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Abstract Curative cancer therapies are uncommon and nearly always involve multi-drug

combinations developed by experimentation in humans; unfortunately, the mechanistic basis for

the success of such combinations has rarely been investigated in detail, obscuring lessons learned.

Here, we use isobologram analysis to score pharmacological interaction, and clone tracing and

CRISPR screening to measure cross-resistance among the five drugs comprising R-CHOP, a

combination therapy that frequently cures Diffuse Large B-Cell Lymphomas. We find that drugs in

R-CHOP exhibit very low cross-resistance but not synergistic interaction: together they achieve a

greater fractional kill according to the null hypothesis for both the Loewe dose-additivity model

and the Bliss effect-independence model. These data provide direct evidence for the 50 year old

hypothesis that a curative cancer therapy can be constructed on the basis of independently

effective drugs having non-overlapping mechanisms of resistance, without synergistic interaction,

which has immediate significance for the design of new drug combinations.

Introduction
The majority of cancers are treated with combination therapies. For some types of cancer, multidrug

combinations have been developed that produce frequent cures, whereas cure by monotherapy is

rare (Frei and Antman, 2000). In current practice, the search for new drug combinations focuses on

identifying drugs that exhibit synergy. Although ‘synergy’ is often used loosely it is best defined by

Bliss or Loewe criteria, which test whether a combination is stronger than expected from the sum of

the drugs’ individual effects; antagonism arises when combinations are less active than additivity

would predict. In translational cancer biology such measurements are most commonly made using

cultured cells or genetically defined mouse models. Despite the current emphasis on synergy, histor-

ically successful combinations were developed according to quite different hypotheses. For example,

Law and Frei et al. argued for combining drugs that are independently effective and have non-over-

lapping mechanisms of resistance (Frei et al., 1965; Law, 1956; Law, 1952). Such combinations are

expected to overcome clonal heterogeneity present within each patient’s cancer. Heterogeneity

between patients can also be a reason why drug combinations improve response rates, even when

each patient only benefits from the most active monotherapy. However, cure is almost never achiev-

able by monotherapy, and the superiority of curative combinations cannot be explained by patient

variability in best single-drug response (the topic of our previous work [Palmer and Sorger, 2017]).

The pharmacological principles underlying curative combination therapies are largely unknown

because most such combinations were developed via empirical experimentation in patients, and the

combinations that worked have only rarely been subjected to detailed mechanistic analysis. Knowing
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the design principles behind existing curative regimens should assist in rationally assembling new

cancer medicines into curative combinations. A key question for such an effort, and for oncology

drug discovery in general, is determining which among several different properties of a combination

should be given the greatest weight: strong individual activity and low cross-resistance as proposed

five decades ago, or synergistic interaction as currently emphasized (Han et al., 2017;

Nature Medicine, 2017).

Testing whether a higher order multi-drug combination (that is, one with more than two constitu-

ents) exhibits synergistic interaction can only be accomplished ex vivo by measuring and analyzing

the responses of cells to drugs applied individually and in combination over a range of concentra-

tions, for example by isobologram analysis (Greco et al., 1995; Loewe, 1953). When evaluated at

fixed doses the superiority in vivo of a combination over monotherapy can occur without a true phar-

macological interaction and is therefore not sufficient evidence of synergy (Berenbaum, 1989). Test-

ing whether a combination exhibits low cross-resistance is more challenging because it requires

systematic exploration of resistance mechanisms; different mechanisms of resistance display differ-

ent cross-resistance properties. It has long been possible to isolate cell clones resistant to single

drugs and then assay for sensitivity to other drugs, but this approach is not practical at a scale

needed to test Law and Frei’s hypothesis, as was recognized by Law (1956). Efficient analysis of

cross-resistance has become feasible only recently with technical breakthroughs in multiplexed clone

tracing and reverse genetic screening. DNA barcode libraries allow large numbers (�106) of uniquely

tagged clones to be tested in parallel for resistance to multiple drugs (Bhang et al., 2015), and

genetic screens using CRISPR-Cas9 technologies enable genome-wide identification of loss and gain

of function changes that confer resistance (Bhang et al., 2015; Gilbert et al., 2014; Jost et al.,

2017; Shalem et al., 2014; Wang et al., 2014). To date, barcode and CRISPR-Cas9 libraries have

been used to study mechanisms of resistance primarily to targeted therapies and identify new com-

binations of such drugs (Bhang et al., 2015; Hata et al., 2016); they have not yet been used to test

Law and Frei’s ‘non-overlapping resistance’ hypothesis by analyzing combinations of cytotoxic drugs

that are the backbone of curative therapies.

In this paper, we measure pharmacological interaction and cross-resistance among components

of R-CHOP, a five drug chemo-immunotherapy that achieves high cure rates in Diffuse Large B-Cell

Lymphoma (DLBCL). R-CHOP has five constituents: R – rituximab, a humanized monoclonal antibody

against CD20, a protein expressed on the surface of all B cells; C – cyclophosphamide (Cytoxan) an

alkylating agent; H – hydroxydaunomycin (doxorubicin, or Adriamycin), a topoisomerase II inhibitor;

O – Oncovin (vincristine), an anti-microtubule drug and; P – prednisone, a steroid. R-CHOP was

developed over an extended period of time via clinical experiments in humans (Lakhtakia and Bur-

ney, 2015). The constituents of R-CHOP are known to be individually cytotoxic to DLBCL cells in

vivo, and the drugs have largely non-overlapping dose-limiting toxicities, which permits their com-

bined administration in patients. The reasons for the clinical superiority of R-CHOP in DLBCL remain

poorly understood. Pritchard et al. (2013) observed no synergy among pairs of drugs in CVAD (sim-

ilar to CHOP) in a mouse cell line model of Non-Hodgkin lymphoma, and in profiling the effects of

93 gene knockdowns by RNA interference on drug sensitivity, the change in sensitivity to CVAD was

equal (for almost every knockdown) to the average of its changes in single-drug sensitivity; this dem-

onstrates that CVAD does not act as a more potent version of a single drug, nor does it exhibit a

new signature of genetic dependencies.

We tested for pharmacological interaction among all pairs of R-CHOP constituents across a full

dose range in three DLBCL cell lines and assessed interaction using both the Bliss independence

and Loewe additivity criteria. We observed little if any synergy: most drug pairs were additive and

some were antagonistic. We also tested higher order combinations at fixed dose ratios with similar

results. We then screened for cross resistant mutations using random mutagenesis with clone tracing

as well as CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) with genome-scale librar-

ies. The rate of multi-drug resistance was near the theoretical minimum predicted by Law (1952),

where the ‘fractional killing’ achieved by a combination is the product of each individual drug’s frac-

tional kill. This suggests that high single-agent activity and low-cross-resistance are key attributes of

the curative R-CHOP regimen.
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Results

Components of R-CHOP do not exhibit synergy in killing Diffuse Large
B-Cell Lymphoma cells
Pharmacological interactions among R-CHOP constituents were measured in human Pfeiffer, SU-

DHL-4 and SU-DHL-6 cell lines. All three lines are derived from germinal center B-like DLBCL, the

subtype most responsive to R-CHOP (Alizadeh et al., 2000). Prednisone and cyclophosphamide are

pro-drugs that are activated by liver metabolism. We therefore used the pre-activated forms of these

drugs: prednisolone and 4-hydroperoxy-cyclophosphamide (which spontaneously converts to the

active compound 4-hydroxy-cyclophosphamide in water) (Ludeman, 1999). Rituximab kills B-cell

lymphomas through multiple CD20-dependent mechanisms that include complement-mediated

cytotoxicity (CMC), antibody-dependent cell cytotoxicity (ADCC) and direct killing via CD20 cross-

linking (Weiner, 2010). Consistent with previous reports (Kobayashi et al., 2013), we observed that

rituximab can kill DLBCL cells in culture via CMC when human serum is included in the culture media

(Figure 1—figure supplement 1A). Among seven DLBCL cell lines tested, none exhibited a cyto-

toxic response to prednisolone alone at clinically relevant concentrations, although the rate of cell

division was reduced (Figure 1—figure supplement 1B). Prednisone is cytotoxic to DLBCL in first-

line clinical care (Lamar, 2016); the absence of cytotoxicity in DLBCL cell culture, which is consistent

with other studies (Knutson et al., 2014), might reflect selection for prednisone resistance in cell

lines established from post-treatment patients. As there exist no generally available treatment-naı̈ve

DLBCL cell lines, we are not able to test whether such cultures might respond in vitro to

prednisolone.

Pharmacodynamic interactions among drugs comprising R-CHOP were first measured in Pfeiffer

cells. For each of 10 drug pairs, an 11 � 11 ‘checkerboard’ was created with each drug increasing in

concentration along one of the two axes, spanning a 100-fold range. Cells were incubated with

drugs for 72 hr, which spans at least one in vivo half-life in humans for each of C, H, O and P

(de Jonge et al., 2005; Gidding et al., 1999; Speth et al., 1988); R has an elimination half-life of 3

weeks in humans (Tran et al., 2010). Cell viability was measured using a luminescent ATP assay (Cell-

Titer-Glo) that was linearly proportional to live cell number as determined by microscopy and vital

staining (Figure 1—figure supplement 1C). The ratio of cell number in drug-treated and untreated

control cultures (relative cell number) was used to compute normalized growth rate inhibition values

(GR values [Hafner et al., 2016]) (Figure 1—figure supplement 1D). Pharmacological interaction

was then assessed based on excess over Bliss Independence and by isobologram analysis (which

tests for Loewe additivity [Berenbaum, 1989]). We have previously used isobologram analysis to

confirm synergistic interaction among HER2 and CDK4/6 inhibitors in breast cancers, which serves as

a positive control for the identification of synergy by drug-drug ‘checkerboard’ experiments

(Goel et al., 2016).

The Bliss model assesses the efficacy of cytotoxic drugs according to the proportion of cells killed

(rather than potency, as measured by IC50 for example), and drugs are scored as interacting only if

their combined effect exceeds a null model of independence involving statistically independent

probabilities of cell killing (Bliss, 1939). Specifically, if given doses of drugs a or b alone kill propor-

tions of cells equal to pa or pb and these probabilities of death are not correlated, then the propor-

tion of cells expected to die from a combination of these drugs at the same doses is pexpected = pa +

(1 – pa)�pb = pa + pb – pa �pb. In this model, synergy or antagonism is defined as an observed

excess or deficiency in the proportion of cells killed; we assessed this on a logarithmic scale (Excess

over Bliss, EOB = Log10(1 – pexpected) – Log10(1 – pobserved)) to identify increases in fractional kill. For

example, in comparing 99% kill with 99.9% kill, the difference is less than 1% on a linear scale, but a

logarithmic scale correctly reveals a 10-fold difference in the probability of survival. By this analysis,

we find that pairs of drugs in R-CHOP are largely independent, except that killing by O is strongly

antagonized by the presence of either C or H (Figure 1A). Antagonism may be a consequence of

the effects of these drugs on the cell cycle: killing of mitotic cells by O is expected to decrease when

C- or H-induced DNA damage prevents entry into mitosis (Barlogie et al., 1976; Cutts, 1961;

Davidoff and Mendelow, 1993).

In isobologram analysis, contour lines (isoboles) corresponding to a constant phenotype (the frac-

tion of cells killed) are plotted across a two-way dose-response landscape (Greco et al., 1995;

Loewe, 1953). The shape of the contours is diagnostic of drug interaction: straight contours
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Figure 1. Pairs of drugs in R-CHOP exhibit little synergy, but some strong antagonism, in a Diffuse Large B-Cell

Lymphoma cell line. (a) Pfeiffer cells grown in microtiter plates were treated with drug combinations for 72 hr

followed by a luminescence-based assay for cell viability. ‘Excess over Bliss’ measures the observed deviation from

Bliss Independence. Triangles on axes indicate each drug’s approximate Cmax, or peak serum concentration in

Figure 1 continued on next page
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correspond to drug additivity, convex contours to synergy and concave contours to antagonism

(Figure 1B, inset). This arises because straight contours correspond to a scenario of ‘dose-equiva-

lence’; that is, a unit of drug a can substitute for a unit of drug b and vice versa (when units are nor-

malized by potency). When contours are convex, a disproportionately small dose of a plus b is as

active as a full dose of either monotherapy. Isobologram analysis of drug pairs in R-CHOP confirmed

results from Bliss analysis, namely that interactions among R-CHOP constituents range from strongly

antagonistic to approximately additive (Figure 1B). As discussed earlier, prednisolone was not cyto-

toxic on its own but it slightly sensitized cells to C and to H. CMC by rituximab was approximately

additive with each of C, H, and O, whereas C and H severely antagonized O. Note that the small

convexity visible in Figure 1B when R is combined with other agents does not meet the 2-fold devia-

tion from additivity that is the recommended threshold for avoiding false claims of synergy due to

errors in measurement (Odds, 2003). We conclude that no drug pair in R-CHOP exhibits synergistic

interaction by either isobologram analysis (Loewe additivity) or Bliss independence.

To test for higher order interactions, we exposed each of the three different DLBCL cell lines to

all 26 possible combinations of 2, 3, 4, or five drugs (Figure 2A). Because high-order combinations

cannot feasibly be studied across multi-dimensional dose ‘checkerboards’, R-CHOP constituents

were tested at fixed ratios scaled so that constituents were equipotent with respect to cell killing

when assayed individually (Figure 2—figure supplement 1A). The activity of drug combinations was

then quantified by Fractional Inhibitory Concentrations (FIC [Elion et al., 1954], also known as Com-

bination Index [Chou, 2010]), which is a fixed-ratio simplification of Loewe’s isobologram analysis. If

single drugs achieve a given effect magnitude, 50% killing for example, at concentrations A, B, or C

(using three drugs as an example), and their combination achieves the same effect at concentrations

a + b + c, then FIC = a/A + b/B + c/C (note that Loewe additivity corresponds to FIC = 1 and syn-

ergy is commonly defined as FIC <0.5). In all three DLBCL cultures, we observed that small excesses

over additivity for R and P on CHO was balanced by antagonism within CHO, producing net effects

ranging from approximately additive to slightly antagonistic (for five drugs in Pfeiffer

FIC = 0.80 ± 0.15; for SU-DHL-6 FIC = 1.1 ± 0.3 and for SU-DHL-4 FIC = 1.7 ± 0.2; 95% confidence,

n = 4–8; Figure 2B,C). The absence of synergy across high-order combinations was supported by

Bliss analysis of the same data (Figure 2—figure supplement 1B). Emergent pharmacological inter-

actions involving combinations of 3 or more drugs can be identified as deviations from the assump-

tion of dose additivity using data from lower order drug interactions (Cokol et al., 2017); nearly all

such terms supported the hypothesis of no interaction (emergent FIC = 1) with the only substantial

deviations representing mild antagonism (emergent FIC up to 1.5) (Figure 2—figure supplement

1C). We conclude that R-CHOP does not exhibit significant synergy among its constituent drugs in

cell culture.

DLBCL clones resistant to one drug in R-CHOP rarely resist multiple
drugs
To test the hypothesis that low cross-resistance is important for a curative therapy, we asked

whether clones resistant to any single drug in R-CHOP remain susceptible to at least one other drug

in the combination. DLBCL genomes are relatively complex, possessing a mixture of single nucleo-

tide polymorphisms and copy number gains and losses (Pasqualucci et al., 2011; Sebastián et al.,

2016). We therefore looked for resistance mutations using three complementary approaches: (i) ran-

dom mutagenesis coupled to clone tracing, (ii) genetic knockdown via CRISPR interference (CRISPRi)

for loss of function mutations, and (iii) overexpression via CRISPR activation (CRISPRa) for gain of

Figure 1 continued

patients. (b) Isobologram analysis of the same experiments; luminescence relative to untreated control cells was

converted into a GR metric (Hafner et al., 2016) to distinguish cytostatic from cytotoxic effects. White contours

highlight thresholds equivalent to complete growth inhibition (GR = 0), and complete growth inhibition plus 50%

or 80% cell killing (GR <0). Inset: principles of isobologram analysis; isoboles are contours of equal drug effect,

which are straight lines in the case of ‘additivity’.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Measuring cytotoxic responses to R-CHOP drugs in DLBCL cultures.
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Figure 2. Higher order drug combinations do not exhibit synergistic cell killing. (a) Experimental design: two or

more drugs were mixed in equipotent ratios such that they similarly contributed to cytotoxicity as the dose of the

mixture was increased. Dose gradients of drug mixtures span diagonal lines in multi-drug concentration space. (b)

Synergy or antagonism of multidrug combinations was quantified by Fractional Inhibitory Concentrations (FIC) at

Figure 2 continued on next page
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function mutations (Figure 3A). In a hypothetical multi-drug treatment, it is not possible to distin-

guish between single-drug or multi-drug resistance as either could increase the survival of a mutated

clone (Figure 3B). A further complication is that strongly antagonistic drug combinations, such as C,

H, and O, can select for sensitivity to the antagonizing agent (Chait et al., 2007). We therefore

scored mutations as conferring true cross-resistance by applying drugs individually and identifying

mutant cells significantly enriched in two or more conditions (Figure 3C). This was accomplished by

generating a pool of mutagenized/CRISPR-transformed cells in which each cell carried a unique

DNA barcode (or single guide RNA (sgRNA) that also acts as a barcode). Cells were split into inde-

pendent cultures and then treated with a single component of R-CHOP. The abundance of DNA

barcodes in each culture was measured before and after drug exposure by high-throughput DNA

sequencing followed by enrichment analysis.

For random mutagenesis and clone tracing, Pfeiffer cells were mutagenized with N-ethyl-N-nitro-

sourea (ENU), which induces point mutations and chromosome aberrations (Sanger and Eisen,

1976; Shibuya and Morimoto, 1993). One million mutagenized clones were barcoded using a lenti-

viral DNA barcode library (ClonTracer; Bhang et al., 2015). Because the library was complex

( »7 � 107 barcodes) and infection performed at low multiplicity (MOI ~0.1), over 99% of barcoded

clones are expected to contain a unique barcode. Barcoded cells were expanded in puromycin to

select for the lentiviral vector. From a single well-mixed suspension of cells, a batch was reserved to

measure pre-treatment barcode frequencies, and the remainder was distributed into 18 replicate

cultures (three per drug tested) with each culture providing 12-fold coverage of barcoded clones

(Figure 3—figure supplement 1A).

To model the clinical scenario of strong selection pressure from intensive treatment cycles (as

opposed to continuous low dose therapy), drugs were applied for 72 hr at a dose established in a

pilot study as the highest dose allowing any surviving cells to re-grow in drug-free media in under 2

weeks (Materials and methods). Cultures were exposed to two rounds of drug treatment followed

by a recovery period of 4 to 11 days as needed (Figure 3—figure supplement 1A). Because pred-

nisolone monotherapy only slowed growth, which is difficult to score in a short duration culture, cells

were treated with prednisolone at 20 mM for 20 days (the R-CHOP regimen contains multiple five-

day courses of prednisone). Enrichment for specific clones was calculated based on relative barcode

frequencies prior to and after treatment.

Thousands of clones were reproducibly enriched in replicate cultures exposed to the same drug.

To score cross-resistance and account for culture-to-culture variation across repeats, we constructed

an error model by scrambling barcode identities within each replicate. This revealed that at least

300-fold more barcodes were �10 fold enriched in repeat experiments for any single drug than

expected by chance (Figure 4A). We also accounted for fitness differences observed in vehicle-only

cultures (~1% of barcodes were enriched �10 fold in the presence of DMSO; see

Materials and methods). Correlations between enrichment scores in replicate drug treatments were

highly significant (p<10�900; n » 106) although of modest magnitude (0.1 to 0.3) (Figure 4B). This

arises because drug exposure imposes population bottlenecks on non-resistant clones, which repre-

sent the majority of the population, causing barcodes to be detected, or not, on a stochastic basis.

Among barcodes with non-zero counts in replicate experiments, correlation was higher (0.35 to

0.58). We used the geometric mean of enrichment for each barcode as a metric of drug resistance

across replicates. Instances of stochastic (and thus irreproducible) enrichment are strongly penalized

by this metric; conversely, barcodes are favored if they are reproducibly enriched in independent

Figure 2 continued

the 50% killing threshold (Figure 1—figure supplement 1D). Error bars are 95% confidence intervals (n = 4 per

point along dose response). (c) Average dose response functions to single drugs or mixtures of different numbers

of drugs (i.e., average of single-drug responses; average of drug pair responses, etc.). Red line: expected response

to R-CHOP drugs according to the Bliss Independence model; pale red area:±10% error in number of log-kills

around the Bliss Independence model. Top left: Horizontal axis shows the amount of each drug present in a

mixture (units are scaled to align single-agent activity; Figure 2—figure supplement 1A). Top right, bottom left,

bottom right: Horizontal axis is the sum of drug concentrations.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Measuring high-order interactions among R-CHOP drugs with equipotent combinations.
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cultures (which is evidence of heritability). Drug resistant clones could potentially be lost in any one

replicate due to stochastic drift, causing an underestimate of drug resistance. However, our use of

large initial populations, triplicate experiments, and a metric that scores as positive barcode enrich-

ment in 2 of 3 replicates help to minimize this concern.

The error model constructed from scrambled barcodes was used to estimate the false discovery

rate for barcode enrichment. We found that the stronger the geometric mean enrichment, the less

likely it was for enrichment to occur randomly (Figure 4C). False discovery of coincident enrichment

exceeding 10-fold in two or more drugs was rare (<2.5%) and we therefore selected this threshold

for subsequent analysis. For each of the four individually active drugs (i.e. RCHO), 2000 to 13,000

barcodes were identified with geometric mean enrichment �10 fold, representing resistance fre-

quencies of 2 � 10�3 to 1 � 10�2. The vast majority of enriched clones were unique to one drug,
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Figure 3. Strategy for measuring cross-resistance between drugs. (a) Cells were mutagenized and barcoded using one of three approaches: (i) random

mutagenesis and clone tracing, (ii) knockdown by CRISPRi or (iii) overexpression by CRISPRa. 106 mutagenized clones or genome-wide CRISPRi/a

libraries were expanded and split into replicate cultures, treated with single drugs, and DNA barcodes/sgRNAs abundance was measured by DNA

sequencing. The resistance of cells to drug treatment was scored based on the degree of barcode enrichment, and cross-resistance was determined by

significant enrichment in two or more drug treatments. (b) Schematic showing importance of selecting for resistance to single drugs not cocktails.

Arrows: resistance is analogous to lower drug concentration and moves cells to different coordinates; cross-resistance (purple arrow) has same net

effect as more penetrant single-drug resistance mutations (red, blue arrows). (c) By selecting mutations on single drugs the magnitude of the effect on

each drug is known.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Dosing schedule and replication strategy for all three approaches taken to isolate cells resistant to single cytotoxic drugs in the

R-CHOP combination.
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Figure 4 continued on next page
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with only 30 to 300 clones (depending on the pair of drugs) enriched in two different conditions; the

latter is diagnostic of double-drug resistance (Figure 4D,E). Triple-drug resistant clones were even

less abundant (between 1 and 10 clones per set of three drugs) and no clones were identified that

conferred resistance to each of R, C, H and O when applied individually (Figure 4E). Note that these

frequencies are based on determining the co-occurrence of barcodes enriched in single-drug experi-

ments. As described in Figure 3B, barcode enrichment in an experiment that applied four or five

drugs at the same time cannot be expected to distinguish between resistance to some drugs or all

drugs; in addition, the likelihood that a clone that is multiply drug resistant might be missed by sto-

chastic drift increases. Clones enriched by prolonged exposure to prednisolone at concentrations

that slowed growth also exhibited low overlap with barcodes enriched for other constituents of

R-CHOP (Figure 4—figure supplement 1A,B).

CRISPRi/a screening identifies diverse mechanisms of drug resistance
Screening genome-wide sgRNA libraries using CRISPR-Cas9 has the advantage that it yields the

identities of genes conferring drug resistance as opposed to barcodes for unknown ENU-mutated

loci. CRISPRi screening identifies loss of function resistance mutations and was performed in Pfeiffer

cells by expressing nuclease-dead Cas9 fused to the transcriptional repression domain KRAB

(dCas9-KRAB) (Gilbert et al., 2013). CRISPRa screening identifies overexpression resistance muta-

tions and was performed in cells by co-expressing dCas9 fused to SunTag (a repeating peptide

array) and a SunTag-binding antibody fused to the VP64 transcriptional activator (Tanenbaum et al.,

2014). This approach requires clonal selection of a co-expressing cell line in which the ratio of

dCas9:VP64 is fixed; otherwise, cell-to-cell variability complicates screening for overexpression phe-

notypes. However, we were unable to generate monoclonal lineages of Pfeiffer cells expressing

dCas9 and VP64. In other DLBCL cell lines, lentiviral transduction was inefficient (a known property

of B lymphocytes and lymphomas [Li et al., 2001]). We therefore performed CRISPRa screens in the

chronic myeloid leukemia (CML) cell line K562, which can be efficiently transduced and cloned. For

CRISPRi in Pfeiffer cells it was possible to screen for resistance to four drugs (R, C, H and O) but for

CRISPRa in K562 cells, screening was possible only for C, H and O. Of note, these drugs have been

used historically in the treatment of CML, and we validated (below) that screen hits identified in

K562 CML cells could be reproduced in Pfeiffer DLBCL cells.

We used RT-qPCR to confirm that transduction of sgRNAs in cells expressing the appropriate

dCas9 fusion protein caused strong repression of a set of test target genes by CRISPRi and strong

activation by CRISPRa (Figure 5—figure supplement 1A). We then used lentivirus at low multiplicity

(MOI �0.4) to infect CRISPRi and CRISPRa-expressing cells with second generation genome-scale

sgRNA libraries, which are highly active by virtue of having optimized target sites that account for

nucleosome positioning (Horlbeck et al., 2016). Both libraries contain 10 sgRNAs per gene, and

approximately 4000 control sgRNAs designed to have no target. Following expansion, infected cells

were exposed to drug (or vehicle) for two to three 72 hr drug pulses separated by recovery periods

of up to 5 days as needed (Figure 3—figure supplement 1B,C). Hits were identified by sequencing

sgRNAs (Figure 5—source data 1). The impact of each sgRNA on drug sensitivity was quantified by

the ‘rho phenotype’ (Kampmann et al., 2013), which is one in the case of complete resistance, 0 in

the case of sensitivity matching the parental cell line (as determined using non-targeting control

sgRNAs), and <0 for hypersensitivity (Materials and methods; Figure 5—source data 2). Across 10

Figure 4 continued

one-sided p-value in green scale). (c) False discovery rate of barcode enrichment, per magnitude of enrichment (geometric mean of triplicates), was

computed by comparing observed barcode enrichment to an error model of scrambled barcodes (1010 triplicates simulated by scrambling actual data).

At geometric mean enrichment = 10, false discovery rate for 2-drug and 3-drug resistance is 2.5% and 0.1%, respectively. (d) Scatterplots of barcode

enrichment scores (geometric mean of biological triplicates for each drug) for each pair of two drugs in RCHO. Each dot represents a single barcode.

Enrichment scores < 10 are deemed not significant. (e) Venn diagram of the number of barcodes exhibiting resistance (geometric mean

enrichment �10) to single or multiple drugs.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Barcode counts for all clone tracing experiments.

Figure supplement 1. Prednisolone-resistant clones show low cross-resistance to other drugs in R-CHOP, and repeats of vincristine show high cross-

resistance.
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sgRNAs for each gene we calculated the mean of the strongest five rho phenotypes by absolute

value, and the p-value of all 10 rho phenotypes as compared to the 4000 control sgRNAs (Mann-

Whitney test) (Gilbert et al., 2013). Random permutations of 10 control sgRNAs were assembled to

create »19,000 ‘negative control genes’, matching the number of real gene targets and with pheno-

types specific to each drug screen. For all drugs tested, plots of gene phenotype vs. significance

(‘volcano plots’) revealed many gene perturbations conferring drug resistance or hypersensitivity

(Figure 5 and Figure 5—source data 3).

Hits from CRISPRi and CRISPRa were consistent with known mechanisms of drug action: knock-

down of direct targets was observed to confer resistance to rituximab (MS4A1 encoding CD20) and

doxorubicin (TOP2A encoding topoisomerase II) (Thorn et al., 2011; Weiner, 2010) whereas over-

expression of TUBB (which encodes b-tubulin) conferred resistance to vincristine. Cyclophosphamide

functions by inducing interstrand crosslinks in genomic DNA via alkylation. CRISPRi identified multi-

ple genes involved in the DNA damage response: cyclophosphamide resistance was conferred, for

example, by knockdown of SLFN11 which blocks progression of stressed replication forks

(Murai et al., 2018; Zoppoli et al., 2012) and hypersensitivity (measured in a supplemental screen

at a lower cyclophosphamide dose; Figure 5—figure supplement 1B,C) was caused by knockdown

of genes involved in DNA interstrand crosslink repair (e.g. FANCE, FANCD2, UBE2T, FANCI, ATRIP)

and double-strand break repair (e.g. BRIP1, BARD1, BRCA1, BRCA2). The therapeutic window for

cyclophosphamide arises from tissue-specific expression of aldehyde dehydrogenases (ALDHs) which

are the primary enzymes involved in cyclophosphamide inactivation (Cox et al., 1975); overexpres-

sion of ALDH1A1 and ALDH1B1 as well as aldo-keto reductases (AKRs) that metabolize cytotoxic

products of cyclophosphamide (Penning, 2017) all conferred resistance in our screen. Detailed study

of these genes is beyond the scope of this manuscript (full results are in Figure 5—source data 3)

but from these data we conclude that CRISPRi/a screening successfully identifies biologically relevant

genes involved in resistance to RCHO.

To test the robustness of results from whole-genome screens, we performed individual validation

studies with selected sgRNAs. We constructed single knockdown or overexpression cell lines for

each of nine CRISPRi and eight CRISPRa sgRNAs conferring single or multi-drug resistance pheno-

types, and measured their drug sensitivity in dose-response experiments (for a total of 9 genes � 4

drugs=36 validation experiments for CRISPRi; 8 � 3 = 24 for CRISPRa). The IC50 values for drug

responses in Pfeiffer cells as measured in CRISPRi validation experiments were strongly correlated

with resistance phenotypes from the original knockdown screen (r = 0.66, p<10–5; n = 36 gene–drug

interactions; Figure 6A and Figure 6—figure supplement 1A) as were IC50 values for CRISPRa vali-

dation studies in K562 CML cells (r = 0.84, p<10–5; Figure 6B and Figure 6—figure supplement

1B). To test if resistance genes identified in K562 cells have similar phenotypes in DLBCL cells, we

generated a polyclonal CRISPRa Pfeiffer cell culture and derived individual overexpression mutants

by transduction of single sgRNAs. Gene overexpression is less efficient in this setting than in K562

cells (Figure 6—figure supplement 1B) but we nonetheless found that CRISPRa resulted in changes

in IC50 values in Pfeiffer cells that were strongly correlated with changes observed in K562 validation

experiments (r = 0.82, p<10–5; n = 24 gene-drug interactions) and with resistance phenotypes

obtained in the overexpression screen in K562 (r = 0.62, p=0.001; Figure 6—figure supplement 1C,

D).

To measure overexpression-mediated drug resistance with greater sensitivity, we also performed

competition assays by mixing two Pfeiffer cultures, one expressing a gene-targeting sgRNA from the

validation studies described above and the second a non-targeting sgRNA. We then measured the

change in the ratio of cultures by qPCR following two cycles of drug treatment and recovery (in the

same manner as for genome-wide screens; Figure 3—figure supplement 1). These experiments

demonstrated a strong correlation between sgRNA-induced competitive fitness in DLBCL cells

grown in the presence of drug and drug resistance as measured in the overexpression screens

(r = 0.69, p=0.0002; Figure 6C). We conclude that genome-wide knockdown and overexpression

screens yielded robust and reproducible hits, and that overexpression-mediated resistance identified

in K562 cells is largely recapitulated in DLBCL cells.
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Figure 5. Identification of mechanisms of single drug resistance by genome-wide CRISPRi and CRISPRa screening. Volcano plots of gene phenotype

and p-value for CRISPRi (left) and CRISPRa (right) screens of single R-CHOP drugs. Phenotype of 1 is full resistance, 0 is parental sensitivity,<0 is

hypersensitivity. The coordinate of each gene was determined by the average phenotype of the five most active sgRNAs targeting that gene and -log10

of the p-value (Mann-Whitney test of phenotypes for all targeting sgRNAs compared to 4000 non-targeting controls). Negative control genes were

Figure 5 continued on next page
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Knockdown and overexpression mutations identified by CRISPRi/a do
not confer pan-drug resistance
Next, we asked whether any of the gene perturbations identified by knockdown or overexpression

screening conferred resistance to multiple drugs. For each screen, we calculated a single resistance

score that takes into account both effect size and the significance of enrichment (mean rho pheno-

type � -log10P). We selected a cut-off in resistance scores that yielded less than one false-positive

example of multi-drug resistance per » 19,000 negative control genes (the number of real gene tar-

gets). This cut-off is lenient in scoring for single-drug resistance because it is designed to reduce the

chance that true cross-resistance will be missed. It therefore ensures a more stringent test of Law

and Frei’s hypothesis (Figure 7—figure supplement 1A,C). CRISPRi yielded 19 genes whose knock-

down conferred resistance to two drugs, and four genes conferring resistance to three drugs

(Figure 7A,B and Figure 7—figure supplement 1B). For example, resistance to rituximab and doxo-

rubicin was conferred by CRISPRi of SMARCE1, a known tumor suppressor in DLBCL and other can-

cers (Shain and Pollack, 2013), and by CRISPRi of CAD, a protein involved in pyrimidine

biosynthesis whose knockdown causes S phase arrest (Jost et al., 2017). Genes that conferred triple

resistance when knocked down were involved in translation initiation, chromatin modification, pro-

tein degradation and the mediator complex; these gene knockdowns conferred mild resistance as

compared to those producing single and double resistance (resistance score <2) and also reduced

cell proliferation in the absence of drug (p-value for growth defect <10�5; Figure 7—source data

1). Thus, these multi-drug resistance genes may act by reducing rates of proliferation, a phenotype

that generally predisposes cells to chemotherapy resistance (as reported for CAD; Jost et al.,

2017). No genes were identified by CRISPRi whose knockdown conferred resistance to every drug in

RCHO.

Screening by CRISPRa identified 42 genes whose overexpression conferred resistance to two

drugs and four genes that conferred resistance to three drugs (Figure 7C,D and Figure 7—figure

supplement 1D). Overexpression of the ABCB1 and ABCC1 ATP-binding cassette (ABC) transport-

ers resulted in resistance to H and O, but not to C (Figure 7C), and overexpression of the ABCG2

ABC transporter conferred resistance to H alone (Figure 5); upregulation of drug export via overex-

pression of ABC transporters has been implicated in resistance to many drugs (Choi, 2005). Two of

four genes whose activation conferred triple-drug resistance (to C, H and O) were linked to glutathi-

one biosynthesis: GCLC, which catalyzes the first step in glutathione production, and NFE2L2, a tran-

scription factor for GCLC and other genes involved in response to xenobiotics and oxidative stress

(Figure 7C) (Kitamura and Motohashi, 2018; Zanotto-Filho et al., 2016). Glutathione plays an

important role in resistance to chemotherapy (Bansal and Simon, 2018), and high expression of glu-

tathione family genes is strongly associated with poor overall survival in DLBCL on CHOP

(Andreadis et al., 2007). Further supporting the importance of glutathione for chemotherapy

responsiveness, knockdown of GCLC conferred hypersensitivity to H and O, and knockdown of the

main transporter of cystine (which is limiting for glutathione synthesis), SLC7A11, conferred hyper-

sensitivity to H (Figure 5). Thus, CRISPRa identified multiple genes associated with previously

described or suspected mechanisms of drug resistance, but even genes associated with ‘multi-drug

resistance’ such as ABC transporters were observed to confer resistance to only a subset of drugs.

Figure 5 continued

generated by randomly grouping sets of non-targeting sgRNAs. Gray dashed line: threshold for 10% FDR for single-drug resistance, or hypersensitivity.

Black dashed line: threshold for cross-resistance set to yield less than one double-resistant negative control gene out of all possible drug pairs (equal to

multi-drug resistance FDR 4% for CRISPRi and 2% for CRISPRa). Labeled genes are a partial list of top scoring hits.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. sgRNA counts for all CRISPR screens.

Source data 2. sgRNA phenotype scores for all CRISPR screens.

Source data 3. Gene scores for all CRISPR screens.

Figure supplement 1. CRISPRi/a cell lines strongly alter gene expression of targeted genes and additional cyclophosphamide CRISPRi screen identifies

hypersensitive hits in the DNA interstrand crosslink pathway.
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Figure 6. Validation of CRISPRi and CRISPRa screen results by individual drug sensitivity measurements. (a) Gene

knockdown by CRISPRi produces changes in drug sensitivity (IC50) that are correlated with resistance phenotypes

from the genome-wide CRISPRi screen (Pearson correlation r = 0.66, p<10–5). Drug dose responses were

measured in Pfeiffer CRISPRi cells bearing single sgRNAs, for each of 9 knockdown screen hits, or control non-

Figure 6 continued on next page
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Cross-resistance between drugs in R-CHOP is close to a theoretical
minimum
The degree to which two drugs are subject to shared or distinct resistance mechanisms is expected

to vary depending on the drugs, and can be described by a cross-resistance parameter x, where 0 �

x �1. As Law (1952) described, if one cell in 10A has resistance to drug a, and one cell in 10B has

resistance to drug b, then at least one cell in 10A+B will be resistant to both drugs by chance; this

theoretical minimum corresponds to x = 0. The largest possible frequency of cross-resistance is the

smaller of the single-drug resistance frequencies, which corresponds to x = 1. Any observed fre-

quency of cross-resistance can be quantified as a weighted sum of the minimum and maximum pos-

sibilities to give a value of x between 0 and 1 (Materials and methods). To estimate x in clone-

tracing studies on ENU-mutagenized cells, we first performed two independent sets of clone tracing

experiments (each in triplicate) for resistance to O alone. Perfect replicates should result in x = 1; we

compared different concentrations of O to mimic differences between drugs in rates of killing, and

observed x = 0.69 (Figure 4—figure supplement 1C,D). Next, examining all combinations of 2, 3 or

four drugs we observed uniformly low values for x, with an average of x = 0.016 (Figure 8A,B). This

shows that although we observed substantial co-occurrence of clones across drugs, they do not all

represent truly cross-resistant mutations, because their frequency can be largely accounted for by

the independent acquisition of multiple mutations that each confer resistance to a single drug. Thus,

we observed that randomly mutagenized cells exhibited nearly the theoretical minimum rate of

cross-resistance, with an absolute frequency of resistance to all drugs in R-CHOP <10–6.

In CRISPR screens single gene perturbations are analyzed and only true cross-resistance is

detected. Law’s prediction can still be applied: if resistance to drugs a and b is conferred by a frac-

tion of CRISPR perturbations (at frequencies 10–A and 10–B) with x = 0, perturbations conferring

resistance may coincidentally overlap at a frequency of 10–(A+B). In CRISPRi and CRISPRa screens,

rates of multi-drug resistance exceeded this minimum, largely due to genes such as transporters

whose function is protection against multiple xenobiotics. For example in CRISPRa screens, the theo-

retical minimum number of 2-drug resistant genes is predicted to be 1 (x = 0) and the maximum

number 132 (x = 1); the observed average for all drug pairs was 18 (x = 0.13) (Figure 8A,B). Consid-

ered together, CRISPRi and CRISPRa screens exhibited an average cross-resistance value of

x = 0.05. We therefore conclude that multi-drug resistance to the drugs making up R-CHOP is close

to its minimum predicted value.

Other applications: hypersensitivity as a guide to vulnerabilities
The identification of genes involved in drug hypersensitivity has the potential to uncover interactions

causing new druggable vulnerabilities. For example, a mutation that confers resistance to drug A

Figure 6 continued

targeting sgRNA. Error bars are 95% confidence intervals in IC50 (determined from curve fit; n = 6). Point color

indicates drug: black, rituximab; yellow, 4-hydroperoxy-cyclophosphamide; red, doxorubicin; blue, vincristine. Gray

region: threshold in resistance score that was used to identify screen hits. Right: example dose response

measurements for control sgRNAs, or sgRNAs inducing TOP2A and MED12 knockdown and consequent

doxorubicin resistance. (b) Gene overexpression by CRISPRa produces changes in drug sensitivity (IC50) that are

correlated with resistance phenotypes from the genome-wide CRISPRa screen (r = 0.84, p<10–5). Drug dose

responses (n = 4) were measured in K562 CRISPRa cells bearing sgRNAs for each of 8 overexpression screen hits,

or control non-targeting sgRNA. Right: example dose response measurements for control sgRNAs, or sgRNAs

inducing overexpression of ABCB1 and NFE2L2 and consequent vincristine resistance. (c) Gene overexpression by

CRISPRa in DLBCL cells (Pfeiffer) produces drug resistance that is correlated with resistance scores from the

CRISPRa screen in K562 cells (r = 0.69, p=0.0002). Pfeiffer CRISPRa cells bearing targeted sgRNAs were mixed at

1:1 ratio with cells bearing non-targeting sgRNA, the co-culture was subjected to two 72 hr drug treatment and

recovery periods, and changes in the ratio of mutant to control cells was measured by qPCR of sgRNAs. Error bars

are 95% confidence intervals (n = 3). Right: Change in ratio of cells bearing sgRNA that induces GCLC

overexpression (or ABCB1 overexpression) versus cells bearing control sgRNA, after drug treatment.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Data obtained in the CRISPR screen validation experiments.

Figure supplement 1. Changing transcript abundance with CRISPRi and CRISPRa.
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c. Cross-resistance among gene overexpression mutants (CRISPRa)
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Figure 7. Cross-resistance analysis of the CRISPRi and CRISPRa screens reveals a small number of multi-drug resistance mechanisms. (a) Scatter plots of

resistance scores obtained in CRISPRi screens for each pair of drugs in RCHO; each dot represents a gene. Resistance scores were calculated from the

product of the gene phenotype and the significance of the enrichment (-log10P). n.s., not significant; genes significant in one drug treatment but not in

another are displayed against the left or bottom axis. Labeled genes are a partial list of top scoring hits. (b) Venn diagram of the number of genes

Figure 7 continued on next page
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might confer sensitivity to drug B. Such ‘collateral sensitivity’ has been extensively studied in the

past and remains a relevant concept (Hutchison, 1965; Zhao et al., 2016). We analyzed drug hyper-

sensitivity in the same manner as resistance (Materials and methods, Figure 7—figure supplement

2A,C) and found that, among 778 CRISPRi or CRISPRa resistance genes, only 13 (1.7%) exhibited

hypersensitivity to a different drug. Thus, our data indicate that collateral sensitivity does not play a

major role in R-CHOP therapy, and resistance is primarily eradicated by drugs that are active against

the parental cell population. Collateral sensitivities may be relevant to other drug combinations and

Figure 7 continued

whose knockdown confers resistance to one or multiple drugs in RCHO. (c) Scatter plots of resistance scores obtained in CRISPRa screens for each pair

of drugs in CHO. Data were analyzed and displayed as in (a). (d) Venn diagram of the number of genes whose overexpression confers resistance to one

or multiple drugs in CHO.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Gamma growth scores for triple-resistant genes identified in CRISPRi screens.

Figure supplement 1. Determination of a cutoff threshold for cross-resistance analysis and identity of all cross-resistant genes for CRISPRi and CRISPRa

screens.

Figure supplement 2. Determination of a cutoff threshold for cross-hypersensitivity analysis and identity of all cross-hypersensitive genes for CRISPRi

and CRISPRa screens.
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Figure 8. Cross-resistance between drugs in R-CHOP is close to its theoretical minimum. (a) Fraction of clones or genetic perturbations resistant to one

or more drugs in RCHO. Gray shading spans the range for different sets of drugs (e.g. six different pairs), and black points mark the average on a log

scale. Dashed blue line: average frequency of Multi-Drug Resistance (MDR) if resistance is maximally overlapping (maximal overlap is the minimum of

constituent single drug MDR frequencies; cross resistance parameter x = 1). Dashed red line: average frequency of MDR as the product of single-drug

MDR frequencies with x = 0. (b) Strength of cross-resistance (x) for different sets of drugs in RCHO, as determined from data summarized in (a).
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should be discoverable using the methodology described here. We did identify multiple genes con-

ferring hypersensitivity to two drugs, and three genes conferred hypersensitivity to three drugs (no

genes were found that made cells hypersensitive to four drugs; Figure 7—figure supplement 2B,

D). For example CRISPRa of LMO2 sensitized cells to C and O; LMO2 is highly expressed in the Ger-

minal Center subtype of DLBCL, which responds better to R-CHOP than the LMO2-low Activated

B-Cell subtype (Alizadeh et al., 2000). Across all subtypes, high LMO2 expression is the strongest

single gene predictor of survival in DLBCL patients treated with CHOP or R-CHOP (Lossos et al.,

2004; Natkunam et al., 2008). Thus, the prognostic value of LMO2 may be mediated in part

through its impact on sensitivity to cyclophosphamide and vincristine. Hypersensitivity genes may be

addressable therapeutically since 11% (23 from by CRISPRi and 49 from CRISPRa) are members of

the ‘liganded genome’ – the subset of proteins for which high affinity small molecules are available

(Moret et al., 2019; Roberts et al., 2017). Study of such compounds is beyond the scope of the

current study but our data suggest possible avenues to enhancing responsiveness to R-CHOP in

DLBCL.

Discussion
The use of cancer drugs in combination was motivated historically by the need to overcome selec-

tion for drug resistance, which is a primary limitation on the durability of responses to monotherapy

(Law, 1952). Inspired in part by multi-drug cures for tuberculosis, it was proposed that lasting remis-

sion required combined use of chemotherapies having different mechanisms of action and thus, dif-

ferent mechanisms of resistance (see retrospectives by Frei and Antman, 2000; Schnipper, 1986).

Recent mathematical models of tumor evolution support these ideas, and predict that curing a can-

cer requires non-cross-resistant drug combinations in which the probability of acquiring resistance to

all drugs is effectively zero (given the number of tumor cells and the magnitude of tumor cell killing)

(Bozic et al., 2013). In contrast, contemporary drug development focuses on identifying synergistic

pharmacological interactions among drugs when considering possible new combination therapies

(Al-Lazikani et al., 2012; Chou, 2010; Han et al., 2017; Lehár et al., 2009; Nature Medicine,

2017; Sun et al., 2013).

In this paper we directly assess pharmacological interaction and cross-resistance among the drugs

comprising R-CHOP, a highly successful curative cancer therapy developed over the course of deca-

des by experimentation in patients with DLBCL. To investigate the pharmacological mechanisms

underlying the success of R-CHOP we studied R-CHOP constituents individually and in combination

in DLBCL cell lines. Over a wide range of drug concentrations, we observed no significant synergy

among R-CHOP drugs using either Bliss Independence or Loewe Additivity criteria: pairwise drug

interactions ranged from additive to antagonistic, and the combined activity of all five drugs was

close to purely additive. The significance of antagonism among some drug pairs is not clear but

studies of antibiotics have shown that antagonistic drug interactions can suppress the emergence of

drug-resistant mutants (Chait et al., 2007; Michel et al., 2008; Yeh et al., 2009).

We investigated the frequencies and mechanisms of resistance to R-CHOP using DNA barcoding

and CRISPRi/a technology. These three approaches made it possible to explore drug resistance and

cross-resistance caused by point mutations, chromosome aberrations, and increased or decreased

gene dosage. Large library size (106 clones) is a strength of the barcoding approach and it

yielded >104 DLBCL mutants resistant to one or more drugs (as measured in biological triplicate).

Genome-wide CRISPRi/a screening is more challenging technically, but it reveals the identities of

genes involved in resistance and sensitivity. The results of all three resistance screens were clear:

progressively fewer clones were observed with resistance to one, two, three or four drugs.

The specific frequencies of drug resistance reported in this study may not be directly relevant to

the clinical setting, since such frequencies depend on experimental features such as population size,

drug concentrations, and the inherent sensitivity of the cultures under study. Instead, the key finding

is that the number of multi-drug resistant cells we observe is close to the theoretical minimum: with

no cross-resistance, the number of cancer cells resistant to each of n drugs approximately equals

P0

Qn

i

fi, where P0 is the initial cancer cell population and fi is the frequency of resistance to drug i.

Our data therefore confirm the hitherto untested theories of Law and Frei (Frei et al., 1965;

Law, 1952).
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The existence of multi-drug resistance mechanisms (such as transporter overexpression) is respon-

sible for the slight increase in cross-resistance over the theoretical minimum in cell line studies. How-

ever, the quantitative impact of transporters and similar genes on the overall frequency of multi-

drug resistance is relatively modest because mutation or over-expression of such genes is substan-

tially rarer than of genes conferring resistance to single drugs; moreover, the transporters we identi-

fied were active only on a subset of R-CHOP drugs, not all of them. In the clinical setting, a newly

diagnosed patient often has P0 >1010 lymphoma cells, and sensitivity to each drug in R-CHOP is

expected to vary widely among patients due to innate resistance (speculatively, 10�6 < fi � 1, where

complete resistance to drug i corresponds to fi = 1). Thus, even in the absence of acquired cross-

resistance, R-CHOP does not cure all cases of DLBCL, a phenomenon we discuss below.

Limitations of our analysis
The current work was performed in cultured cells and it is likely that the components of R-CHOP

have additional mechanisms of action in human patients that we were unable to assay. For example,

rituximab is cytotoxic to DLBCL by signaling-induced cell death, complement-mediated cytotoxicity

(CMC), and antibody dependent cellular cytotoxicity (ADCC) (Weiner, 2010). In this study, we only

scored CMC since DLBCL cultures displayed little direct induction of apoptosis, and ADCC reconsti-

tuted in vitro using peripheral blood mononuclear cells elicits insufficient cell death for selection of

resistant clones (typically less than 50% killing) (Dall’Ozzo et al., 2004; Reff et al., 1994). We cannot

exclude the possibility that ADCC interacts synergistically with chemotherapy but note that the

immunosuppressive effects of many chemotherapies disfavor this hypothesis. With regard to the

evolution of drug resistance, rituximab may behave as though it is several drugs in one due to its

multiple mechanisms of action, although CD20 loss constitutes a shared cause of resistance

(Figure 9A). Prednisone, the pro-drug of prednisolone, can induce remissions of DLBCL even as a

single agent (Lamar, 2016), although cytotoxicity was not evident in cell cultures and therefore not

adequately tested in our studies. It is also possible that synergistic or antagonistic interactions may

occur by mechanisms specific to the in vivo setting; cell non-autonomous processes involving the

immune system are one obvious possibility. R-CHOP is often successful in treating Acquired Immune

Deficiency Syndrome (AIDS) related DLBCL, suggesting that adaptive immunity is not essential to its

activity (Ribera et al., 2008). Cell culture is nonetheless an appropriate and necessary setting in

which to test the Law and Frei hypothesis: such a test requires molecular manipulations and pheno-

typic screens over wide dose ranges that can only be performed in culture, and evidence that an ani-

mal model (or patient) benefits from combination therapy does not discriminate among alternative

mechanisms of benefit. Moreover, the assessment of synergistic interactions in new drug combina-

tions is most often performed in culture, making our analysis of interactions in R-CHOP relevant to

current drug discovery efforts.

The fractional kill hypothesis and patient-to-patient variability
In their 1964 study on the curability of experimental leukemia, Skipper, Schabel, and Wilcox

observed that a given dose of alkylating chemotherapy kills a fixed fraction of cancer cells regardless

of population size (equivalently, the logarithm of the number of cancer cells is reduced by a fixed

quantity) (Skipper et al., 1964). ‘Fractional kill’, also called ‘log kill’, has been observed for many

cancer therapies and is thought to reflect the impact of genetic and phenotypic heterogeneity on

drug response (Paek et al., 2016; Spencer et al., 2009). Considered in the context of combination

therapy, the number of ‘log kills’ contributed by each drug is expected to be arithmetically additive

if the drugs have different resistance mechanisms, precisely as we have observed for R-CHOP

(Figure 9A). For example, if each of two drugs elicit 99% kill (two log-kills), and the 1% surviving

fractions overlap by no more than chance, as occurs with low cross-resistance, then only 1% of 1% of

cancer cells will survive both drugs used in combination, resulting in 99.99% kill (2 + 2 = 4 log-kills).

Thus, combinations of individually effective drugs with low cross-resistance can achieve high frac-

tional tumor cell killing despite a lack of synergistic drug interaction.

Enhanced fractional kill can equivalently be understood from a pharmacological perspective. As

discussed above, the dose response of DLBCL to R-CHOP is very close to additive, which is nonethe-

less a basis for therapeutic superiority over monotherapy. Because toxicities limit the maximum dose

of each single agent, when the constituents of a combination have qualitatively different toxicities
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(as in R-CHOP) (Neal and Hoskin, 2009) they can be administered simultaneously at close to maxi-

mum tolerated doses. The result of a higher ‘sum of dose intensities’ (Frei et al., 1998) is precisely

what is predicted based on the fractional cell kill model, if it can be achieved at acceptable toxicity.

The results of this paper do not suggest that drug additivity and low cross-resistance are sufficient

for cure: a critical feature of an additive drug combination is the absolute magnitudes of each drug’s

efficacy (or log-kills). Because of the large numbers of cancer cells often present in DLBCL at the

time of diagnosis (>1010), and because the goal of a therapy is to get below a critical number of sur-

viving cancer cells – less than one for the sake of argument – it is logical to presume that each drug

in R-CHOP must contribute 2–3 log kills, on average, to achieve a cure. It remains unknown whether

a cure requires that a chemotherapy regimen achieve less than one viable cell or if the immune sys-

tem can clear malignant diseases when cell number falls below some threshold above one

(Frei, 1972). The conclusions in the current paper are agnostic with respect to this important issue.

How does patient-to-patient variability impact the success of therapies such as R-CHOP? In

Figure 9B, we schematize the effect of both (i) inter-patient variability in drug response and (ii) addi-

tion of log-kills of different magnitudes. Across a population of patients, the absolute magnitude of

each drug’s effect is expected to vary (denoted in Figure 9B by lines of different lengths) as does ini-

tial tumor size (denoted by the differing origins of the lines). We have previously shown that inter-

patient variability in sensitivity to different drugs explains some of the benefit of combination thera-

pies, simply by increasing the probability of a good response to any one drug (Palmer and Sorger,
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Figure 9. The role of multiple drug mechanisms in increasing the probability of cure by combination therapy. (a) Conceptual schematic of the role of

multiple drug mechanisms, each subject to different mechanisms of resistance, in the eradication of drug resistant clones and cure of a patient’s cancer.

When drug cross-resistance is low (among cancer cells in one patient), the ‘log-kills’ achieved by each drug mechanism add up. (b) Conceptual

schematic of the role of patient-to-patient variability in drug sensitivity. The number of cancer cells that survive n drugs is P0

Qn

i

fi, where P0 is initial

population, and fi is fraction of cells that survive drug i (on log-scale this is Log(P0) + SiLog(fi); note Log(fi) � 0). The effect of combination therapy in

each patient depends on initial tumor burden and the magnitude of effect of each constituent drug (f1, f2, etc), which varies across patients. Whether a

patient is cured depends on the number of cancer cells surviving all drugs (vertical gray line), which can be zero in some patients and large in others,

even if drugs are always additive and lack cross-resistance. Consistent with the clinical history of DLBCL, increasing the number of individually

efficacious and non-cross-resistant drugs in combination therapies is expected to increase the fraction of patients cured; although an added drug could

fail to improve efficacy if it lacks individual efficacy or is cross-resistant with drugs already given. It remains unresolved whether chemotherapy must

eradicate every cancer cell.
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2017). In therapies such as R-CHOP, each patient’s net response is the sum of single-drug

responses, with each drug’s contribution varying from one patient to the next. Any single drug could

be ineffective in some patients, even among patients who might be cured by the combined effect of

other drugs in their treatment. Increasing the number of individually effective drugs increases the

probability that a patient will have multiple strong responses achieving a curative degree of frac-

tional kill (denoted by the heavy green line). These concepts are consistent with the historical facts

that some cases of DLBCL are curable with three drugs (CVP), more are cured with four drugs

(CHOP) and yet more with five (R-CHOP); but even with the best available therapy some patients

are still not cured. Improving survival further by adding new drugs to R-CHOP has proven challeng-

ing, and prior to the introduction of Ritixumab the 7-drug ‘ProMACE-CytaBOM’ regimen failed to

improve DLBCL survival relative to CHOP (Fisher et al., 1993). The reasons for this are likely to be

multi-faceted: some drugs in ProMACE-CytaBOM may be ineffective in many patients; they may

have overlapping toxicities leading to dose reductions and interruptions that compromise efficacy

(Cabanillas, 2007); and they may have overlapping resistance with standard therapies such that they

fail to achieve greater fractional kill.

Systematic study of drug cross-resistance
With respect to drug synergy in combination therapy, a fundamental limitation of current tests for

pharmacological interaction is they pertain to doses near the IC50 value and are therefore relevant to

the most drug-susceptible part of a cell population. In contrast, the primary obstacle to cure in most

settings is thought to be acquired drug resistance caused by rare resistance mutations, which can

arise even at very high doses. Unfortunately, systematic analysis of cross-resistance is very difficult

using conventional cell culture techniques (Law, 1956), perhaps explaining why the ‘non-overlapping

resistance’ hypothesis has not been extensively explored in pre-clinical drug development. The intro-

duction of clone tracing and genome-wide CRISPR technologies fundamentally changes the situa-

tion: using these methods, cross-resistance can easily be studied for any new combination therapy

active in cultured cells. Moreover, since screening for resistance is best performed on individual

drugs and cross-resistance identified in a subsequent computational comparison, information on

resistance genes can be acquired cumulatively, making cross-resistance analysis scalable to many

drugs and many combinations. Consistent with this idea, clone tracing has been proposed as a gen-

eral approach to identifying combination regimens with non-overlapping resistance (Bhang et al.,

2015). Our findings supports this proposal and demonstrate the additional advantages of CRISPRi/

a. We propose that screening for cross-resistance should become as routine in pre-clinical cancer

pharmacology as screening for pharmacological interaction.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Cell line
(Homo-sapiens)

Pfeiffer ATCC (Cat# CRL-2632) RRID:CVCL_3326 Diffuse Large B-Cell Lymphoma

Cell line
(Homo-sapiens)

SU-DHL-4 ATCC (Cat# CRL-2957) RRID:CVCL_0539 Diffuse Large B-
Cell Lymphoma

Cell line
(Homo-sapiens)

SU-DHL-6 ATCC (Cat# CRL-2959) RRID:CVCL_2206 Diffuse Large B-Cell Lymphoma

Biological sample
(Homo-sapiens)

Pooled human
complement serum

Innovative Research IPLA-CSER

Peptide,
recombinant protein

Rituximab Dana Farber
Cancer Institute

8 mg/mL in the clinical
formulation
+ 10% Glycerol

Chemical
compound, drug

4-hydroperoxy-
cyclophosphamide
(4-H-Cyclo.)

Niomech D-18864 Pre-activated form of
cyclophosphamide

Continued on next page
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Chemical
compound, drug

Doxorubicin Selleck Chemicals S1208

Chemical
compound, drug

Vincristine Selleck Chemicals S1241

Chemical
compound, drug

Prednisolone Selleck Chemicals S1737 Pre-activated
form of prednisone

Commercial
assay or kit

CellTiter-Glo Promega G7573 Luminescent cell
viability assay

Chemical
compound, drug

N-ethyl-N-
nitrosourea (ENU)

Sigma Aldrich N3385 Mutation-inducing
agent

Recombinant
DNA reagent

ClonTracer
Barcoding library

Addgene (Cat# 67267) RRID:Addgene_67267 (Bhang et al., 2015)

Software,
algorithm

clonTracer_
analyze v1.0

(Bhang et al., 2015) Script for analysis of
barcode composition

Cell line
(Homo-sapiens)

HEK293T ATCC (Cat# CRL-3216) RRID:CVCL_0063 For lentivirus
production

Recombinant
DNA reagent

psPAX2 Addgene (Cat# 12260) RRID:Addgene_12260 Lentiviral
packaging plasmid

Recombinant
DNA reagent

pCMV-VSV-G Addgene (Cat# 8454) RRID:Addgene_8454 VSV-G envelope
expressing plasmid for
lentivirus production

Cell line
(Homo-sapiens)

Pfeiffer CRISPRi This paper See Materials and
methods, Section
‘Generation of dCas9-
expressing cell lines’

Recombinant
DNA reagent

pMH0001 Addgene (Cat# 85969) RRID:Addgene_85969 Lentiviral construct for
expression of
dCas9-BFP-KRAB

Cell line
(Homo-sapiens)

K562 ATCC (Cat# CCL-243) RRID:CVCL_0004 Chronic myeloid leukemia
(CML) cell line

Cell line
(Homo-sapiens)

K562 CRISPRa This paper See Materials and
methods, Section
‘Generation of dCas9-
expressing cell lines’

Recombinant
DNA reagent

pHRdSV40-dCas9-
10xGCN4_v4-
P2A-BFP

Addgene (Cat# 60903) RRID:Addgene_60903 Lentiviral construct for
expression of
dCas9-SunTag

Recombinant
DNA reagent

pHRdSV40-scFv
-GCN4-sfGFP-VP64-
GB1-NLS

Addgene (Cat# 60904) RRID:Addgene_60904 Lentiviral construct for
expression of
scFv-sfGFP-VP64

Recombinant
DNA reagent

pU6-sgRNA
EF1Alpha-puro
-T2A-BFP

Addgene (Cat# 60955) RRID:Addgene_60955 Lentiviral construct for
expression of sgRNAs

Recombinant
DNA reagent

hCRISPRi_v2 Addgene (Cat#
83969 and 83970)

RRID:Addgene_83969 Genome-wide human
library of sgRNAs
for CRISPRi

Recombinant
DNA reagent

hCRISPRa_v2 Addgene (Cat#
83978 and 83979)

RRID:Addgene_83978 Genome-wide human
library of sgRNAs
for CRISPRa

Software,
algorithm

Screen
Processing
pipeline

(Horlbeck et al., 2016) https://github.com/
mhorlbeck/Screen
Processing

Cell line
(Homo-sapiens)

Pfeiffer CRISPRa This paper See Materials and
methods, Section
‘Validation of
CRISPR screens’
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Cell culture and chemotherapies
Diffuse large B-cell lymphoma (DLBCL) cell lines were obtained from the American Type Culture Col-

lection (ATCC) and the Dana Farber Cancer Institute. The identity of Pfeiffer (ATCC CRL-2632) was

validated by Promega GenePrint 10 small tandem repeat (STR) profiling. All DLBCL cell lines were

grown in RPMI-1640 with 25 mM HEPES and 2 mM L-alanine-L-glutamine (GlutaMAX) (Gibco

72400), supplemented to 4.5 g/L D-glucose, 10% (v/v) heat inactivated fetal bovine serum (FBS)

(Gibco 16140071), and penicillin/streptomycin (P/S) at final concentrations of 100 U/mL and 100 mg/

mL, respectively (Corning 30–002 CI). For CRISPRi screens, Pfeiffer cells were grown in RPMI-1640

(Gibco 72400) supplemented with 15% (v/v) FBS and P/S. K562 cells were grown in RPMI-1640

(ATCC 30–2001) with 10 mM HEPES, 4.5 g/L D-glucose, 2 mM L-glutamine, 1 mM sodium pyruvate,

and supplemented with 10% (v/v) FBS and P/S. HEK293T cells were grown in Dulbecco’s modified

Eagle medium (Corning 10–013) with 4.5 g/L D-glucose, 4 mM L-glutamine, 1 mM sodium pyruvate,

and supplemented with 10% (v/v) FBS and P/S. All cell lines were grown at 37˚C and 5% CO2. Cells

were tested for mycoplasma contamination using the MycoAlert mycoplasma detection kit (Lonza).

When treating with rituximab alone or in combination, media was additionally supplemented with

5% (v/v) pooled human complement serum (HCS) (Innovative Research IPLA-CSER) to enable com-

plement-mediated cytotoxicity. Cells were grown in vented tissue-culture treated polystyrene flasks.

Cell density and viability was assessed during culture by a TC20 automated cell counter (Bio-Rad)

with trypan blue; all cell densities reported here refer to the count of live cells with diameter

between 8 and 24 mm. During culture before drug treatment experiments, DLBCL cells were main-

tained at the following densities: Pfeiffer between 3 � 105 and 15 � 105 cells/mL; SU-DHL-4 and SU-

DHL-6 between 2 � 105 and 106 cells/mL; with centrifugation and transfer to fresh media every 2 to

4 days.

Chemotherapies were obtained as follows: 4-hydroperoxy-cyclophosphamide (4-H-Cyclo.) from

Niomech (D-18864), doxorubicin, vincristine, and prednisolone from Selleck (S1208, S1241, and

S1737), and rituximab from Dana Farber Cancer Institute. Single-use aliquots of 4-H-Cyclo. were pre-

pared in DMSO at �80˚C, other chemotherapies were prepared in DMSO and stored at �20˚C, and

rituximab was prepared at 8 mg/mL in the clinical formulation plus 10% glycerol and stored at 4˚C.

DMSO was obtained from Sigma (D2650) and puromycin from Gibco.

Measurement of drug-drug interactions
All drug interaction experiments were conducted in biological duplicates using two independent cul-

tures of the same cell line. After being split from a common ancestor, cultures were propagated in

parallel for at least one week before any experiment. Dose responses to single or multiple drugs

were measured on DLBCL cells grown in sterile black polystyrene 384-well assay plates. Each well

was inoculated with 30 mL of culture at density 105 cells/mL, and promptly afterwards concentration

gradients of drugs were added to wells by D300 digital dispenser (Hewlett-Packard). All chemo-

therapies were dispensed as DMSO solutions, while rituximab was prepared at 2.5 mg/mL with

0.05% (v/v) Triton X-100, with a 90 s incubation after pipetting into the print cassette for liquid to be

drawn into the print head. At the highest dispensed concentration of rituximab, this conferred a final

Triton X-100 concentration of 3 parts-per-million, which we confirmed did not by itself inhibit the

growth of DLBCL cells. Wells on plate edges were filled but not used for any measurements. The

drug dispensing arrangement of each plate was spatially randomized (and re-organized during data

analysis); thereby any spatial bias across a plate becomes random error rather than systematic error

across dose responses. Whole control plates of untreated cultures demonstrated no detectable row

bias or column bias. Each plate contained >40 untreated wells in randomized locations (not on

edges) that served as no-inhibition controls. Assay plates were incubated at 37 ˚C with 5% CO2,

inside containers humidified by sterile wet gauze. After 72 h, plates were removed from incubation

and cooled at room temperature for 30 min, before automated dispensing (BioTek EL406) of 30 mL

of CellTiter-Glo (1:1 dilution in phosphate buffered saline (PBS)) into each well. Following a 10 min

incubation at room temperature, each well’s luminescence was measured in a plate reader (BioTek

Synergy H1). At the time of the 384-well plates’ initial seeding, 1.5 mL cultures in 6-well plates were

prepared from the same cell suspension, with separate cultures including or excluding 5% HCS. At

the time of drug addition to plates, one of each such culture was harvested, and cell density was

counted (Bio-Rad TC20 using trypan blue), and 72 hr later (at the time of CellTiter-Glo addition to
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384-well plates) another such untreated 1.5mL culture was harvested and counted. From these den-

sity measurements we calculated the number of cell divisions occurring during the time of the assay,

which was used during data analysis to determine Growth Rate (GR) metrics (Hafner et al., 2016).

Specifically, we used GR = log2[(relative viability after treatment, according to CellTiter-Glo) � (cell

number per mL of untreated control culture at t=72 h) / (cell number per mL of untreated control cul-

ture at t=0)] / log2[(cell number per mL of untreated control culture at t=72 h) / (cell number per mL

of untreated control culture at t=0)] (Figure 1—figure supplement 1D). By this measure GR=1 indi-

cates full, uninhibited growth, GR=0 indicates complete growth arrest, or that proliferation and

death are in balance (final cell count = initial cell count), and GR<0 indicates net cytotoxicity (final

cell count < initial cell count); note that we did not impose an asymptotic lower bound of -1 as

described by Hafner et al (this would be computed as 2GR – 1). HCS slightly speeded the division

rate of Pfeiffer in the absence of drugs (17% shorter doubling time), and slightly diminished Pfeiffer

sensitivity to 4-H-Cyclo. Pairwise drug interactions (Figure 1) were measured over an 11�11 ‘check-

erboard’ of logarithmically-spaced drug concentrations (5 points per order of magnitude), with 5%

HCS in media only in interactions with rituximab (for this reason 4-H-Cyclo. is less potent in its isobo-

logram with rituximab). The concentration range for each drug was selected based on preliminary

dose-ranging studies so as to span a range from no detectable effect on growth to 98% reduction in

cell number relative to untreated control cells, which corresponds to growth arrest plus 90% cell kill-

ing. High-order drug interactions, including pairs (Figure 2), were measured over 14-point concen-

tration gradients of one to five drugs, in all cases including 5% HCS so that drug sensitivity and

drug-free cell division rate was consistent across conditions that would be compared in analysis. For

these high-order interactions, each independent culture (biological replicate) was measured with cul-

tures seeded into duplicate plates (plate-to-plate technical duplicates). Each of these four combina-

torially complete drug response sets spanned two 384-well plates, which each contained a full set of

single-drug gradients, and thus single-drug responses were in total measured in octuplicate. In the

analysis, ‘100% luminescence’ was defined on a per-plate basis by the interquartile mean of at least

50 drug-free wells within that plate (excluding edges). For isobologram analysis (Figure 1), the

topology of drug response over the 11�11 checkerboards was smoothed by a nearest-neighbor

median filter; this will apply no change to a monotonic response surface, and only smoothes data in

cases of locally non-monotonic (that is, jagged) dose response. The absence of this filter changes no

conclusions regarding interaction types but yields occasionally jagged isoboles. Fractional inhibitory

concentrations (FICs) are calculated by comparing dose responses of drug combinations to dose

responses of their constituent single drugs. Given a mixture of drugs at a dose that causes 50% kill-

ing, FIC50 is the sum of each drug’s concentration in that mix as a fraction of the single-agent doses

producing the same effect: FIC50 ¼
P IC50drugincombination

IC50drugalone
. FIC=1 indicates Loewe additivity.

Production of ClonTracer lentivirus
ClonTracer library was a gift from Frank Stegmeier (Addgene 67267). Lentiviral particles carrying

ClonTracer were produced by calcium phosphate transfection of HEK293T cells (grown in DMEM

with 10% FBS and 10 mM HEPES) with ClonTracer plasmid (10 mg per 10 cm dish) and lentiviral

packaging and VSV-G plasmids psPAX2 and pMD2.G (Cellecta CPCP-K2A; 10 mg of mix per 10 cm

dish). Supernatants of transfected HEK293T cells were harvested at 48 hr and again at 72 hr post-

transfection. Supernatants were pooled and clarified by centrifugation (500 � g, 10 min). Lentiviral

particles were concentrated from supernatant by mixing three parts supernatant with one part Len-

ti-X concentrator solution (ClonTech 631231), incubating overnight at 4˚C, centrifuging at 1500 � g

and 4˚C for 45 min, removing supernatant, and resuspending pellet at 1/100 original volume in PBS.

DNA barcoding of cell lines
108 Pfeiffer cells in complete media were treated with 100 mg/mL N-ethyl-N-nitrosourea (ENU) for 4

hr; this was previously determined to be the highest dose tolerable by Pfeiffer for this duration with-

out conferring detectable cell death. Cells were washed twice and returned to drug-free media for

72 hr to recover. 107 of these cells were infected with the ClonTracer lentiviral library by ‘spinocula-

tion’. In this protocol, five microcentrifuge tubes were prepared containing 2 � 106 cells in 1 mL

complete media, with 8 mg/mL polybrene, and lentivirus at a volume yielding a multiplicity of infec-

tion (MOI) of 0.1 (per tube, this was 5 mL of 100 � concentrate of lentivirus containing supernatant;
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see measurement of MOI below). Tubes were incubated for 10 min (37˚C, 5% CO2), and centrifuged

at 800 � g and 37˚C for 60 min. The supernatant was removed, and each cell pellet was resus-

pended in 4 mL complete media (5 � 105 cells/mL) and transferred to one well of a 6-well plate for

continued growth (incubation at 37˚C, 5% CO2). Volume of lentivirus to produce this MOI had been

previously determined by test infections of Pfeiffer with different volumes of lentiviral solution, after

which the fraction of infected Pfeiffer cells were counted by flow cytometric analysis of the red fluo-

rescent protein encoded by the ClonTracer cassette (BD LSRII, ex:488 nm, em:575/26 nm), having

first gated out dead cells (Violet Viability kit, Thermo Fisher Scientific L34958, ex:405 nm, em:450/50

nm) (note, red fluorescence was not readily detectable until 2 days post-infection). From the mea-

sured fraction of fluorescent cells, MOI was calculated assuming a Poisson distribution of infection

events. Cells were expanded in complete media for 3 days before applying selection for infected

cells (which carry a puromycin resistance gene in the ClonTracer cassette): 3 days in 0.25 mg/mL, 3

days in 0.5 mg/mL, and then 2 days in 1 mg/mL puromycin. At this time flow cytometry could not

detect a significant population of non-fluorescent cells. Barcoded Pfeiffer cells were grown without

puromycin for an additional 4 days before selection experiments in R-CHOP.

Selection for drug-resistant clones
From a well-mixed suspension of barcoded Pfeiffer cells, 108 cells were harvested and frozen for

measurement of pre-treatment DNA barcode frequencies by sequencing. From the same suspension

of cells and at the same time, 15 replicate cultures were prepared in 75 cm2 flasks with 25 mL of

complete media containing 5 � 105 cells/mL of barcoded Pfeiffer cells. The total count of 12.5 � 106

cells per flask is calculated to contain 99.999% of the 106 unique clones assuming equal initial abun-

dance and random assortment into flasks. Because rituximab displayed an ‘inoculum effect’ with lim-

ited cytotoxicity at high cell density, three cultures for rituximab treatment were prepared at lower

density and higher volume: 60 mL of barcoded Pfeiffer at 1 � 105 cells/mL in 150 cm2 flasks, in

media supplemented with 5% HCS. The total count of 6 � 106 cells in each rituximab-treated flask is

calculated to contain 99.7% of the 106 clones. For each drug, and DMSO control, three replicate

flasks were treated for 72 hr at the following concentrations: 4 mM 4-H-Cyclo.; 50 nM doxorubicin;

5.6 nM vincristine; 16 mg/mL rituximab; 0.04% (i.e., 0.0004 v/v) DMSO (the highest DMSO concentra-

tion delivered with any drug). These drug concentrations were chosen on the basis of preliminary

dose-finding experiments that identified them to be the highest concentration, in a series of 2-fold

concentration steps, from which any surviving cells repopulated the culture within 2 weeks of recov-

ery following the 72 hr drug treatment. Following treatment, cultures were washed twice and resus-

pended in drug-free media. During recovery, culture volumes were adjusted to maintain cell density

within the recommended range (3–15 � 105 cells/mL). No cells were disposed of except from the

DMSO control flasks, which suffered no inhibition but were maintained for a ‘recovery’ time to match

drug-treated flasks. Following recovery to a population size twice the initial inoculum, the recovered

cultures were exposed to repeat treatments (each flask treated by the same drug as before), and

recovery. Following the second recovery, cultures were centrifuged and cell pellets harvested for

barcode sequencing. Prednisolone treatments were designed differently because it was not cyto-

toxic to cultured Pfeiffer cells (nor any of six other DLBCL cell lines) in concentrations up to 50 mM.

Therefore, triplicate Pfeiffer cultures (25 mL in 75 cm2 flasks) were maintained in 20 mM prednisolone

for 20 days, with cell density maintained between 3–15 � 105 cells/mL and with fresh prednisolone

administered with media changes every 72 to 96 hr (Figure 3—figure supplement 1A). This treat-

ment duration was estimated to produce »20-fold enrichment of clones fully resistant to the mild

inhibitory effect of prednisolone (» 13 divisions in 20 days ) enrichment from resisting 20% growth

inhibition = (1/0.8)13 = 18-fold).

Barcode amplification and sequencing
To avoid contamination of pre-amplification materials with amplified DNA barcodes (which are

approximately a billion-fold more concentrated), all materials, processes and equipment used prior

to PCR amplification of ClonTracer barcodes were physically and temporally quarantined from all

materials, processes and equipment used following PCR (distant benches and equipment, never

both used on the same day). Genomic DNA (gDNA) was extracted from frozen cell pellets with

DNeasy Blood and Tissue extraction kits (Qiagen 69504), using the spin-column protocol including
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RNase A incubation. Four spin columns were used per sample of 10–15 � 106 cells; whereas the pre-

treatment sample was a larger population of 3 � 107 cells applied to eight spin columns. DNA con-

centration was measured by SYBR green fluorescence with a l dsDNA calibration curve (readings on

BioTek Synergy H1). ClonTracer DNA barcodes consist of a repeating ‘Strong (G or C) - Weak (A or

T)’ pattern with no detectable PCR amplification bias so that barcode counts measured by deep

sequencing are proportional to clone abundance (Bhang et al., 2015). Barcodes were amplified

from 20 mg of gDNA per sample, representing 3 million diploid genomes as template, with Q5 poly-

merase (New England Biolabs M0492). This was accomplished with parallel 50 mL reactions with 2 mg

of template each. The pre-treatment sample was amplified from 40 mg of DNA, representing 6 mil-

lion diploid genomes. Primer sequences were as described previously (see Supplemental Table 2 of

Bhang et al., 2015). Reaction success and yield was verified by agarose gel electrophoresis. PCR

products of all treatment conditions were pooled and size selected (133 bp) by excision from an aga-

rose gel (using SYBR-safe stain and blue LED illumination) with purification by QIAquick Gel Extrac-

tion Kit (Qiagen 28704). PCR product from pre-treatment cell sample was processed separately

rather than pooled with others. PCR products were sequenced on Illumina HiSeq 2500 in high-out-

put single read mode, with custom read (CCGAGATACTGACTGCAGTCTGAGTCTGACAG) and

index (AGCAGAGCTACGCACTCTATGCTAG) primers. A 30% PhiX spike-in provided necessary

sequence diversity. FASTQ files were analyzed by the clonTracer_analyze v1.0 script which is avail-

able with the ClonTracer system (see www.addgene.org, cat. #67267). This script conducts the Bar-

code-composition analysis described by Bhang et al. (2015), which identifies high-quality reads that

conform to the expected barcode pattern (30nt of alternating weak (A/T) then strong (G/C)), and

merges barcode sets that contain one high abundance barcode and sequence-adjacent barcodes

(hamming distance 1 or 2) at much lower abundance indicating that they are sequencing errors of

the high-abundance barcode. For each drug treated sample, 6–8 � 106 barcode reads were

obtained, and from the pre-treatment sample 1.6 � 108 barcode reads were obtained; the latter

being sequenced at greater depth.

Analysis of barcode enrichment
Barcode counts in the pre-treatment sample were assigned a lower bound of the 5% quantile of

counts in this sample (34 counts); this prevents barcodes that were rare or undetected in the pre-

treatment sample from scoring as highly enriched in a drug treatment while having, for example,

only two reads. Absolute barcode counts in pre- and post-treatment samples were then converted

to the fraction of all counts for that sample. Each barcode’s enrichment in a given drug treatment

was calculated as post-treatment frequency divided by pre-treatment frequency. The biological trip-

licates of each treatment were merged to a single score by calculating the geometric mean enrich-

ment. Each repeat was assigned a minimum enrichment of 1 when calculating geometric mean, to

prevent severely penalizing barcodes that were not detected in one of three repeats; this is moti-

vated by the statistical possibility that a barcode may be absent from any one flask’s inoculum. A

small fraction of barcodes exhibited geometric mean enrichment >1 in DMSO-treated cultures (1%

of barcodes were enriched �10 fold), and therefore to normalize for these differences in fitness that

are unrelated to drug sensitivity, we divided each barcode’s enrichment scores in drug treatments

by its enrichment in DMSO only when DMSO-enrichment was greater than 1 (enrichment scores in a

drug treatment were not increased by having DMSO enrichment score less than 1).

Lentivirus production for CRISPR reagents
HEK293T cells were transfected with the lentiviral plasmid of interest (as mentioned in relevant sec-

tions below), psPAX2 (Addgene #12260) and pCMV-VSV-G (Addgene #8454) in a 2:2:1 molar ratio

using lipofectamine 3000 (Invitrogen) according to the manufacturer’s instructions. The growth

medium was replaced 6 hr post-transfection and was then harvested at 28 hr and 52 hr post-trans-

fection. The two harvested growth medium fractions were pooled, centrifuged at 1,000 � g for 10

min, and filtered through a 0.45 mm low-protein binding membrane. Lentivirus containing superna-

tants were stored at �80˚C. If needed, lentivirus titers were increased by adding ViralBoost reagent

(Alstem) to the cell culture medium and lentivirus supernatants were concentrated using a lentivirus

precipitation solution (Alstem).
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Generation of Cas9-expressing cell lines
To generate the Pfeiffer cell line stably expressing dCas9-KRAB (Pfeiffer CRISPRi), Pfeiffer cells

(ATCC CRL-2632) were transduced with lentiviral particles produced using vector pMH0001 (Addg-

ene #85969; expresses dCas9-BFP-KRAB from a spleen focus forming virus (SFFV) promoter with an

upstream ubiquitous chromatin opening element) in the presence of 8 mg/mL polybrene. A pure

polyclonal population of dCas9-KRAB expressing cells was generated by 3 rounds of fluorescence

activated cell sorting (FACS) gated on the top half of BFP positive cells (BD FACS Aria II).

To generate the K562 cell line stably co-expressing dCas9 fused to the SunTag, and a SunTag-

binding antibody fused to the VP64 transcriptional activator (K562 CRISPRa), K562 cells (ATCC CCL-

243) were first transduced with lentiviral particles produced using vector pHRdSV40-dCas9-

10xGCN4_v4-P2A-BFP (Addgene #60903; expresses dCas9 tagged with 10 copies of the GCN4

peptide v4 and BFP) in the presence of 8 mg/mL polybrene. After selection of BFP positive cells

using one round of FACS (BD FACS Aria II), cells were transduced with lentiviral particles produced

using vector pHRdSV40-scFv-GCN4-sfGFP-VP64-GB1-NLS (Addgene #60904; expresses a single

chain variable fragment (scFv) that binds to the GCN4 peptide from the SunTag system, in fusion

with superfolder green fluorescent protein (sfGFP) and VP64) in the presence of 8 mg/mL polybrene.

Single cells with high GFP levels (top 25% of GFP positive cells) and high BFP levels (top 50% of BFP

positive cells) were isolated by FACS and grown in single wells of a 96-well plate. Monoclonal cell

lines were expanded and tested for their ability to increase the expression of target control genes

(see section below). A single clone exhibiting robust growth and robust overexpression of target

genes was selected as cell line K562 CRISPRa.

Evaluation of CRISPRi/a cell lines using sgRNAs targeting individual
genes
Pairs of complementary synthetic oligonucleotides (Integrated DNA Technologies) forming sgRNA

protospacers flanked by BstXI and BlpI restriction sites were annealed and ligated into BstXI/BlpI

double digested plasmid pU6-sgRNA EF1Alpha-puro-T2A-BFP (Addgene #60955). Oligonucleotides

used to build sgRNA targeting individual genes are listed in Supplementary file 1. The sequence of

all sgRNA expression vectors was confirmed by Sanger sequencing and lentiviral particles were pro-

duced using these vectors as described above (see ‘lentivirus production’). Pfeiffer CRISPRi and

K562 CRISPRa cells were infected with individual sgRNA expression vectors by addition of lentivirus

supernatant to the culture medium in the presence of 8 mg/mL polybrene. Transduced cells were

selected using puromycin (0.8 mg/mL for Pfeiffer and 2 mg/mL for K562) starting 48 hr post-transduc-

tion and over the course of 7 days with daily addition of the antibiotic. After 24 hr growth in puromy-

cin-free medium, 1 � 105 cells were harvested and total RNA was extracted using the RNeasy Plus

Mini kit (Qiagen). cDNA was synthesized from 0.1 mg total RNA using Superscript IV reverse tran-

scriptase (Invitrogen) and oligo(dT)20 primers (Invitrogen), following the manufacturer’s instructions.

Reactions were diluted 4-fold with H2O and qPCR was performed in 10 mL reaction volume in 96-

well plates using PowerUp SYBR Green PCR Master mix (Thermo Fisher Scientific), 2 mL diluted

cDNA preparation, and 0.4 mM of primers. All qPCR primers are listed in Supplementary file 1. To

calculate changes in expression level of target genes, all gene specific Ct values were first normal-

ized to the Ct value of a reference gene (GAPDH) to find a DCt value. Log2 fold changes in expres-

sion were then determined by the difference between the DCt value of targeting sgRNAs and that

of a non-targeting negative control sgRNA (DDCt).

CRISPRi/a screens
Genome-wide libraries of sgRNAs from Addgene (hCRISPRi_v2: #83969 and #83970; hCRISPRa_v2:

#83978 and #83979; a gift from Jonathan Weissman [Horlbeck et al., 2016]) were amplified in

MegaX DH10B T1R cells (Invitrogen). These two libraries are provided as two sub-libraries each con-

taining about 100,000 individual plasmids (five sgRNAs per gene). Sub-libraries (100 ng) were elec-

troporated into MegaX DH10B T1R cells according to the manufacturer’s instructions and the

resulting transformed cells were plated on 10 � 150 mm LB/Ampicillin (100 mg/mL) Petri dishes.

After 17 hr at 30˚C, cells were scraped off the plates, washed with LB, and plasmid DNA was pre-

pared from the cell pellet using the Plasmid Plus Maxi kit (Qiagen). Coverage for each sub-library

was determined by serial dilution and colony counting, and was at least 5,000 � for each sub-library.
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Lentiviral supernatant was prepared using an equimolar ratio of each sub-library plasmid for both

the hCRISPRi_v2 and the hCRISPRa_v2 sgRNA libraries as described above (‘lentivirus production’)

and was stored at �80˚C. The multiplicity of infection (MOI) of both preparations was determined by

titration onto the target cell line and quantification of the percentage of BFP positive cells 2–3 days

post-transduction by flow cytometry (BD Biosciences LSR II).

For CRISPRi screens, Pfeiffer CRISPRi cells (2.5 � 108) were transduced with the hCRISPRi_v2

library lentivirus at an MOI of 0.4 in 250 mL culture medium + 8 mg/mL polybrene in 3 � 225 cm2

cell culture flasks (Costar). 24 hr post-transduction, cells were harvested and resuspended in 400 mL

fresh medium in 4 � 225 cm2 cell culture flasks. Starting 48 hr post-transduction, the culture medium

was exchanged daily and cells were maintained at 0.8 � 106/mL in puromycin (0.8 mg/mL) in 400–

500 mL. After 5 days in puromycin, the proportion of BFP positive cells determined by flow cytome-

try increased from 37% to 90% of the fraction of viable cells. After recovery for 1 day in puromycin-

free medium, the library cells were ready for initiation of parallel drug selections. First, a T0 sample

of 6 � 107 cells was harvested and stored at �80˚C. Each screen was initiated using 6 � 107 cells at

0.4 � 106/mL in 2 � 225 cm2 cell culture flasks. Vincristine (O), 4-hydroperoxy-cyclophosphamide

(C), and doxorubicin (H) were added from 500 � stocks in DMSO. A DMSO-only screen was used as

an untreated control screen. Rituximab (R) was added from a 2 mg/mL stock in PBS and 5% (v/v)

HCS was added to the growth medium. A screen with matching treatment of 5% (v/v) HCS was used

as an untreated control screen for rituximab. For the duration of the screen, cells were maintained in

2 � 225 cm2 cell culture flasks at a minimum concentration of 0.4 � 106/mL in 150 mL (minimum cov-

erage of 300 cells per sgRNA) by exchanging the medium to fresh medium every 2 days. For drug

treatment, cells were treated with pulses of drug for 3 days followed by exchange of the growth

medium. O (5.0 nM final concentration) was added on day 0, day 7 and day 11; C (3.3 mM) was

added on day 0 and day 3; H (27 nM) was added on day 0 and day 7; R (4 mg/mL and 5% HCS) was

added on day 0, day 5 and day 10. During the course of the screen, cell count and viability were

measured using a TC20 automated cell counter (Bio-Rad) using trypan blue. The vincristine CRISPRi

screen underwent 7.60 fewer population doublings than the DMSO control screen; the 4-hydroper-

oxy-cyclophosphamide screen underwent 9.34 fewer doublings; and the doxorubicin screen under-

went 7.41 fewer doublings. The rituximab CRISPRi screen underwent 7.53 fewer population

doublings than the 5% HCS control screen. At day 14, 8 � 107 cells were harvested from each screen

by centrifugation, washed twice with PBS and gDNA was extracted using the QIAamp DNA Blood

Maxi Kit (Qiagen) according to the manufacturer’s instruction, except that the elution was performed

using 10 mM Tris�HCl pH 8.5. Typical yields from 8 � 107 cells ranged from 500 to 650 mg gDNA.

For CRISPRa screens, K562 CRISPRa cells (3 � 108) were transduced with the hCRISPRa_v2 library

lentivirus at an MOI of 0.25 in 300 mL culture medium + 8 mg/mL polybrene in 3 � 225 cm2 cell cul-

ture flasks (Costar). 24 hr post-transduction, cells were harvested and resuspended in 450 mL fresh

medium in 4 � 225 cm2 cell culture flasks. Starting 48 hr post-transduction, the culture medium was

exchanged daily and cells were maintained at 0.8 � 106/mL in puromycin (1.5–1.75 mg/mL) in 400–

500 mL. After 5 days in puromycin, the proportion of BFP positive cells determined by flow cytome-

try increased from 26% to 96% of the fraction of viable cells. After recovery for 1 day in puromycin-

free medium, the library cells were ready for initiation of parallel drug selections. First, a T0 sample

of 8 � 107 cells was harvested and stored at �80˚C. Each screen was initiated using 6 � 107 cells at

0.4 � 106/mL in 2 � 225 cm2 cell culture flasks. Vincristine (O), 4-hydroperoxy-cyclophosphamide

(C), and doxorubicin (H) were added from 500 � stocks in DMSO. A DMSO-only screen was used as

an untreated control screen. For the duration of the screen, cells were maintained in 2 � 225 cm2

cell culture flasks at a minimum concentration of 0.4 � 106/mL in 150 mL (minimum coverage of 300

cells per sgRNA) by exchanging the medium to fresh medium every 2 days. For drug treatment, cells

were treated with pulses of drug for 3 days followed by exchange of the growth medium. O (35.0

nM final concentration) was added on day 0 and day 8; C (7.5 mM) was added on day 0 and day 8; H

(27 nM) was added on day 0 and day 8. During the course of the screen, cell count and viability

were measured using a TC20 automated cell counter using trypan blue. The vincristine CRISPRa

screen underwent 8.80 fewer population doublings than the DMSO control screen; the 4-hydroper-

oxy-cyclophosphamide screen underwent 10.52 fewer doublings; and the doxorubicin screen under-

went 9.87 fewer doublings. At day 15, 8 � 107 cells were harvested from each screen by

centrifugation, washed twice with PBS and gDNA was extracted using the QIAamp DNA Blood Maxi
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Kit according to the manufacturer’s instruction, except that the elution was performed using 10 mM

Tris�HCl pH 8.5. Typical yields from 8 � 107 cells ranged from 500 to 680 mg gDNA.

sgRNA barcode sequences were amplified by PCR using the extracted gDNA from either CRISPRi

or CRISPRa screens as template and Phusion (NEB M0530) as polymerase. An equimolar mix of pri-

mers with stagger regions of different length (CC_LSP_025 to CC_LSP_032) was used as forward

primer (to maintain sequence diversity in the common linker region for high-throughput sequencing

purposes) and barcoded index primers (CC_LSP_033 to CC_LSP_040) were used as reverse primers.

Reactions were composed of 1 � HF buffer, 0.2 mM dNTPs, 0.4 mM forward primer mix, 0.4 mM

indexed reverse primer, 0.5 mL Phusion, 1.5 mM MgCl2, and 5 mg gDNA in a volume of 50 mL. After

initial melting at 98˚C for 30 s, the reactions were subjected to 24 cycles of heating at 98˚C for 30 s,

annealing at 62˚C for 30 s and extension at 72˚C for 30 s, and were followed by a final extension

step at 72˚C for 5 min. After verification of the PCR reaction success by agarose gel electrophoresis

using SYBR safe stain (Thermo Fisher Scientific) on a single 50 mL reaction, 50% of the extracted

gDNA for each screen (gDNA from 4 � 107 cells, corresponding to a coverage of 200�) was used as

template in PCR reactions (typically 50–70 reactions per screen). After pooling all reactions from

each single screen, the amplified sgRNA barcode PCR product (~240–250 bp) was purified by aga-

rose gel electrophoresis using the QIAquick gel extraction kit (Qiagen). The concentration of individ-

ual libraries was quantified by fluorescence using the Qubit dsDNA high sensitivity assay kit (Thermo

Fisher Scientific). Individual indexed libraries were mixed in equimolar ratio and were further purified

using a QIAquick PCR purification kit (Qiagen). After determining accurate concentrations by quanti-

tative PCR (qPCR) using the NEBnext library quant kit for Illumina (NEB), pooled libraries were

sequenced on an Illumina HiSeq 2500 platform using a 50 bp single read on a high output standard

v4 flow cell with a 15–20% PhiX spike-in. A total of 51–72 million reads were obtained for each

indexed screen (minimum coverage of 250�).

The fastq sequencing files were analyzed using a Python-based ScreenProcessing pipeline previ-

ously reported by Horlbeck et al. (2016) (https://github.com/mhorlbeck/ScreenProcessing) with the

following modification introduced due to the use of a mix of forward primers with a staggered

region of different length. All reads were first processed using Cutadapt (Martin, 2011) to remove

the linker sequence in front of the sgRNA barcode in each read (CTTGGAGAACCACCTTGTTG). To

count the abundance of each sgRNA barcode in every sample, trimmed sequences were aligned to

the library of protospacers present in the hCRISPRi_v2 or hCRISPRa_v2. Typically, 83–87% of the

number of raw reads were aligned to the library of protospacers. The count files were next used to

generate negative control genes, and calculate enrichment phenotypes and Mann-Whitney p-values

as previously described (Gilbert et al., 2014; Horlbeck et al., 2016). To estimate technical noise in

the screen, simulated negative control genes (the same number as that of real genes) were gener-

ated by randomly grouping 10 sgRNAs from the pool of ~4000 non-targeting control sgRNAs pres-

ent in the libraries. The phenotypic effect of each sgRNA was quantified by the rho phenotype

metric (Kampmann et al., 2013) which calculates the log2 fold change in abundance of an sgRNA

between the treated and vehicle control samples, subtracting the equivalent median value for all

4000 non-targeting sgRNAs, and dividing by the number of population doubling differences

between the treated and vehicle control populations. Similarly, untreated growth phenotypes

(‘gamma’ phenotypes) can be calculated by a comparison of vehicle control and T0 samples; and

‘tau’ phenotypes can be calculated by a comparison of treated and T0 samples (Gilbert et al., 2014;

Kampmann et al., 2013). For each gene (and simulated control gene), which is targeted by 10

sgRNAs, two metrics were calculated: (i) the mean of the strongest five rho phenotypes by absolute

value, and (ii) the p-value of all 10 rho phenotypes compared to the 4000 non-targeting control

sgRNAs (Mann-Whitney test). For genes with multiple independent transcription start sites (TSSs)

targeted by the sgRNA libraries, the two metrics were calculated independently for each TSS and

the TSS with the lowest Mann-Whitney p-value was chosen for further analysis. sgRNAs were

required to have a minimum of 25 counts in at least one of the two conditions tested to be included

in the analysis. To deal with the noise associated with potential low count numbers, a pseudocount

of 10 was added to all counts. Genes that had less than eight sgRNA rho phenotypes were not

included for further analysis. Read counts and phenotype scores for individual sgRNAs are available

in the Supplemental Data. Gene-level phenotype scores and p-values are available in the Supple-

mental Data.
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CRISPRi cyclophosphamide hypersensitivity screen
The additional CRISPRi cyclophosphamide screen (Figure 5—figure supplement 1B) for identifica-

tion of hypersensitive hits was performed and analyzed as described above with the following key

modifications. Pfeiffer CRISPRi cells (2 � 108) were transduced with the top five half library of hCRIS-

PRi_v2 (Addgene #83969, that is five sgRNAs per gene) at an MOI of 0.3 in 200 mL culture medium

+ 8 mg/mL polybrene in 2 � 225 cm2 cell culture flasks. 24 hr post-transduction, cells were harvested

and resuspended in 300 mL fresh medium in 3 � 225 cm2 cell culture flasks. Starting 48 hr post-

transduction, the culture medium was exchanged daily and cells were maintained at 0.8 � 106/mL in

puromycin (0.6 mg/mL) in 300–400 mL. After 3 days in puromycin, cells were recovered for 1 day in

puromycin-free medium. A T0 sample of 5 � 107 cells was harvested and stored at �80˚C. The

CRISPRi screen was initiated using 2.5 � 107 cells at 0.4 � 106/mL in 1 � 225 cm2 cell culture flask.

For the duration of the screen, cells were maintained in 1 � 225 cm2 cell culture flask at a minimum

concentration of 0.4 � 106/mL in 62.5 mL (minimum coverage of 250 cells per sgRNA) by exchang-

ing the medium to fresh medium every 2 days. 4-hydroperoxy-cyclophosphamide (2.5 mM final con-

centration) was added on day 0 and day 8. The cyclophosphamide CRISPRi screen underwent 4.38

fewer population doublings than the DMSO control screen. At day 15, gDNA was extracted from

5 � 107 cells from each screen and half of that was used as template in PCR reactions (coverage of

250�). A total of 31–34 million reads were obtained for each indexed sample and 81–82% of those

reads were aligned to the reference library of protospacers. Negative control genes were generated

by randomly grouping five sgRNAs from the pool of ~2000 non-targeting control sgRNAs present in

the half-library. For each gene (and simulated control gene), which is targeted by five sgRNAs, two

metrics were calculated: (i) the mean of the strongest three rho phenotypes by absolute value, and

(ii) the p-value of all five rho phenotypes compared to the 2000 non-targeting control sgRNAs

(Mann-Whitney test). Low count numbers were dealt with by adding a pseudocount of 1 to all zero

counts. Gene ontology analysis was performed on the full output list of genes ranked by hypersensi-

tivity score using GOrilla (Eden et al., 2009). The reported p-value is the enrichment p-value com-

puted according to the GOrilla algorithm. The ’FDR q-value’ represents the correction of the p-value

for multiple testing hypothesis.

Validation of CRISPR screens
Validation of the genome-wide screens was performed by building and characterizing individual

knockdown (n = 9) and overexpression (n = 8) cell lines identified in the screens as single-drug or

multi-drug resistant. The target sgRNA sequences were selected from the genome-wide sgRNA

libraries based on the strength of the observed screen phenotype. sgRNAs were cloned into expres-

sion vectors, and cell lines were built and characterized as described above (see ‘Evaluation of

CRISPRi/a cell lines using sgRNAs targeting individual genes’ and Supplementary file 1 for oligonu-

cleotide sequences). Knockdown sgRNA lentivirus particles were transduced into Pfeiffer CRISPRi

cells and overexpression sgRNA lentivirus particles were transduced into K562 CRISPRa and into a

polyclonal population of Pfeiffer CRISPRa. This population of cells was built in the same way as K562

CRISPRa (see ‘Generation of Cas9-expressing cell lines’) except that Pfeiffer cells (ATCC CRL-2632)

were used and a polyclonal population of cells with high GFP (top 25%) and BFP (top 50%) levels

was purified using one round of FACS.

The sensitivity of each cell line to R-CHOP drugs was determined by measuring a 13–17 point

dose response curve for each drug in a similar way as described above (see ‘Measurement of drug-

drug interactions’). Data from two sets of biological replicates composed each of two technical repli-

cates was analyzed to compute an IC50 and 95% confidence intervals, by fitting to a sigmoidal dose-

response with the ‘NonlinearModelFit’ function in Wolfram Mathematica 12. Drug IC50s of unper-

turbed cells were determined from data of two independent non-targeting sgRNAs each measured

in two biological replicates composed of two technical replicates (n = 8).

In order to detect differences in drug sensitivities of individual overexpression cell lines over a

longer period of time than 3 days, co-culture competition experiments were performed. Individual

overexpression Pfeiffer CRISPRa cell cultures were mixed at a 1:1 ratio with a Pfeiffer CRISPRa cell

culture transduced with a non-targeting sgRNA control. Co-cultures were grown in 12-well plates in

1 mL complete medium over the course of 16 days, maintained at a density between 0.1–1.0 � 106/

mL and were treated with pulses of R, C, H or O. Drug-treated co-cultures underwent significantly
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less population doublings than a DMSO-treated control (between 4.5 and 6.5 less population dou-

blings). Genomic DNA was isolated from samples of each co-culture taken at T = 0, and T = 16 days

for each drug (or DMSO) selection (0.5–1.0 � 105 cells) using the QiAamp DNA Mini kit (Qiagen

51304) (48 samples from eight co-cultures). The composition of each co-culture was determined by

qPCR amplification of the sgRNA barcodes in each gDNA sample using sgRNA-specific forward pri-

mers and a common reverse primer (see Supplementary file 1). All nine pairs of primers were spe-

cific to their target sgRNA barcode as no unspecific amplification of other barcodes was observed

and qPCR amplification was linear (efficiency: 0.9–1.1). Each co-culture gDNA sample was probed

with a primer pair against the targeting sgRNA barcode and a primer pair against the non-targeting

sgRNA barcode. The ratio of the two cell lines was determined from the difference in CT values. Any

change in fitness due to individual gene overexpression is detected by comparison of the DMSO

sample at T = 16 days and the sample at T = 0. Changes in drug resistance due to individual gene

overexpression are detected by comparison of drug-treated samples at T = 16 days and DMSO sam-

ples at T = 16 days. Values reported (Nmutant/Ncontrol) are from three technical replicates of the qPCR

quantification and are determined by the difference in CT values between the targeting and non-tar-

geting sgRNA between drug-treated and DMSO-treated samples.

Cross-resistance analysis of CRISPR screens
For each gene, a single aggregate resistance score was calculated by multiplying the two metrics

determined in the screen processing pipeline (resistance score = -log10(Mann-Whitney p-value)�

mean of the strongest five rho phenotypes). Genes required eight or more observed sgRNA rho

phenotype scores in a specific screen for inclusion in the analysis. In order to account more accu-

rately for the technical noise in the screen, 10 random sets of »19,000 simulated control genes were

generated (matching the number of actual gene targets). A resistance score was then calculated for

each simulated control gene in all 10 sets for all the drugs tested (four for CRISPRi and three for

CRISPRa). Genes that have a resistance score above a specific cutoff in at least two conditions tested

are defined as ‘cross-resistant’. The cutoff for cross-resistance analysis was determined by systemati-

cally quantifying the number of simulated control genes that would score as cross-resistant over the

full range of resistance score cutoffs (in 0.01 increments). We selected a cutoff that scored on aver-

age over the 10 sets of control genes a single (or less than one) double resistant negative control

simulated gene over all possible two drug combinations. Cross-hypersensitivity analyses were per-

formed in an analogous way (the hypersensitivity score was calculated in the same way as the resis-

tance score).

Quantifying cross-resistance in clone tracing and CRISPR screens
Strength of cross-resistance for different sets of drugs was quantified as a weighted sum of the maxi-

mum and minimum cross-resistance scenarios. Given rates of single-drug resistance 10-A and 10-B to

drugs a and b, the theoretical minimum rate of cross-resistance is 10–A–B (this scenario is indicated

by cross-resistance parameter x = 0), and the theoretical maximum rate of cross-resistance is min(10–

A or 10–B) (this scenario is indicated by cross-resistance parameter x = 1). Given an observed fre-

quency of multi-drug resistance (MDR), cross-resistance x is computed as the solution to the equa-

tion: MDR frequency = x � minimum(10–A or 10–B) + (1 – x)� 10–A–B. This solution is x = (10–A–B –

MDR) / (10–A–B – minimum(10–A or 10–B)).
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