after a single reward). Our learning environment had six states

plus a goal G (Figures 1 and 2) identified by clip-art images shown on a computer screen in front of

the participants. It was designed such that participants were likely to encounter in episode 2 the

same states D1 (one step away from the goal) and/or D2 (two steps away) as in episode 1 (Figure 1

(a)). In each state, participants chose one out of two actions, ’a’ or ’b’, and explored the environment

until they discovered the goal G (the image of a reward) which terminated the episode. The partici-

pants were instructed to complete as many episodes as possible within a limited time of 12 min

(Materials and methods).

The first set of predictions applied to the state D1 which served as a control if participants were

able to learn, and assign value to, states or actions. Both classes of algorithms, with or without eligi-

bility trace, predicted that effects of learning after the first reward should be reflected in the action

choice probability during a subsequent visit of state D1 (Figure 1 (b)). For estimated effect size, see

subsection Q-lambda model predictions in ’Methods. Furthermore, any physiological variable that

correlates with variables of reinforcement learning theories, such as action value Q, state value V , or

TD-error, should increase at the second encounter of D1. To assess this effect of learning, we mea-

sured the pupil dilation, a known physiological marker for learning-related signals (O’Doherty et al.,

2003; Jepma and Nieuwenhuis, 2011; Otero et al., 2011; Preuschoff et al., 2011). The advantage

of our hypothesis-driven approach was that we did not need to make assumptions about the
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neurophysiological mechanisms causing pupil changes. Comparing the pupil dilation at state D1 in

episode 1 to episode 2 (Figure 1(b), null hypothesis and alternative), provided a baseline for the

putative effect.

Our second set of predictions concerned state D2. RL without eligibility trace (null hypothesis)

such as TD-0, predicted that the action choice probability at D2 during episode 2 should be at 50

percent, since information about the reward at the goal state G cannot ‘travel’ two steps. However,

the class of RL with eligibility trace (alternative hypothesis) predicted an increase in the probability

of choosing the correct action, that is the one leading toward the goal (For estimated effect size,

see subsection Q-lambda model predictions in Methods). The two hypotheses also made different

predictions about the pupil response to the onset of state D2. Under the null hypothesis, the evalua-

tion of the state D2 could not change after a single reward. In contrast, learning with eligibility trace

predicted a change in state evaluation, presumably reflected in pupil dilation (Figure 1(b)).

!"! !#!

$%&"'()*+,-.(/)0%,1 2&3/()4)53+,-.(/)0%,6,'/7,-.(/)0%,1

89"9%,!" 89"9%,:6 89"9%,!" 89"9%,:6

;<44=

>3.)9&%/(/?

@%"*A(A5,

B(9&)<9

%4(5(#(4(93,

9*"C%

D49%*A"9('%

>3.)9&%/(/?

@%"*A(A5,

B(9&

%4(5(#(4(93,

9*"C%
!"! !#!

!"! !#!

!"! !#!

GHI

GHI

"

#

/9"9%,)A

J

9/9"9%,)A

J

9

/9"9%,)A

J

9
/9"9%,)A

J

9

-.(/)0%,1

-.(/)0%,6

###

2*%0(C9()A/

>3.)9&%/(/

Figure 1. Experimental design and hypothesis. (a) Typical state-action sequences of the first two episodes. At each state, participants execute one of

two actions, ’a’ or ’b’, leading to the next state. Here, the participant discovered the goal state after randomly choosing three actions: ’b’ in state S

(Start), ’a’ in D2 (two actions from the goal), and ’b’ in D1 (one action from the goal). Episode 1 terminated at the rewarding goal state. Episode 2

started in a new state, Y. Note that D2 and D1 already occurred in episode 1. In this example, the participant repeated the actions which led to the

goal in episode 1 (’a’ at D2 and ’b’ at D1). (b) Reinforcement learning models make predictions about such behavioral biases, and about learned

properties (such as action value Q, state value V or TD-errors, denoted as x) presumably observable as changes in a physiological measure (e.g. pupil

dilation). Null Hypothesis: In RL without eligibility traces, only the state-action pair immediately preceding a reward is reinforced, leading to a bias at

state D1, but not at D2 (50%-line). Similarly, the state value of D2 does not change and therefore the physiological response at the D2 in episode 2

(solid red line) should not differ from episode 1 (dashed black line). Alternative Hypothesis: RL with eligibility traces reinforces decisions further back in

the state-action history. These models predict a behavioral bias at D1 and D2, and a learning-related physiological response at the onset of these

states after a single reward. The effects may be smaller at state D2 because of decay factors in models with eligibility traces.
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Figure 2. A single delayed reward reinforces state-action associations. (a) Structure of the environment: six states, two actions, rewarded goal G.

Transitions (arrows) were predefined, but actions were attributed to transitions during the experiment. Unbeknownst to the participants, the first actions

always led through the sequence S (Start), D2 (two steps before goal), D1 (one step before goal) to G (Goal). Here, the participant chose actions ’b’, ’a’,

’b’ (underlined boldface). (b) Half of the experiments, started episode 2 in X, always leading to D1, where we tested if the action rewarded in episode 1

was repeated. (c) In the other half of experiments, we tested the decision bias in episode 2 at D2 (’a’ in this example) by starting from Y. (d) The same

structure was implemented in three conditions. In the spatial condition (22 participants, top row in Figures (d), (e) and (f)), each state is identified by a

fixed location (randomized across participants) of a checkerboard, flashed for a 100 ms on the screen. Participants only see one checkerboard at a time;

the red arrows and state identifiers S, D2, D1, G are added to the figure to illustrate a first episode. In the sound condition (15 participants, middle

row), states are represented by unique short sounds. In the clip-art condition (12 participants, bottom row), a unique image is used for each state. (e)

Action selection bias in state D1, in episode 2, averaged across all participants. (f) In all three conditions the action choices at D2 were significantly

different from chance level (dashed horizontal line) and biased toward the actions that have led to reward in episode 1. Error bars: SEM, �p<0:05,
���p<0:001. For clarity, actions are labeled ’a’ and ’b’ in (e) and (f), consistent with panels (a) - (c), even though actual choices of participants varied.
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Participants could freely choose actions, but in order to maximize encounters with states D1 and

D2, we assigned actions to state transitions ’on the fly’. In the first episode, all participants started in

state S (Figure 1 (a) and 2(a)) and chose either action ’a’ or ’b’. Independently of their choice and

unbeknownst to the participants, the first action brought them always to state D2, two steps away

from the goal. Similarly, in D2, participants could freely choose an action but always transitioned to

D1, and with their third action, to G. These initial actions determined the assignment of state-action

pairs to state transitions for all remaining episodes in this environment. For example, if, during the

first episode, a participant had chosen action ’a’ in state D2 to initiate the transition to D1, then

action ’a’ brought this participant in all future encounters of D2 to D1, whereas action ’b’ brought

her from D2 to Z (Figure 2). In episode 2, half of the participants started from state Y. Their first

action always brought them to D2, which they had already seen once during the first episode. The

other half of the participants started in state X and their first action brought them to D1 (Figure 2

(b)). Participants who started episode 2 in state X started episode 3 in state Y and vice versa. In epi-

sodes 4 to 7, the starting states were randomly chosen from {S, D2, X, Y, Z}. After seven episodes,

we considered the task as solved, and the same procedure started again in a new environment (see

Materials and methods for the special cases of repeated action sequences). This task design allowed

us to study human learning in specific and controlled state sequences, without interfering with the

participant’s free choices.

Behavioral evidence for one-shot learning
As expected, we found that the action taken in state D1 that led to the rewarding state G was rein-

forced after episode 1. Reinforcement was visible as an action bias toward the correct action when

D1 was seen again in episode 2 (Figure 2 (e)). This action bias is predicted by many different RL

algorithms including the early theories of Rescorla and Wagner (1972).

Importantly, we also found a strong action bias in state D2 in episode 2: participants repeated

the correct action (the one leading toward the goal) in 85% of the cases. This strong bias is signifi-

cantly different from chance level 50% (p<0.001; Figure 2 (f)), and indicates that participants learned

to assign a positive value to the correct state-action pair after a single exposure to state D2 and a

single reward at the end of episode 1. In other words, we found evidence for one-shot learning in a

state two steps away from goal in a multi-step decision task.

This is compatible with our alternative hypothesis, that is the broad class of RL ’with eligibility

trace’, (Sutton, 1988; Watkins, 1989; Williams, 1992; Moore and Atkeson, 1993; Peng and Wil-

liams, 1996; Singh and Sutton, 1996; Mnih et al., 2016; Blundell et al., 2016; Sutton and Barto,

2018) that keep explicit or implicit memories of past state-action pairs (see Discussion). However, it

is not compatible with the null hypothesis, that is RL ’without eligibility trace’. In both classes of algo-

rithms, action biases or values that reflect the expected future reward are assigned to states. In RL

’without eligibility trace’, however, value information collected in a single action step is shared only

between neighboring states (for example between states G and D1), whereas in RL ’with eligibility

trace’ value information can reach state D2 after a single episode. Importantly, the above argument

is both fundamental and qualitative in the sense that it does not rely on any specific choice of param-

eters or implementation details of an algorithm. Our finding can be interpreted as a signature of a

behavioral eligibility trace in human multi-step decision making and complements the well-estab-

lished synaptic eligibility traces observed in animal models (Yagishita et al., 2014; He et al., 2015;

Bittner et al., 2017; Fisher et al., 2017; Gerstner et al., 2018).

We wondered whether the observed one-shot learning in our multi-step decision task depended

on the choice of stimuli. If clip-art images helped participants to construct an imaginary story (e.g.

with the method of loci; Yates, 1966) in order to rapidly memorize state-action associations, the

effect should disappear with other stimuli. We tested participants in environments where states were

defined by acoustic stimuli (2nd experiment: sound condition) or by the spatial location of a black-

and-white rectangular grid on the grey screen (3rd experiment: spatialcondition; see Figure 2 and

Materials and methods). Across all conditions, results were qualitatively similar (Figure 2 (f)): not

only the action directly leading to the goal (i.e. the action in D1) but also the correct action in state

D2 were chosen in episode 2 with a probability significantly different from random choice. This

behavior is consistent with the class of RL with eligibility trace, and excludes all algorithms in the

class of RL without eligibility trace.
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Even though results are consistent across different stimuli, we cannot exclude that participants

simply memorize state-action associations independently of the rewards. To exclude a reward-inde-

pendent memorization strategy, we performed a control experiment in which we tested the action-

bias at state D2 (see Figure 3) in the absence of a reward. In a design similar to the clip-art condition

(Figure 1 (a)), the participants freely chose actions that moved them through a defined, non-

rewarded, sequence of states (namely S-D2-D1-N-Y-D2, see Figure 3 (b) during the first episode. By

design of the control experiment, participants reach the state D2 twice before they encounter any

reward. Upon their second visit of state D2, we measured whether participants repeated the same

action as during their first visit. Such a repetition bias could be explained if participants tried to

memorize and repeat state-action associations even in the absence of a reward between the two vis-

its. In the control experiment we observed a weak non-significant (p=0.45) action-repetition bias of

only 56% (Figure 3 (c) in contrast to the main experiment (with a reward between the first and sec-

ond encounter of state D2) where we observed a repetition bias of 85%. These results indicate that

earlier rewards influence the action choice when a state is encountered a second time.

Reinforcement learning with eligibility trace is reflected in pupil dilation
We then investigated the time-series of the pupil diameter. Both, the null and the alternative hypoth-

esis predict a change in the evaluation of state D1, when comparing the second with the first

encounter. Therefore, if the pupil dilation indeed serves as a proxy for a learning-related state evalu-

ation (be it Q-value, V-value, or TD-error); we should observe a difference between the pupil

response to the onset of state D1 before (episode 1) and after (episode 2) a single reward.
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Figure 3. Control experiment without reward. (a) Sequence of the first six state-action pairs in the first control experiment. The state D2 is visited twice

and the number of states between the two visits is the same as in the main experiment. The original goal state has been replaced by a non-rewarded

state N. The control experiment focuses on the behavior during the second visit of state D2, further state-action pairs are not relevant for this analysis.

(b) The structure of the environment has been kept as close as possible to the main experiment (Figure 2 (a)). (c) Ten participants performed a total of

32 repetitions of this control experiment. Participants show an average action-repetition bias of 56%. This bias is not significantly different from the 50%

chance level (p ¼ 0:45) and much weaker than the 85% observed in the main experiment (Figure 2 (f)).
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We extracted (Materials and methods) the time-series of the pupil diameter, focused on the inter-

val [0s, 3s] after the onset of states D2 or D1, and averaged the data across participants and environ-

ments (Figure 4, black traces). We observed a significant change in the pupil dilatory response to

stimulus D1 between episode 1 (black curve) and episode 2 (red curve). The difference was com-

puted per time point (paired samples t-test); significance levels were adjusted to control for false dis-

covery rate (FDR, Benjamini and Hochberg, 1995) which is a conservative measure given the

temporal correlations of the pupillometric signal. This result suggests that participants change the

evaluation of D1 after a single reward and that this change is reflected in pupil dilation.

Importantly, the pupil dilatory response to the state D2 was also significantly stronger in episode

2 than in episode 1. Therefore, if pupil diameter is correlated with the state value V , the action value

Q, the TD-error, or a combination thereof, then the class of RL without eligibility trace must be

excluded as an explanation of the pupil response (i.e. we can reject the null hypothesis in Figure 1).

However, before drawing such a conclusion we controlled for correlations of pupil response with

other parameters of the experiment. First, for visual stimuli, pupil responses changed with stimulus

luminance. The rapid initial contraction of the pupil observed in the clip-art condition (bottom row in
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Figure 4. Pupil dilation reflects one-shot learning. (a) Pupil responses to state D1 are larger during episode 2 (red curve) than during episode 1 (black).

(b) Pupil responses to state D2 are larger during episode 2 (red curve) than during episode 1 (black). Top row: spatial, middle row: sound, bottom row:

clip-art condition. Pupil diameter averaged across all participants in units of standard deviation (z-score, see Materials and methods), aligned at

stimulus onset and plotted as a function of time since stimulus onset. Thin lines indicate the pupil signal ± SEM. Green lines indicate the time interval

during which the two curves differ significantly (p<FDRa ¼ 0:05). Significance was reached at a time tmin, which depends on the condition and the state:

spatial D1:tmin ¼ 730ms (22, 131, 85); spatial D2: tmin ¼ 1030ms (22, 137,130) sound D1: tmin ¼ 1470ms (15, 34, 19); sound D2: tmin ¼ 1280ms (15, 35, 33);

clip-art D1: tmin ¼ 970ms (12, 39, 19); clip-art D2: tmin ¼ 980ms (12, 45, 41); (Numbers in brackets: number of participants, number of pupil traces in

episode 1 or 2, respectively). (c) Participant-specific mean pupil dilation at state D2 (averaged over the interval (1000 ms, 2500 ms)) before (black dot)

and after (red dot) the first reward. Grey lines connect values of the same participant. Differences between episodes are significant (paired t-test,

p-values indicated in the Figure).
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Figure 4) was a response to the 300 ms display of the images. In the spatial condition, this initial

transient was absent, but the difference in state D2 between episode 1 and episode 2 were equally

significant. For the sound condition, in which stimuli were longer on average

(Materials and methods), the significant separation of the curves occurred slightly later than in the

other two conditions. A paired t-test of differences showed that, across all three conditions, pupil

dilation changes significantly between episodes 1 and 2 (Figure 4(c); paired t-test, p<0.001 for the

spatial condition, p<0.01 for the two others). Since in all three conditions luminance is identical in

episodes 1 and 2, luminance cannot explain the observed differences.

Second, we checked whether the differences in the pupil traces could be explained by the novelty

of a state during episode 1, or familiarity with the state in episode 2 (Otero et al., 2011), rather

than by reward-based learning. In a further control experiment, a different set of participants saw a

sequence of states, replayed from the main experiment. In order to ensure that participants were

focusing on the state sequence and engaged in the task, they had to push a button in each state

(freely choosing either ’a’ or ’b’), and count the number of states from start to goal. Stimuli, timing

and data analysis were the same as in the main experiment. The strong difference after 1000ms in

state D2, that we observed in Figure 4 (b), was absent in the control experiment (Figure 5) indicat-

ing that the significant differences in pupil dilation in response to state D2 cannot be explained by

novelty or familiarity alone. The findings in the control experiment also exclude other interpretations

of correlations of pupil diameter such as memory formation in the absence of reward.

In summary, across three different stimulus modalities, the single reward received at the end of

the first episode strongly influenced the pupil responses to the same stimuli later in episode 2.

Importantly, this effect was observed not only in state D1 (one step before the goal) but also in state

D2 (two steps before the goal). Furthermore, a mere engagement in button presses while observing

a sequence of stimuli, as in the control experiment, did not evoke the same pupil responses as the

main task. Together these results suggested that the single reward at the end of the first episode

triggered increases in pupil diameter during later encounters of the same state. The increases

observed in state D1 are consistent with an interpretation that pupil diameter reflects state value V ,

action value Q, or TD error - but do not inform us whether Q-value, V-value, or TD-error are esti-

mated by the brain using RL with or without eligibility trace. However, the fact that very similar

changes are also observed in state D2 excludes the possibility that the learning-related contribution

to the pupil diameter can be predicted by RL without eligibility trace.

While our experiment was not designed to identify whether the pupil response reflects TD-errors

or state values, we tried to address this question based on a model-driven analysis of the pupil

traces. First, we extracted all pupil responses after the onset of non-goal states and calculated the

TD-error (according to the best-fitting model, Q-l, see next section) of the corresponding state tran-

sition. We found that the pupil dilation was much larger after transitions with high TD-error com-

pared to transitions with zero TD-error (Figure 6 (a) and Materials and methods). Importantly, these

temporal profiles of the pupil responses to states with high TD-error had striking similarities across

the three experimental conditions, whereas the mean response time course was different across the

three conditions (Figure 6 (c). This suggests that the underlying physiological process causing the

TD-error-driven component in the pupil responses was invariant to stimulation details. Second, a sta-

tistical analysis including data with low, medium, and high TD-error confirmed the correlation of

pupil dilation with TD error (see subsection regression analysis in methods). Third, a further qualita-

tive analysis revealed that TD-error, rather than value itself, was a factor modulating pupil dilation

(Figure 6 (b).

Estimation of the time scale of the behavioral eligibility trace using
reinforcement learning models
Given the behavioral and physiological evidence for RL with eligibility trace, we wondered whether

our findings are consistent with earlier studies (Bogacz et al., 2007; Daw et al., 2011;

Tartaglia et al., 2017) where several variants of reinforcement learning algorithms were fitted to the

experimental data. We considered algorithms with and (for comparison) without eligibility trace. Eli-

gibility traces enðs; aÞ can be modeled as a memory of past state-action pairs ðs; aÞ in an episode. At

the beginning of each episode all twelve eligibility trace values (two actions for each of the six deci-

sion states) were set to enðs; aÞ ¼ 0. At each discrete time step n, the eligibility of the current state-
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action pair was set to 1, while that of all others decayed by a factor gl according to Singh and

Sutton (1996)

enðs;aÞ ¼
1 if s¼ sn; a¼ an

glen�1ðs;aÞ otherwise:

�

(1)

The parameter g 2 ð0;1Þ exponentially discounts a distal reward, as commonly described in neuro-

economics (Glimcher and Fehr, 2013) and machine learning (Sutton and Barto, 2018); the parame-

ter l2 ½0;1� is called the decay factor of the eligibility trace. The limit case l¼ 0 is interpreted as no

memory and represents an instance of RL without eligibility trace. Even though the two parameters

g and l appear as a product in Equation 1 so that the decay of the eligibility trace depends on

both, they have different effects in spreading the reward information from one state to the next (cf.

Equation 3 in Materials and methods). After many trials, the V-values of states, or Q-values of

actions, approach final values which only depend on g, but not on l. Given a parameter g>0, the

choice of l determines how far value information spreads in a single trial. Note that for l¼ 0 (RL

without eligibility trace); Equation 1 assigns an eligibility en ¼ 1 to state D1 in the first episode at the

moment of the transition to the goal (while the eligibility at state D2 is 0). These values of eligibility
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Figure 5. Pupil dilation during the second control experiment. In the second control experiment, different participants passively observed state

sequences which were recorded during the main experiment. Data analysis was the same as for the main experiment. (a) Pupil time course after state

onset (t ¼ 0) of state D1 (before goal). (b) State D2 (two before goal). Black traces show the pupil dilation during episode one, red traces during

episode two. At state D1 in the clip-art condition, the pupil time course shows a separation similar to the one observed in the main experiment. This

suggest that participants may recognize the clip-art image that appears just before the final image. Importantly in state D2, the pupil time course

during episode 2 is qualitatively different from the one in the main experiment (Figure 4).
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traces lead to a spread of reward information from the goal to state D1, but not to D2, at the end of

the first episode in models without eligibilty trace (cf. Equation 3 and subsection Q-l model predic-

tions in methods), hence the qualitative argument for episodes 1 and 2 as sketched in Figure 1.

We considered eight common algorithms to explain the behavioral data: Four algorithms

belonged to the class of RL with eligibility traces. The first two, SARSA-l and Q-l (see

Materials and methods, Equation 3) implement a memory of past state-action pairs by an eligibility

trace as defined in Equation 1; as a member of the Policy-Gradient family, we implemented a variant

of Reinforce (Williams, 1992; Sutton and Barto, 2018), which memorizes all state-action pairs of an

episode. A fourth algorithm with eligibility trace is the 3-step Q-learning algorithm (Watkins, 1989;

Mnih et al., 2016; Sutton and Barto, 2018), which keeps memory of past states and actions over

three steps (see Discussion and Materials and methods). From the model-based family of RL, we

chose the Forward Learner (Gläscher et al., 2010), which memorizes not state-action pairs, but

learns a state-action-next-state model, and uses it for offline updates of action-values. The Hybrid

Learner (Gläscher et al., 2010) combines the Forward Learner with SARSA-0. As a control, we chose
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Figure 6. Reward prediction error (RPE) at non-goal states modulates pupil dilation. Pupil traces (in units of standard deviation) from all states except G

were aligned at state onset (t ¼ 0ms) and the mean pupil response �t was subtracted (see Materials and methods). (a) The deviation from the mean is

shown for states where the model predicts RPE ¼ 0 (black, dashed) and for states where the model predicts RPE � 80
th percentile (solid, blue). Shaded

areas: ± SEM. Thus the pupil dilation reflects the RPE predicted by a reinforcement learning model that spreads value information to nonrewarded

states via eligibility traces. (b) To qualitatively distinguish pupil correlations with RPE from correlations with state values VðsÞ, we started from the

following observation: the model predicts that RPE decreases over the course of learning (due to convergence), while the state values VðsÞ increase

(due to spread of value information). We wanted to observe this qualitative difference in the pupil dilations of subsequent visits of the same state. We

selected pairs of visits n and nþ 1 for which the RPE decreased while VðsÞ increased and extracted the pupil measurements of the two visits (again,

mean �t is subtracted). The dashed, black curves show the average pupil trace during the nth visit of a state. The solid black curves correspond to the

next visit (nþ 1) of the same state. In the spatial condition, the two curves significantly (p<FDRa ¼ 0:05) separate at t>1s (indicated by the green line). All

three conditions show the same trend (with strong significance in the spatial condition), compatible with a positive correlation of pupil response with

RPE, but not with state value VðsÞ. (c) The mean pupil dilation �t is different in each condition, whereas the learning related deviations from the mean

(in (a) and (b)) have similar shapes.
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two algorithms belonging to the class of RL without eligibility traces (thus modeling the null hypoth-

esis): SARSA-0 and Q-0.

We found that the four RL algorithms with eligibility trace explained human behavior better than

the Hybrid Learner, which was the top-scoring among all other RL algorithms. Cross-validation con-

firmed that our ranking based on the Akaike Information Criterion (AIC, Akaike, 1974; see

Materials and methods) was robust. According to the Wilcoxon rank-sum test, the probability that

the Hybrid Learner ranks better than one of the three RL algorithms with explicit eligibility traces

was below 14% in each of the conditions and below 0.1% for the aggregated data (p<0:001, Table 1

and Materials and methods). The models Q-l and SARSA-l with eligbility trace performed each sig-

nificantly better than the corresponding models Q-0 and SARSA-0 without eligbility trace.

Since the ranks of the four RL algorithms with eligibility traces were not significantly different, we

focused on one of these, viz. Q-l. We wondered whether the parameter l that characterizes the

decay of the eligibility trace in Equation 1 could be linked to a time scale. To answer this question,

we proceeded in two steps. First, we analyzed the human behavior in discrete time steps corre-

sponding to state transitions. We found that the best fitting values (maximum likelihood, see

Materials and methods) of the eligibility trace parameter l were 0.81 in the clip-art, 0.96 in the

sound, and 0.69 in the spatial condition (see Figure 7). These values are all significantly larger than

zero (p<0.001) indicating the presence of an eligibility trace consistent with our findings in the previ-

ous subsections.

In a second step, we modeled the same action sequence in continuous time, taking into account

the measured inter-stimulus interval (ISI) which was the sum of the reaction time plus a random delay

of 2.5 to 4 seconds after the push-buttons was pressed. The reaction times were similar in the spa-

tial- and clip-art condition, and slightly longer in the sound condition with the following 10%, 50%

Table 1. Models with eligibility trace explain behavior significantly better than alternative models.

Four reinforcement learning models with eligibility trace (Q-l, REINFORCE, SARSA-l, 3-step-Q); two model-based algorithms (Hybrid,

Forward Learner), two RL models without eligibility trace (Q-0, SARSA-0), and a null-model (Biased Random, Materials and methods)

were fitted to the human behavior, separately for each experimental condition (spatial, sound, clip-art). Models with eligibility trace

ranked higher than those without (lower Akaike Information Criterion, AIC, evaluated on all participants performing the condition).

wAIC indicates the normalized Akaike weights (Burnham and Anderson, 2004), values < 0.01 are not added to the table. Note that

only models with eligibility trace have wAIC>0:01. The ranking is stable as indicated by the sum of k rankings (column rank sum) on

test data, in k-fold crossvalidation (Materials and methods). P-values refer to the following comparisons: P(a): Each model in the with

eligibility trace group was compared with the best model without eligibility trace (Hybrid in all conditions); models for which the com-

parison is significant are shown in bold. P(b): Q-0 compared with Q-l. P(c): SARSA-0 compared with SARSA-l. P(d): Biased Random

compared with the second last model, which is Forward Learner in the clip-art condition and SARSA-0 in the two others. In the Aggre-

gated column, we compared the same pairs of models, taking into account all ranks across the three conditions. All algorithms with eli-

gibility trace explain the human behavior better (p(e)<.001) than algorithms without eligibility trace. Differences among the four

models with eligibility trace are not significant. In each comparison, k pairs of individual ranks are used to compare pairs of models

and obtain the indicated p-values (Wilcoxon rank-sum test, Materials and methods).

Condition Spatial Sound Clip-art Aggregated

Model AIC Rank Sum
(k = 11)

AIC Rank Sum
(k = 7)

AIC Rank Sum
(k = 7) all ranks

With elig tr.

Q-l 6470:2
pðaÞ¼:003
wAIC¼1:00

24 1489:1
pðaÞ¼:015
wAIC¼0:23

20 1234:8
pðaÞ¼:062
wAIC¼0:27

20 64pðeÞ<:001

Reinforce 6508:7pðaÞ¼:016 35 1486:8
pðaÞ¼:015
wAIC¼0:74

10 1239:2
pðaÞ¼:109
wAIC¼0:03

22 67pðeÞ<:001

3-step-Q 6488:8pðaÞ¼:013 33 1494:3
pðaÞ¼:046
wAIC¼0:02

26 1236:6
pðaÞ¼:015
wAIC¼0:11

16 71pðeÞ<:001

SARSA-l 6502:4pðaÞ¼:003 36 1495:2
pðaÞ¼:040
wAIC¼0:01

30 1233:2
pðaÞ¼:015
wAIC¼0:59

16 82pðeÞ<:001

Model based
Hybrid 6536:6 61 1498:3 43 1271:3 33 137

pðeÞ<:001

Forward Learner 6637:5 79 1500:6 41 1316:3 48 168

Without elig tr.
Q-0 6604:0pðbÞ¼:003 60 1518:6pðbÞ¼:046 39 1292:0pðbÞ¼:015 51 150

pðbÞ<:001

SARSA-0 6643:3pðcÞ¼:001 68 1520:2pðcÞ¼:093 43 1289:5pðcÞ¼:015 46 157
pðcÞ<:001

Biased Random 7868:3pðdÞ¼:001 99 1866:1pðdÞ¼:015 63 1761:1pðdÞ¼:015 63 225
pðdÞ<:001
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and 90% percentiles: spatial: [0.40, 1.19, 2.73], clip-art: [0.50, 1.11, 2.57], sound: [0.67, 1.45, 3.78]

seconds. In this continuous-time version of the eligibility trace model, both the discount factor g and

the decay factor l were integrated into a single time constant t that describes the decay of the

memory of past state-action associations in continuous time. We found maximum likelihood values

for t around 10s (Figure 7), corresponding to 2 to 3 inter-stimulus intervals. This implies that an

action taken 10s before a reward was reinforced and associated with the state in which it was taken

– even if one or several decisions happened in between (see Discussion).

Thus eligibility traces, that is memories of past state-action pairs, decay over about 10s and can

be linked to a reward occurring during that time span.

Discussion
Eligibility traces provide a mechanism for learning temporally extended action sequences from a sin-

gle reward (one-shot). While one-shot learning is a well-known phenomenon for tasks such as image

recognition (Standing, 1973; Brady et al., 2008) and one-step decision making (Duncan and Shoh-

amy, 2016; Greve et al., 2017; Rouhani et al., 2018) it has so far not been linked to Reinforcement

Learning (RL) with eligibility traces in multi-step decision making.

In this study, we asked whether humans use eligibility traces when learning long sequences from

delayed feedback. We formulated mutually exclusive hypotheses, which predict directly observable

changes in behavior and in physiological measures when learning with or without eligibility traces.

Using a novel paradigm, we could reject the null hypothesis of learning without eligibility trace in

favor of the alternative hypothesis of learning with eligibility trace.

Our multi-step decision task shares aspects with earlier work in the neurosciences

(Pessiglione et al., 2006; Gläscher et al., 2010; Daw et al., 2011; Walsh and Anderson, 2011;

Niv et al., 2012; O’Doherty et al., 2017), but overcomes their limitations (i) by using a recurrent

graph structure of the environment that enables relatively long episodes (Tartaglia et al., 2017),

and (ii) by implementing an ’on-the-fly’ assignment rule for state-action transitions during the first

episodes. This novel design allows the study of human learning in specific and controlled conditions,

without interfering with the participant’s free choices.

A difficulty in the study of eligibility traces, is that in the relatively simple tasks typically used in

animal (Pan et al., 2005) or human (Bogacz et al., 2007; Gureckis and Love, 2009; Daw et al.,
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Figure 7. Eligibility for reinforcement decays with a time-scale t in the order of 10 s. The behavioral data of each experimental condition constrain the

free parameters of the model Q-l to the ranges indicated by the blue histograms (see methods) (a) Distribution over the eligibility trace parameter l in

Equation 1 (discrete time steps). Vertical black lines indicate the values that best explain the data (maximum likelihood, see Materials and methods). All

values are significantly different from zero. (b) Modeling eligibility in continuous time with a time-dependent decay (Materials and methods,

Equation 5), instead of a discrete per-step decay. The behavioral data constrains the time-scale parameter t to around 10 s. Values in the column All

are obtained by fitting l and t to the aggregated data of all conditions.
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2011; Walsh and Anderson, 2011; Weinberg et al., 2012; Tartaglia et al., 2017) studies, the two

hypotheses make qualitatively different predictions only during the first episodes: At the end of the

first episode, algorithms in the class of RL without eligibility trace update only the value of state D1

(but not of D2, see Figure 1, Null hypothesis). Then, this value of D1 will drive learning at state D2

when the participants move from D2 to D1 during episode 2. In contrast, algorithms in the class of

RL with eligibility trace, update D2 already during episode one. Therefore, only during episode 2,

the behavioral data permits a clean, qualitative dissociation between the two classes. On the other

hand, the fact that for most episodes, the differences are not qualitative, is the reason why eligibility

trace contributions have typically been statistically inferred from many trials through model selection

(Pan et al., 2005; Bogacz et al., 2007; Gureckis and Love, 2009; Daw et al., 2011; Walsh and

Anderson, 2011; Tartaglia et al., 2017). Here, by a specific task design and a focus on episodes 1

and 2, we provided directly observable, qualitative, evidence for learning with eligibility traces from

behavior and pupil data without the need of model selection.

In the quantitative analysis, RL models with eligibility trace explained the behavioral data signifi-

cantly better than the best tested RL models without. There are, however, in the reinforcement

learning literature, several alternative algorithms that would also account for one-shot learning but

do not rely on the explicit eligibility traces formulated in Equation 1. First, n-step reinforcement

learning algorithms (Watkins, 1989; Mnih et al., 2016; Sutton and Barto, 2018) compare the value

of a state not with that of its direct neighbor but of neighbors that are n steps away. These algo-

rithms are closely related to eligibility traces and in certain cases even mathematically equivalent

(Sutton and Barto, 2018). Second, reinforcement learning algorithm with storage of past sequences

(Moore and Atkeson, 1993; Blundell et al., 2016; Mnih et al., 2016) enable the offline replay of

the first episode so as to update values of states far away from the goal. While these approaches are

formally different from eligibility traces, they nevertheless implement the idea of eligibility traces as

memory of past state-action pairs (Crow, 1968; Frémaux and Gerstner, 2015), albeit in a different

algorithmic framework. For example, prioritized sweeping with small backups (Seijen and Sutton,

2013) is an offline algorithm that is, if applied to our deterministic environment after the end of the

first episode, equivalent to both episodic control (Brea, 2017) and an eligibility trace. Interestingly,

the two model-based algorithms (Forward Learner and Hybrid) would in principle be able to explain

one-shot learning since reward information is spread, after the first episode, throughout the model,

via offline Q-value updates. Nevertheless, when behavioral data from our experiments were fitted

across all seven episodes, the two model-based algorithms performed significantly worse than the

RL models with explicit eligibility traces. Since our experimental design does not allow us to distin-

guish between these different algorithmic implementations of closely related ideas, we put them all

in the class of RL with eligibility traces.

Importantly, RL algorithms with explicit eligibility traces (Sutton, 1988; Williams, 1992;

Peng and Williams, 1996; Izhikevich, 2007; Frémaux and Gerstner, 2015) can be mapped to

known synaptic and circuit mechanisms (Yagishita et al., 2014; He et al., 2015; Bittner et al.,

2017; Fisher et al., 2017; Gerstner et al., 2018). A time scale of the eligibility trace of about 10s in

our experiments is in the range of, but a bit longer than those observed for dopamine modulated

plasticity in the striatum (Yagishita et al., 2014), serotonin and norepinephrine modulated plasticity

in the cortex (He et al., 2015), or complex-spike plasticity in hippocampus (Bittner et al., 2017), but

shorter than the time scales of minutes reported in hippocampus (Brzosko et al., 2017). The basic

idea for the relation of eligibility traces as in Equation 1 to experiments on synaptic plasticity is that

choosing action a in state s leads to co-activation of neurons and leaves a trace at the synapses con-

necting those neurons. A later phasic neuromodulator signal will transform the trace into a change

of the synapses so that taking action a in state s becomes more likely in the future (Crow, 1968; Izhi-

kevich, 2007; Sutton and Barto, 2018; Gerstner et al., 2018). Neuromodulator signals could

include dopamine (Schultz, 2015), but reward-related signals could also be conveyed, together with

novelty or attention-related signals, by other modulators (Frémaux and Gerstner, 2015).

Since in our paradigm the inter-stimulus interval (ISI) was not systematically varied, we cannot dis-

tinguish between an eligibility trace with purely time-dependent, exponential decay, and one that

decays discretely, triggered by events such as states or actions. Future research needs to show

whether the decay is event-triggered or defined by molecular characteristics, independent of the

experimental paradigm.
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Our finding that changes of pupil dilation correlate with reward-driven variables of reinforcement

learning (such as value or TD error) goes beyond the changes linked to state recognition reported

earlier (Otero et al., 2011; Kucewicz et al., 2018). Also, since non-luminance related pupil diameter

is influenced by the neuromodulator norepinephrine (Joshi et al., 2016) while reward-based learning

is associated with the neuromodulator dopamine (Schultz, 2015), our findings suggest that the

roles, and regions of influence, of neuromodulators could be mixed (Frémaux and Gerstner, 2015;

Berke, 2018) and less well segregated than suggested by earlier theories.

From the qualitative analysis of the pupillometric data of the main experiment (Figure 5),

together with those of the control experiment (Figure 5), we concluded that changes in pupil dila-

tion reflected a learned, reward-related property of the state. In the context of decision making and

learning, pupil dilation is most frequently associated with violation of an expectation in the form of a

reward prediction error or stimulus prediction error as in an oddball-task (Nieuwenhuis et al.,

2011). However, our experimental paradigm was not designed to decide whether pupil diameter

correlates stronger with state values or TD-errors. Nevertheless, a more systematic analysis (see

Materials and methods and Figure 6) suggests that correlation of pupil dilation with TD-errors is

stronger than correlation with state values.

Conclusion
Eligibility traces are a fundamental factor underlying the human capability of quick learning and

adaptation. They implement a memory of past state-action associations and are a crucial element to

efficiently solve the credit assignment problem in complex tasks (Izhikevich, 2007; Sutton and

Barto, 2018; Gerstner et al., 2018). The present study provides both qualitative and quantitative

evidence for one-shot sequence-learning with eligibility traces. The correlation of the pupillometric

signals with an RL algorithm with eligibility traces suggests that humans not only exploit memories

of past state-action pairs in behavior but also assign reward-related values to these memories. The

consistency and similarity of our findings across three experimental conditions suggests that the

underlying cognitive, or neuromodulatory, processes are independent of the stimulus modality. It is

an interesting question for future research to actually identify the neural implementation of these

memory traces.

Materials and methods

Experimental conditions
We implemented three different experimental conditions based on the same Markov Decision Pro-

cess (MDP) of Figure 2(a). The conditions only differed in the way the states were presented to the

participants. Furthermore, in order to collect enough samples from early trials, where the learning

effects are strongest, participants did not perform one long experiment. Instead, after completing

seven episodes in the same environment, the experiment paused for 45 s while participants were

instructed to close and relax their eyes. Then the experiment restarted with a new environment: the

transition graph was reset, a different, unused, stimulus was assigned to each state, and the partici-

pant had to explore and learn the new environment. We instructed the participants to reach the

goal state as often as possible within a limited time (12 min in the sound and clip-art condition, 20

min in the spatial condition). On average, they completed 48.1 episodes (6.9 environments) in the

spatial condition , 19.4 episodes (2.7 environments) in the sound condition and 25.1 episodes (3.6

environments) in the clip-art condition.

In the spatial condition, each state was defined by the location (on an invisible circle) on the

screen of a 100 � 260 pixels checkerboard image, flashed for 100 ms, Figure 2(d). The goal state

was represented by the same rectangular checkerboard, but rotated by 90˚. The checkerboard had

the same average luminance as the grey background screen. In each new environment, the states

were randomly assigned to locations and the checkerboards were rotated (states: 260 � 100 pixels

checkerboard, goal: 100 � 260).

In the sound condition, each state was represented by a unique acoustic stimulus (tones and natu-

ral sounds) of 300 ms to 600 ms duration. New, randomly chosen, stimuli were used in each environ-

ment. At the goal state an applause was played. An experimental advantage of the sound condition
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is that a change in the pupil dilation cannot stem from a luminance change but must be due to a

task-specific condition.

In the clip-art condition, each state was represented by a unique 100 � 100 pixel clip-art image

that appeared for 300 ms in the center of the screen. For each environment, a new set of images

was used, except for the goal state which was always the same (a person holding a trophy) in all

experiments.

The screen resolution was 1920 � 1080 pixels. In all three conditions, the background screen was

grey with a fixation cross in the center of the screen. It was rotated from + to � to signal to the par-

ticipants when to enter their decision by pressing one of two push-buttons (one in the left and the

other in the right hand). No lower or upper bound was imposed on the reaction time. The next state

appeared after a random delay of 2.5s to 4s after the push-buttons was pressed. Prior to the actual

learning task, they performed a few trials to check they all understood the instructions. While the

participants performed the sound- and clip-art conditions, we recorded the pupil diameter using an

SMI iViewX high speed video-based eye tracker (recorded at 500 Hz, down-sampled to 100 Hz for

the analysis by averaging over five samples). From participants performing the spatial condition, we

recorded the pupil diameter using a 60 Hz Tobii Pro tracker. An eye tracker calibration protocol was

run for each participant. All experiments were implemented using the Psychophysics Toolbox

(Brainard, 1997).

The number of participants performing the task was: sound: 15; clip-art: 12; spatial: 22 partici-

pants; Control sound: 9; Control clip-art: 10; Control spatial: 12. The participants were recruited

from the EPFL students pool. They had normal or corrected-to-normal vision. Experiments were con-

ducted in accordance with the Helsinki declaration and approved by the ethics commission of the

Canton de Vaud (164/14 Titre: Aspects fondamentaux de la reconnaissance des objets : protocole

général). All participants were informed about the general purpose of the experiment and provided

written, informed consent. They were told that they could quit the experiment at any time they wish.

Pupil data processing
Our data processing pipeline followed recommendations described in Mathôt et al. (2017). Eye

blinks (including 100 ms before, and 150 ms after) were removed and short blocks without data (up

to 500 ms) were linearly interpolated. In all experiments, participants were looking at a fixation cross

which reduces artifactual pupil-size changes (Mathôt et al., 2017). For each environment, the time-

series of the pupil diameter during the seven episodes was extracted and then normalized to zero-

mean, unit variance. This step renders the measurements comparable across participants and envi-

ronments. We then extracted the pupil recordings at each state from 200 ms before to 3000 ms after

each state onset and applied subtractive baseline correction where the baseline was taken as the

mean in the interval (�100ms, þ100ms]. Taking the þ100ms into account does not interfere with

event-specific effects because they develop only later (>220 ms according to Mathôt et al., 2017);

but a symmetric baseline reduces small biases when different traces have different slopes around

t = 0 ms. We considered event-locked pupil responses with z-values outside ±3 as outliers and

excluded them from the main analysis. We also excluded pupil traces with less than 50% eye-tracker

data within the time window of interest, because very short data fragments do not provide informa-

tion about the characteristic time course of the pupil trace after stimulus onset. As a control, Figure 8

shows that the conclusions of our study are not affected if we drop the two conditions and include

all data.

Action assignment in the Markov Decision Process
Actions in the graph of Figure 2 were assigned to transitions during the first few actions as

explained in the main text. However, our learning experiment would become corrupted if partici-

pants would discover that in the first episode any three actions lead to the goal. First, such knowl-

edge would bypass the need to actually learn state-action associations, and second, the knowledge

of ‘distance-to-goal’ implicitly provides reward information even before seeing the goal state. We

avoided the learning of the latent structure by two manipulations: First, if in episode 1 of a new envi-

ronment a participant repeated the exact same action sequence as in the previous environment, or if

they tried trivial action sequences (a-a-a or b-b-b); the assignment of the third action led from state

D1 to Z, rather than to the Goal. This was the case in about 1/3 of the first episodes (spatial: 48/173,

Lehmann et al. eLife 2019;8:e47463. DOI: https://doi.org/10.7554/eLife.47463 15 of 25

Research article Neuroscience

https://doi.org/10.7554/eLife.47463


sound: 20/53 clip-art: 23/49). The manipulation further implied that participants had to make deci-

sions against their potential left/right bias. Second, an additional state H (not shown in Figure 2)

was added in episode 1 in some environments (spatial: 23/173, sound: 6/53 clip-art: 8/49). Partici-

pants then started from H (always leading to S) and the path length to goal was four steps. Inter-

views after the experiment showed that no participant became aware of the experimental

manipulation and, importantly, they did not notice that they could reach the goal with a random

action sequence in episode 1.

Reinforcement Learning models
For the RL algorithm Q� l (see Algorithm 1); four quantities are important: the reward r; the value

Qðs; aÞ of a state-action association such as taking action ’b’ in state D2; the value VðsÞ of the state

itself, defined as the larger of the two Q-values in that state, that is VðsÞ ¼ max~aQðs; ~aÞ; and the TD-

error (also called Reward Prediction Error or RPE) calculated at the end of the nth action after the

transition from state sn to snþ1

RPEðn! nþ 1Þ ¼ rnþ1þg � Vðsnþ1Þ�Qðsn;anÞ

(2)

Here, g is the discount factor and VðsÞ is the estimate of the discounted future reward that can

maximally be collected when starting from state s. Note that RPE is different from reward. In our

environment a reward occurs only at the transition from state D1 to state G whereas reward predic-

tion errors occur in episodes 2–7 also several steps before the reward location is reached.

The table of values Qðs; aÞ is initialized at the beginning of an experiment and then updated by

combining the RPE and the eligibility traces enðs; aÞ defined in the main text (Equation 1);

Qðs;aÞ Qðs;aÞþa �RPEðnÞ � enðs;aÞ ; (3)

where a is the learning rate. Note that all Q-values are updated, but changes in Qðsn;anÞ are propor-

tional to the eligibility of the state-action pair enðs;aÞ. In the literature the table Qðs;aÞ is often initial-

ized with zero, but since some participants pressed the left (or right) button more often than the

other one, we identified for each participant the preferred action apref and initialized Qðs;apref Þ with a

small bias b, adapted to the data.

!"#$%#&'(!$#$)'*+,!-./0'(!$#$)'*+,1&%"2#3$'(!$#$)'*+,

4'5 6'5 +'5 7'5''
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8%9)'''''

4'5 6'5 +'5 7'5''
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Figure 8. Results including low-quality pupil traces. We repeated the pupil data analysis at the crucial state D2including all data (including traces with

less than 50% of data within the 3s window and with z-values outside ±3). Gray curves in the background show all recorded pupil traces. The

highlighted blue curves show a few, randomly selected, low-quality pupil traces. Including these traces does not affect the result.
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Action selection exploits the Q-values of Equation 3 using a softmax criterion with temperature

T:

pðs;aÞ ¼
expðQðs;aÞ=TÞ

P

~a expðQðs;~aÞ=TÞ
(4)

As an alternative to the eligibility trace defined in Equation 1, where the eligibility decays at each

discrete time-step, we also modeled a decay in continuous time, defined as

etðs;aÞ ¼ exp �
t�Bðs;aÞ

t

� �

if t>Bðs;aÞ (5)

and zero otherwise. Here, t is the time stamp of the current discrete step, and Bðs;aÞ is the time

stamp of the last time a state-action pair ðs;aÞ has been selected. The discount factor g in Equation 2

is kept, while in Equation 5 a potential discounting is absorbed into the single parameter t.

Our implementation of Reinforce followed the pseudo-code of REINFORCE: Monte-Carlo Policy-

Gradient Control (without baseline) (Sutton and Barto, 2018), Chapter 13.3) which updates the

action-selection probabilities at the end of each episode. This requires the algorithm to keep a (non-

decaying) memory of the complete state-action history of each episode. We refer to Peng and Wil-

liams (1996), Gläscher et al. (2010) and Sutton and Barto (2018) for the pseudo-code and in-

depth discussions of all algorithms.

Parameter fit and model selection
The main goal of this study was to test the null-hypothesis ’RL without eligibility traces’ from the

behavioral responses at states D1 and D2 (Figure 2(e) and (f)). By the design of the experiment, we

collected relatively many data points from the early phase of learning, but only relatively few epi-

sodes in total. This contrasts with other RL studies, where participants typically perform longer

experiments with hundreds of trials. As a result, the behavioral data we collected from each single

participant is not sufficient to reliably extract the values of the model-parameters on a participant-

by-participant basis. To find the most likely values of model parameters, we therefore pooled the

behavioral recordings of all participants into one data set D.

Each learning model m is characterized by a set of parameters �m ¼ ð�m
1
; �m

2
; :::Þ. For example, our

implementation of the Q-l algorithm has five free parameters: the eligibility trace decay l; the learn-

ing rate a; the discount rate g; the softmax temperature T; and the bias b for the preferred action.

For each model m, we were interested in the posterior distribution Pð�mjDÞ over the free parameters

�m, conditioned on the behavioral data of all participants D. This distribution was approximated by

sampling using the Metropolis-Hastings Markov Chain Monte Carlo (MCMC) algorithm (Hast-

ings, 1970). For sampling, MCMC requires a function f ð�m;DÞ which is proportional to Pð�mjDÞ.

Choosing a uniform prior Pð�mÞ ¼ const, and exploiting that PðDÞ is independent of �m, we can

directly use the model likelihood PðDj�mÞ:

Pð�mjDÞ ¼
PðDj�mÞPð�mÞ

PðDÞ
/ PðDj�mÞ :¼ f ð�m;DÞ: (6)

We calculated the likelihood PðDj�mÞ of the data as the joint probability of all action selection

probabilities obtained by evaluating the model (Equations 1, 2, 3, and 4 in the case of QðlÞ) given a

parameter sample �m. The log likelihood (LL) of the data under the model is

LLðDj�mÞ ¼
X

N

p¼1

X

Ep

j¼1

X

Tj

t¼1

logðpðatjst ;�
mÞÞ ; (7)

where the sum is taken over all participants p, all environments j, and all actions at a participant has

taken in the environment j.

For each model, we collected 100
0
000 parameter samples (burn-in: 1500; keeping only every 10

th

sample; 50 random start positions; proposal density: Gaussian with s ¼ 0:004 for temperature T and

bias b, and s ¼ 0:008 for all other parameters). From the samples we chose the �̂m which maximizes

the log likelihood (LL), calculated the AICm and ranked the models accordingly. The AICm of each

model is shown in Table 1, alongside with the Akaike weights wAICm. The latter can be interpreted
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as the probability that the model m is the best model for the data (Burnham and Anderson, 2004).

Note that the parameter vector �̂m could be found by a hill-climbing algorithm toward the optimum,

but such an algorithm does not give any indication about the uncertainty. Here, we obtained an

approximate conditional posterior distribution pð�mi jD; �̂
m
j 6¼iÞ for each component i of the parameter

vector �m (cf. Figure 9). We estimated this posterior for a given parameter i by selecting only the 1%

of all samples falling into a small neighborhood: �̂mj � �mj � �j � �̂mj þ �mj ; i 6¼ j. We determined �mj such

that along each dimension j, the same percentage of samples was kept (about 22%) and the overall

number of samples was 1000.

One problem using the AIC for model selection stems from the fact that there are considerable

behavioral differences across participants and the AIC model selection might change for a different

set of participants. This is why we validated the model ranking using k-fold cross-validation. The

same procedure as before (fitting, then ranking according to AIC) was repeated K times, but now

we used only a subset of participants (training set) to fit �̂mk and then calculated the LLmk and the

AICm
k on the remaining participants (test set). We created the K folds such that each participant

appears in exactly one test set and in K � 1 training sets. Also, we kept these splits fixed across

models, and evaluated each model on the same split into training and test set. In each fold k, the

models were sorted with respect to AICm
k , yielding K lists of ranks. In order to evaluate whether the

difference between two models is significant, we compared their ranking in each fold (Wilcoxon

rank-sum test on K matched pairs, p-values shown in Table 1). The cross-validation results were sum-

marized by summing the K ranks (Table 1). The best rank sum a model could obtain is K, and is

obtained if it achieved the first rank in each of the K folds.
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Figure 9. Fitting results: behavioral data constrained the free parameters of Q-l. (a) For each experimental condition a distribution over the five free

parameters is estimated by sampling. The blue histograms show the approximate conditional posterior for each parameter (see

Materials and methods). Vertical black lines indicate the values of the five-parameter sample that best explains the data (maximum likelihood, ML). The

bottom row (All) shows the distribution over l when fitted to the aggregated data of all conditions, with other parameters fixed to the indicated value

(mean over the three conditions). (b) Estimation of a time dependent decay (t instead of l) as defined in Equation 5.
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Q� l model predictions

Algorithm 1 Q-l (and related models):
For SARSA-l we replace the expression max~a Qðsnþ1; ~aÞ in line 9 by Qðsnþ1; anþ1Þ where anþ1 is the action taken in the
next state snþ1. For Q-0 and SARSA-0 we set l to zero.

1: Algorithm Parameters: learning rate a 2 ð0; 1�, discount factor g 2 ½0; 1�, eligibility trace decay factor l 2 ½0; 1�,
temperature T 2 ð0;¥Þ of softmax policy p, bias b 2 ½0; 1� for preferred action apref 2 A.

2: Initialize Qðs; aÞ ¼ 0 and eðs; aÞ ¼ 0 for all s 2 S; a 2 A

For preferred action apref 2 A set Qðs; apref Þ ¼ b

3: for each episode do

4: Initialize state sn 2 S

5: Initialize step n ¼ 1

6: while sn is not terminal do

7: Choose action an 2 A from sn with softmax policy p derived from Q

8: Take action an, and observe rnþ1 2 R and snþ1 2 S

9: RPEðn! nþ 1Þ  rnþ1 þ gmax~aQðsnþ1; ~aÞ � Qðsn; anÞ

10: enðsn; anÞ  1

11: for all s 2 S; a 2 A do

12: Qðs; aÞ  Qðs; aÞ þ aRPEðn! nþ 1Þenðs; aÞ

13: enþ1ðs; aÞ  glenðs; aÞ

14 n nþ 1

The Q-l model (see Algorithm 1), and related models like ARSA-l, have previously been used to

explain human data. We used those published results, in particular the parameter values from

Gläscher et al. (2010), Daw et al. (2011) and Tartaglia et al. (2017), to estimate the effect size, as

well as the reliability of the result. The published parameter values have a high variance: they differ

across participants and across tasks. We therefore simulated different agents, each with its own

parameters, sampled independently from a uniform distribution in the following ranges:

a 2 ð0:1; 0:5�, l 2 ½0:5; 1�, g 2 ½0:5; 1�, T 2 ½0:125; 1� (corresponding to an inverse temperature

1=T 2 ½1; 8�), and b ¼ 0. We then simulated episodes 1 and 2 of the experiment, applied the Q� l

model to calculate the action-selection bias (Equation 4) when the agents visit states D1, D2 and

also S (see Figure 10(c) during episode 2, and sampled a binary decision (action ’a’ or action ’b’)

according to the model’s bias. In the same way as in the main behavioral experiment, each agent

repeated the experiment four times and we estimated the empirical action-selection bias as the

mean of the (simulated) behavioral data over all repetitions of all agents. This mean value depends

on the actual realizations of the random variables and its uncertainty is higher when fewer samples

are available. We therefore repeated the simulation of N ¼ 10 agents 1000 times and plotted the

distribution of the empirical means in Figure 10(d). The same procedure was repeated for N ¼ 20

agents, showing a smaller standard deviation. The simulations showed a relatively large (simulated)

effect size at states D1 and D2. Furthermore, as expected, the action bias decays as a function of the

delay between the action and the final reward in episode 1. We then compared the Q� l model

with a member of the class of RL without eligibility trace. When the parameter l, which controls the

decay of the eligibility trace, is set to 0, Q� l turns into Q� 0 (Q-Learning without eligibility trace

and we can use it to compare the two classes of RL without changing other parameters. Thus, we

repeated the simulation for this case (l ¼ 0, N ¼ 20) which shows the model predictions under our

null hypothesis. Figure 10(d) shows the qualitative difference between the two classes of RL.

Regression analysis
The reward prediction error (RPE, Equation 2) used for a comparison with pupil data was obtained

by applying the algorithm Q-l with the optimal (maximum likelihood) parameters. We chose Q-l for

regression because, first, it explained the behavior best across the three conditions and, second, it

evaluates the outcome of an action at the onset of the next state (rather than at the selection of the

next action as in SARSA-l) which enabled us to compare the model with the pupil traces triggered

at the onset of the next state.
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In a first, qualitative, analysis, we split data of all state transitions of all articipants into two

groups: all the state transitions where the model predicts an RPE of zero and the twenty percent of

state transitions where the model predicts the largest RPE (Figure 6(a). We found that the pupil

responses looked very different in the two groups, across all three modalities.

In a second, rigorous, statistical analysis, we tested whether pupil responses were correlated with

the RPE across all RPE values, not just those in the two groups with zero and very high RPE. In our

experiment, only state G was rewarded; at nongoal states, the RPE depended solely on learned Q-

values (rnþ1 ¼ 0 in Equation 2). Note that at the first state of each episode the RPE is not defined.

We distinguished these three cases in the regression analysis by defining two events ’Start’ and

’Goal’, as well as a parametric modulation by the reward prediction error at intermediate states.

From Figure 5, we expected significant modulations in the time window t 2 ð500ms; 2500msÞ after

stimulus onset. We mapped t to t0 ¼ ðt � 1500msÞ=1000ms and used orthogonal Legendre polynomials

Pkðt
0Þ up to order k ¼ 5 (Figure 11) as basis functions on the interval �1 � t0 � 1. We use the indices

p for participant and n for the nth state-on event. With a noise term � and �t for the overall mean

pupil dilation at t, the regression model for the pupil measurements y is

yp;nþ1;t ¼ �t þ
X

5

k¼0

RPEpðn! nþ 1Þ�Pkðt
0Þ�bk þ �p;nþ1;t ; (8)

where the participant-independent parameters bk were fitted to the experimental data (one inde-

pendent analysis for each experimental condition). The models for ‘tart state’ and ‘oal state’ are

analogous and obtained by replacing the real valued RPEp;n by a 0/1 indicator for the respective

events. By this design, we obtained three uncorrelated regressors with six parameters each.

Using the regression analysis sketched here, we quantified the qualitative observations suggested

by (Figure 6) and found a significant parametric modulation of the pupil dilation by reward predic-

tion errors at non-goal states (Figure 11). The extracted modulation profile reached a maximum at

around 1–1.5 s ( 1300 ms in the clip-art, 1100 ms in the sound and 1400 ms in the spatial condition);

with a strong mean effect size (b0 in Figure 11) of 0.48 (p<0:001), 0.41 (p ¼ 0:008) and 0.35 (p<0:001),

respectively.

We interpret the pupil traces at the start and the end of each episode (Figure 11) as markers for

additional cognitive processes beyond reinforcement learning which could include correlations with

cognitive load (Beatty, 1982; Kahneman and Beatty, 1966), recognition memory (Otero et al.,
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Figure 10. Simulated experiment. ( Q-l model). (a) and (b): Task structure (same as in Figure 2). Simulated agents performed episodes 1 and 2 and we

recorded the decisions at states D1 and D2 in episode 2. (c): Additionally, we also simulated the model’s behavior at state S, by extending the structure

of the (simulated) experiment with a new state R, leading to S. (d): We calculated the action-selection bias at states D1, D2 and S during episode 2 from

the behavior of N ¼ 10 (blue) and N ¼ 20 (green) simulated agents. The effect size (observed during episode 2 and visualized in panel (d)) decreases

when (in episode 1) the delay between taking the action and receiving the reward increases. It is thereby smallest at state S. When setting the model’s

eligibility trace parameter l to 0(red, no ET), the effect at state D1 is not affected (see Equation 1) while at D2 and S the behavior was not reinforced.

Horizontal dashed line: chance level 50%. Errorbars: standard deviation of the simulated effect when estimating 1000 times the mean bias from N ¼ 10

and N ¼ 20 simulated agents with individually sampled model parameters.
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2011), attentional effort (Alnæs et al., 2014), exploration (Jepma and Nieuwenhuis, 2011), and

encoding of memories (Kucewicz et al., 2018).
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bottom: Reward Prediction Error. We extracted the time course of the pupil dilation in (500 ms, 2500 ms) after state onset for each of the conditions,

clip-art, sound and spatial, using Legendre polynomials PkðtÞ of orders k = 0 to k = 5 (top row) as basis functions. The extracted weights bk (cf.

Equation 8) are shown in each column below the corresponding Legendre polynomial as vertical bars with color indicating the level of significance
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