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Summary

No genetic modifiers of MS severity have been independently validated, leading to a lack of 

insight into genetic determinants of the rate of disability progression. We investigated genetic 

modifiers of MS severity in prospectively-acquired training (N=205) and validation (N=94) 

cohorts, using the following advances: 1. We focused on 113 genetic variants previously identified 

as related to MS severity; 2. We used a novel, sensitive outcome: MS Disease Severity Scale (MS-

DSS); 3. Instead of validating individual alleles, we used a machine learning technique (Random 

Forest) that captures linear and complex non-linear effects between alleles to derive a single 

Genetic Model of MS Severity (GeM-MSS).

The GeM-MSS consists of 19 variants located in vicinity of 12 genes implicated in regulating 

cytotoxicity of immune cells, complement activation, neuronal functions and fibrosis. GeM-MSS 

correlates with MS-DSS (r=0.214; p = 0.043) in a validation cohort that was not used in the 

modeling steps. The recognized biology identifies novel therapeutic targets for inhibiting MS 

disability progression.
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Introduction

The International Multiple Sclerosis (MS) Genetic Consortium (IMSGC) identified and 

validated over 200 MS susceptibility genes (International Multiple Sclerosis Genetics 

Consortium et al., 2017; Sawcer et al., 2011), but thus far has failed to validate genetic 

variants associated with MS severity (George et al., 2016; Sawcer et al., 2011). These 

negative results suggest that mechanisms that predispose subjects to develop MS largely 

differ from those that mediate central nervous system (CNS) destruction (i.e. disease 

severity) and that the latter remain undefined. The current study is based on the hypothesis 

that while there are genetic influences on the rate of CNS destruction (likely on the side of 

effector immune responses, susceptibility of CNS tissue to injury and its ability to repair), 

the effect sizes of common genetic variants identified in genome-wide association studies 

are too small to be reliably detectable using insensitive clinical outcomes. Additionally, 

distinct mechanisms may drive destruction of CNS tissue in different MS patients, as 

suggested by pathological heterogeneity of acute MS lesions (Lucchinetti et al., 2000). Thus, 

aggregating several candidate common genetic variants in models that allow complex, 

including non-linear, interactions between alleles and accommodate heterogeneity in disease 

mechanisms has a greater potential for success.

MS severity can be defined as the speed of accumulation of neurological disability and is 

traditionally measured by two outcomes based on the broadly-available Expanded Disability 

Status Scale (EDSS; (Kurtzke, 1983)), but differ in the measurement of the time-aspect of 

MS severity: the older MS Severity Score (MSSS; (Roxburgh et al., 2005) uses MS disease 

duration as a measurement of time, whereas the newer age-related MS severity score 

(ARMSS; (Manouchehrinia et al., 2017)) uses age. Unfortunately, multiple investigators 

have observed that MSSS and ARMSS do not predict future disability progression rates in 

moderately-sized MS cohorts (Confavreux & Vukusic, 2006; Weideman, Barbour, et al., 

2017), likely because EDSS is a discrete scale ranging from 0 to 10, which cannot reliably 

measure individualized disability progression rates in intervals shorter than 10 years. Using 

machine learning, we developed a MS severity outcome called MS Disease Severity Scale 

(MS-DSS)(Weideman, Barbour, et al., 2017) based on the data-optimized, continuous 

disability scale Combinatorial Weight-adjusted disability scale (CombiWISE; (Kosa et al., 

2016), ranging from 0–100) that also adjusts disability progression slopes for therapeutic 

effect of applied treatments. By explaining a much larger proportion of variance of future 

disability progression rates, MS-DSS has more sensitivity in detecting biological modifiers 

of MS severity in comparison to MSSS or ARMSS. Consequently, we asked whether MS-

DSS can be used to develop and validate a single nucleotide polymorphism (SNP)-based 

genetic model of MS severity (GeM-MSS) in a small, prospectively-acquired and densely-

phenotyped longitudinal cohort of MS patients.
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Because this cohort is underpowered for discovery research, we used a candidate gene 

approach with genes previously linked to MS severity, with poor reproducibility of 

individual variants in independent validation cohorts (Isobe et al., 2016; Jokubaitis & 

Butzkueven, 2016; Muhlau, Andlauer, & Hemmer, 2016; Sadovnick et al., 2017).

As a machine-learning algorithm of choice, we selected the Random Forest (RF), which 

captures complex interactions between alleles and disease heterogeneity, to model a total of 

113 candidate genetic variants against MS-DSS in the training cohort. We validated the 

optimized model in a validation cohort that was not used in any aspect of modeling. While 

the validated GeM-MSS explained only a small proportion of MS severity variance, the 

described approach is applicable to larger cohorts that will allow for screening of 

significantly larger numbers of genetic variants.

Subjects and Methods

Study population

In a blinded fashion, we genotyped 426 prospectively-acquired subjects evaluated under 

natural history protocol “Comprehensive multimodal analysis of neuroimmunological 

diseases of the CNS” (ClinicalTrials.gov ). The study was approved by the Combined 

Neuroscience Institutional Review Board of the NIH, and all patients signed written 

informed consent. Upon unblinding diagnostic categories, 299 genotyped patients had 

confirmed diagnosis of MS based on 2010 revisions of McDonald’s MS diagnostic criteria 

(Polman et al., 2011). Based on quality control filters described below, the final MS cohort 

was randomly split into training (N=205) and validation (N=94) sub-cohorts balanced for 

race, age, gender and family history of MS. The demographic and clinical data of these sub-

cohorts was compared between diagnostic groups using an analysis of variance followed by 

Tukey’s test with a Holm adjustment for multiple comparisons (Table 1).

Genotyping and quality control

SNP genotyping was performed using Illumina Human Omni Express v1.0 NeuroX array on 

EBV-transformed peripheral blood mononuclear cells (PBMCs) and whole-blood extracted 

DNA samples using the standard protocol recommended by the manufacturer (Illumina, Inc. 

San Diego). The OmniExpress NeuroX array is an Illumina Infinium iSelect HD Custom 

Genotyping array containing >710,000 markers and an additional 24,706 custom variants 

designed for neurological disease studies. Of the custom variants, approximately 12,000 are 

designed to study Parkinson’s disease and are applicable to both large population studies of 

risk factors and to investigations of familial diseases and known mutations (Nalls et al., 

2015).

We used the Genotyping Analysis Module within Genome Studio version 1.9.4 to perform 

sample and variant quality control (QC) checks. The threshold call rate for sample inclusion 

was 95%. QC of sample handling was determined by comparing the reported sex with 

genotypic sex estimated from X chromosome heterogeneity. X chromosome heterogeneity 

calculations were based on common SNPs from the International HapMap Project (The 

International HapMap Consortium et al., 2007). Samples considered heterozygosity outliers 
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(>±3 standard deviations [SD] from the sample mean) or with discrepancies between 

reported sex and genotypic estimated sex were excluded. All 299 samples used in the 

analysis passed QC.

Variant quality control checks were performed in PLINK v1.9. We excluded variants with a 

minor allele frequency (MAF) ≤5%, missingness ≥5%, and genotypes that deviated from 

Hardy-Weinberg equilibrium (p<1×10−5). Of the 720,107 genotyped autosomal variants, 

595,556 variants passed all genotyping quality control filters.

Genotype Imputation

Data was prepared for imputation using HRC-1000G-check-bim.pl v4 (http://

www.well.ox.ac.uk/~wrayner/tools/#Checking) and PLINK v2. Imputation was done on the 

Michigan imputation server, using the Haplotype Reference Consortium (HRC) reference 

panel version r1.1,2016 (http://www.haplotype-reference-consortium.org/) on unphased data. 

Importantly, given that our cohort includes samples of African American ancestry, this panel 

has been shown to estimate genotypes for common variants in African American 

participants with high imputation quality (Vergara et al., 2018). Molecular genotyping of 

HLA-DRB1 alleles was provided by the NIH blood bank as a clinically-approved test and 

reported to investigators via medical records. We removed variants with an imputation 

quality score <0.5 or a MAF <0.05 as additional quality control measures.

Strategy for identification of candidate SNPs

We used the following publicly available databases to identify literature that reported 

variants associated with MS severity: Ensembl (Zerbino et al., 2018), Phenotype-Genotype 

Integrator (Ramos et al., 2013), GWAS Catalog (MacArthur et al., 2017), and PubMed. 

Studies were selected based on the criteria that supplementary material was publicly 

available and that the objective of the study was discovery rather than replication. We used 

“multiple sclerosis severity”, “multiple sclerosis age of onset”, and “genome-wide 

association study” to identify literature sources that reported genetic associations with MS 

severity. Previously published studies used three general strategies to measure MS severity: 

1. MSSS, 2. age of disease onset, or 3. destructiveness of CNS tissue measured by MRI. We 

included studies that used any of these three strategies. We excluded copy number variants, 

insertions, and deletions, and we required that the reported association p-value be <10−5 for 

this analysis.

Modeling outcome MS-DSS and additional assessment outcomes: MSSS and ARMSS

MS-DSS (Weideman, Barbour, et al., 2017) is assigned by a statistical model using gradient 

boosting machines. MS-DSS includes disability measured by a highly sensitive 

Combinatorial Weight-Adjusted Disability Scale (CombiWISE)(Kosa et al., 2016), 

mathematically-adjusted for the efficacy of administered treatments using a published 

formula (Weideman, Tapia-Maltos, Johnson, Greenwood, & Bielekova, 2017), the amount of 

CNS-tissue destruction measured by Combinatorial MRI scale of CNS tissue destruction 

(COMRIS-CTD)(Kosa et al., 2015), and additional features of lower variable importance, 

including demographic data. The model utilizes the following cross-sectional data, listed in 

order of statistical importance: 1. Therapy-adjusted CombiWISE divided by patient age 
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(CombiWISE/Age), 2. CombiWISE; 3. COMRIS-CTD; 4. Time to first therapy, which 

measures the delay (in years) from disease onset to initiation of treatment; 5. Difference in 

therapy-adjusted and measured CombiWISE, that reflects the variant of the disease that is 

treatable by current immunomodulatory treatments, 6. Age, and 7. Family history of MS. 

MS-DSS, the modeling outcome in current study, is automatically-calculated from user-

inputted raw data via a web-interface: https://bielekovalab.shinyapps.io/msdss/.

Even though we previously determined that MSSS (Roxburgh et al., 2005) and its later 

modification, ARMSS (Manouchehrinia et al., 2017), are too insensitive to predict future 

rates of accumulation of disability in moderately-sized MS cohorts (Weideman, Barbour, et 

al., 2017), we assessed the correlation between GeM-MSS and these widely-used MS 

severity scales as sensitivity analyses.

Random Forest (RF) based Genetic Model of MS Severity (GeM-MSS)

The RF algorithm (Breiman, 2001 and Hastie, Tibshirani, and Friedman 2009) is a highly-

successful ensemble learning method suited for high-dimensional data (such as genomics) 

that aggregates many individual decision trees. A decision tree is a modeling approach used 

in classification and regression problems that utilizes several features (e.g., laboratory tests) 

to classify an outcome (e.g., presence or absence of a disease or level of disease severity) by 

finding the optimal split (e.g., a concentration of an analyte) for each “branch” of the 

decision tree. The main problem of tree-based classifiers is an “overfit” of the data, making 

predictions from the classifiers unstable. RF partially mitigates this problem by averaging 

together results from multiple decision trees (often thousands) that are constructed using 

bootstrapped samples of the training data, with observations not used to build the tree 

forming an “out-of-bag” (OOB) group. RF further alleviates the “overfit” problem by 

introducing an element of random selection in features considered when performing splits 

(i.e., the algorithm only considers a random subset of features for every split in the tree-

building process). The main tuning parameters in a RF are the number of trees to grow 

(ntree) and the number of variables to sample for each node split (mtry). In the current study, 

trees were grown until the OOB error stabilized and the default mtry was used 

(approximately p where p is the total number of available features). Briefly, the OOB error 

is a measure of the RF model accuracy that is derived from the OOB samples, and the final 

OOB error estimate for the model is the mean prediction error on each sample using only the 

predictions from trees where the sample was in the OOB group. Since the RF models have 

still the potential to overfit the training data, we used iterative process adapted from previous 

studies (Calle, Urrea, Boulesteix, & Malats, 2011; Gregorutti, Michel, & Sainte-Pierre, 

2017) where the least important variables ranked by permutation variable importance 

(Breiman, 2001) were removed and the RF was rebuilt until the OOB error increased by 

more than 1% (Figure 1). To ensure the stability of the variable importance results, 30 

individual RF models using different random seeds were constructed and were averaged 

together at each iteration. The final set of predictive variants were identified as the variants 

remaining in the model before the OOB error increased. The predictions from the OOB error 

stabilized model, referred henceforth as GeM-MSS, were assessed in an validation cohort 

that was not used in the model building. In all analyses, we used the implementation of the 
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RF algorithm from the ranger package (Wright & Ziegler, 2017) in R version 3.4.4 (R Core 

Team, 2018) that has been adapted for high-dimensional datasets.

Data and Code Availability

All custom code developed and used in this manuscript are available in the supplementary 

information files. Genetic and phenotype data are available in the database of Genotypes and 

Phenotypes (dbGaP).

Results

Identification of candidate SNPs

The information about the genotyped SNPs and their published sources are summarized in 

Supplementary Information Table 1. In total, 116 SNPs were identified for association with 

MS severity. After QC, 113 variants located in the vicinity of 95 unique genes remained for 

analysis.

Development of RF genetic model (GeM-MSS) and its optimization based on variable-
importance data

We applied the RF technique to model MS-DSS based on 113 SNPs previously reported for 

association with MS severity (Figure 1). The model was built and optimized in the training 

cohort, while its general validity was tested in the validation cohort balanced for race, age, 

gender and family history of MS (Table 1). Because of the high likelihood that some 

(perhaps majority) of the tested 113 SNPs represent “noise”, we adopted an iterative process 

of discarding the least important SNP in each subsequent iteration of the RF model and 

evaluated the performance of this simplified iteration using the OOB error of the RF. This 

iterative process of model optimization stopped after observing at least a 1% increase in the 

error of predicting the OOB samples. This indicates that all remaining genetic variants are 

important in predicting MS severity of all subjects in the training cohort. The resulting 

GeM-MSS had 19 remaining variants. Compared to the model with all 113 variants, the 

OOB error of the GeM-MSS decreased by 14.4% (initial OOB error = 1.059 vs GeM-MSS 

OOB error = 0.907), even though the root mean squared error (RMSE) in both models was 

similar (initial RMSE = 0.444 vs GeM-MSS RMSE = 0.464). We observed a strong and 

statistically-significant correlation between the model-predicted and measured MS-DSS in 

the training cohort (Figure 2A; r = 0.969; p = 8.76 × 10−125).

Because machine learning techniques have the potential to overfit the training data, we 

tested the validity of the model in a cohort that was not used in any step of the modeling. In 

this validation cohort, we observed a statistically-significant correlation, although of much 

lower strength, between the model-predicted and observed MS-DSS (Figure 2B; r = 0.214; p 

= 0.043).

Assessment of GeM-MSS with MSSS and ARMSS

Since MS-DSS is a complex model that uses data that may not be available for all MS 

cohorts, we evaluated the ability of GeM-MSS to predict MS severity outcomes that were 
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not used for its development but are available for genotyped MS cohorts that belong to other 

investigators.

Thus, we assessed the correlation between GeM-MSS and MSSS and ARMSS in the 

training and validation cohorts. We observed a moderate correlation when comparing GeM-

MSS to MSSS (Figure 3A; r = 0.578, p = 2.71 × 10−19) and ARMSS (Figure 3B; r = 0.579, 

p = 4.20 × 10−19) in the training data. In the smaller validation cohort, we observed positive, 

although non-significant associations between GeM-MSS and EDSS-based MS severity 

scores (Figure 3D; r = 0.202; p = 0.056 for MSSS and Figure 3E; r = 0.165; p = 0.120 for 

ARMSS).

Biological interpretation of validated GeM-MSS

To obtain biological interpretation of GeM-MSS, the variable importance ranking, MAF, and 

nearest gene of the 19 remaining variants are given in Table 2. In total, the GeM-MSS 

outcome predicted by the 19 variants explains approximately 4.4% of the variance in MS-

DSS. Each of the variants remaining in GeM-MSS is relatively common and had a MAF 

greater than 0.10. These variants are within the vicinity of 12 genes, including YWHAG, 

XYLT1, CAMK2D, and KDM2B. Three genes (YWHAG, XYLT1, PVRL2) were 

represented by several SNPs and represent regions of high linkage disequilibrium (LD) 

within the genes. The most important variant in the model (rs11765693) is located in the 

YWHAG gene and is succeeded by two variants in the XYLT1 gene (rs12927173 and 

rs2059283) (Figure 2C). Interestingly, the signals in the XYLT1 and YWHAG genes are 

amongst the most significant associations to MS severity in each of the discovery cohorts 

that initially identified these associations (Supplemental Information References 23 and 24, 

respectively). This result provided evidence that efforts to replicate the top genetic 

associations to MS severity may be improved, in part, by using MS-DSS as an outcome.

Several selected variants are predominantly expressed in the CNS (especially in neurons), 

such as tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma 

(YWHAG), membrane associated guanylate kinase, WW and PDZ domain containing 2 

(MAGI2), CUB and Sushi multiple domains 1 (CSMD1). CSMD1 and MAGI2 variants have 

been associated with cognitive dysfunction; whereas, YWHAG, which belongs to the 14-3-3 

family of proteins, participates in glutamate-induced cell death. These neuronal variants had 

high variable importance in the GeM-MSS model. In addition to its neuronal role, CSMD1 

also inhibits formation of the complement membrane attack complex in the CNS, and, 

therefore, may prevent CNS tissue destruction (Kraus et al., 2006).

Two variants in the vicinity of Xylosyltransferase I (XYLT1) had the second and third 

highest variable importance. XYLT1 catalyzes the first step in biosynthesis of 

glycosaminoglycans, including chondroitin sulfate proteoglycans, which have been shown to 

impede remyelination (Lau et al., 2012). Finally, several variants with high variable 

importance (i.e., MAGI2, YWHAG, XYLT1) participate in, or regulate the process of 

epithelial-mesenchymal trans-differentiation, which is linked to fibrosis. Therefore, 

restructuring the extracellular matrix into gliotic scar may be a crucial limiting step for CNS 

repair in MS.
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On the side of the immune system, the selected variants highlight the importance of 

cytotoxic cells (T cells and NK cells) and their interaction with B cells and plasma cells. The 

cross-linking of the signaling lymphocytic activation molecule family 7 (SLAMF7) 

enhances interferon- γ production and cytotoxicity (Comte et al., 2017) of NK cells and T 

cells. SLAMF7 is also expressed on plasma blasts, plasma cells and activated B cells (Llinas 

et al., 2011), possibly mediating co-stimulatory functions of these cells of humoral immunity 

for CD8+ T cells and NK cells via homotypic interactions. Finally, SLAMF7 is also highly 

expressed on macrophages, where it mediates phagocytosis (Chen et al., 2017) and thus may 

contribute to myelin stripping in MS. On the other hand, poliovirus receptor-related 2 

(PVRL2, also called herpesvirus entry mediator B and NECTIN2 or CD112) binds to a pair 

of negative (i.e., T cell immunoglobulin and ITIM domain [TIGIT]) and positive (i.e., 

CD226 [DNAM-1]) regulators of NK and cytotoxic T cell functions (Stein, Tsukerman, & 

Mandelboim, 2017). These immune-related variants had lower variable importance in 

comparison to the CNS-enriched variants.

Discussion

Genetic modifiers of the MS disease course remain elusive. In fact, it is hard to even 

estimate how much of the MS severity variance is genetically determined. Intuitively, a 

reasonable estimate of the genome-wide genetic contribution to MS severity might be up to 

50%, considering the effect of treatments, environment, and stochastic processes. The 

previous attempts to link MS susceptibility variants to MS severity were not successful 

(Isobe et al., 2016; Jokubaitis & Butzkueven, 2016; Muhlau et al., 2016; Sadovnick et al., 

2017). If these results were true negatives, then genetic variants that predispose patients to 

acquiring MS under favorable environmental conditions did not influence the rate of CNS 

tissue destruction or its recovery. This conclusion is counterintuitive because therapeutic 

success of FDA-approved immunomodulatory treatments on accumulation of MS disability 

(Weideman, Tapia-Maltos, et al., 2017) leaves no doubt that the immune system partakes in 

CNS tissue destruction; at least some of the MS susceptibility variants linked to dysregulated 

immune responses would be expected to also influence destruction of CNS tissue. Therefore, 

we considered it likely that previous negative results were, to a certain extent, due to Type II 

errors. This conclusion is strongly supported by GeM-MSS, which contains SNPs linked to 

effector immune mechanisms known to be associated with destruction of varied human 

tissues, including CNS, such as complement-mediated cell-lysis (i.e., formation of the 

terminal membrane attack complex) and cellular cytotoxicity.

Validation of GeM-MSS also support our hypothesis that common genetic variants are 

unlikely to exert a strong negative influence on CNS tissue destruction or its recovery. 

Rather, complex and often non-linear relationships between immune-related MS 

susceptibility genes and genes expressed predominantly in CNS tissue likely mediate 

susceptibility versus resistance of CNS tissue to injury or affect recovery mechanisms such 

as remyelination or synaptogenesis. The variable importance metrics provide strong support 

to CNS-driven mechanisms such as glutamate-induced cell death and neurodegenerative 

processes previously linked with cognitive dysfunction, which may affect neurogenesis and 

CNS repair in general. Another pathogenic process that GeM-MSS identified is the 

restructuring of extracellular matrix in a form of fibrotic scar that may prevent remyelination 
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and possibly also new synaptogenesis. Because in other organs, fibrosis is often 

consequence of chronic inflammation, we consider it likely that this process is immune-

related in MS as well.

Finally, we would like to discuss technical aspects of our and other published studies: 

aggregating effects of multiple variants into a single genetic model with greater predictive 

power is intuitive and at least partially supported by published literature (Pan et al., 2016). 

Modeling 116 validated MS susceptibility variants in a cohort of 125 early MS cases 

followed for 5 years, Pan et al (Pan et al., 2016) developed an additive model (Cumulative 

Genetic Risk Score; [CGRS]) consisting of 7 MS susceptibility SNPs. If the patient had 

more than 2 of the 7 risk genotype variants, CGRS showed a dose-response relationship with 

MS severity measured by annualized change in EDSS; their model explained 32.7% of 

variance in disability progression. However, the publication of CGRS did not include 

validation in an independent cohort. GeM-MSS selected only one the 7 variants from CGRS 

(rs35967351; SLAMF7). When we attempted to validate the CGRS dose response 

relationship in our combined training and validation cohorts that is almost 3 times larger 

than the training cohort used for modeling CGRS, we observed no evidence of a linear 

relationship (Supplementary Information). Instead, we saw slight, non-significant increase in 

the measured MS severity in subjects with at least 3 risk alleles when compared to two or 

less risk alleles using several MS severity outcomes, including the sensitive MS-DSS.

It is unrealistic for 7 frequent genetic risk alleles to explain 32.7% of the variance in 

disability progression. This would imply unusually high effect sizes, which should have 

been easily identified/validated in previous and much larger studies (George et al., 2016; 

Sawcer et al., 2011). Thus, the performance of CGRS, derived from a small, unvalidated 

cohort represents an overfit (Ioannidis, 2008). The strong model performance in the training 

cohort should not be perceived as an automatic guarantee of the model’s clinical utility. 

Instead, an independent validation cohort, that did not contribute in any way to feature 

selection or model development, is an absolute requirement for assessing the true value of 

any model. The correlation coefficient of 0.969 in the training cohort indicates that even the 

final GeM-MSS model grossly overestimated the true relationship between the 19 risk 

alleles and MS severity in the training cohort. The performance of GeM-MSS in the 

validation cohort, demonstrating mild statistical significance and explaining less than 10% 

of MS severity variance, is much more credible. Yet, the obtained p-value of 0.04 indicates 

4% chance of validating these findings in a similar cohort if no relationship is present. 

Therefore, we would welcome an independent validation of GeM-MSS from investigators 

with larger genomic/clinical datasets. We consider the probability that GeM-MSS can be 

validated by independent investigators that own large cohorts of genotyped MS patients with 

linked EDSS, high. We base this belief on the fact that GeM-MSS correlates significantly 

with EDSS-based MS severity scores that did not contribute to model development in the 

training cohort, and that even in the small validation cohort we observed a positive 

association between GeM-MSS and MSSS and ARMSS.

In conclusion, this study provides a genetic model of MS severity that aggregates several 

previously-identified common genetic variants and provides important genetic insight into 

MS disability progression. The introduced technical advances (MS-DSS, combining SNPs 
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into a single model that captures non-linear effects and disease heterogeneity) can be used to 

further improve GeM-MSS through multicenter collaborations. Only such a collaborative 

assembly of densely genotyped and phenotyped data can perform genome-wide search of 

additional variants contributing to MS severity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments and Funding

The study was supported by the intramural research program of the National Institute of Allergy and Infectious 
Diseases (NIAID) and the Clinical Center/US National Institutes of Health (NIH). The content of this publication 
does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does the 
mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Bibliography

Breiman Leo. (2001). Random Forests. Machine Learning, 45(1), 5–32. doi:10.1023/a:1010933404324

Calle ML, Urrea V, Boulesteix AL, & Malats N (2011). AUC-RF: A New Strategy for Genomic 
Profiling with Random Forest. Human Heredity, 72(2), 121–132. doi:10.1159/000330778 [PubMed: 
21996641] 

Chen J, Zhong MC, Guo H, Davidson D, Mishel S, Lu Y, Rhee I, Perez-Quintero LA, Zhang S, Cruz-
Munoz ME, Wu N, Vinh DC, Sinha M, Calderon V, Lowell CA, Danska JS, & Veillette A (2017). 
SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature, 
544(7651), 493–497. doi:10.1038/nature22076 [PubMed: 28424516] 

Comte D, Karampetsou MP, Yoshida N, Kis-Toth K, Kyttaris VC, & Tsokos GC (2017). Signaling 
Lymphocytic Activation Molecule Family Member 7 Engagement Restores Defective Effector 
CD8+ T Cell Function in Systemic Lupus Erythematosus. Arthritis Rheumatol, 69(5), 1035–1044. 
doi:10.1002/art.40038 [PubMed: 28076903] 

Confavreux C, & Vukusic S (2006). Natural history of multiple sclerosis: a unifying concept. Brain, 
129(Pt 3), 606–616. [PubMed: 16415308] 

George MF, Briggs FB, Shao X, Gianfrancesco MA, Kockum I, Harbo HF, Celius EG, Bos SD, 
Hedstrom A, Shen L, Bernstein A, Alfredsson L, Hillert J, Olsson T, Patsopoulos NA, De Jager PL, 
Oturai AB, Sondergaard HB, Sellebjerg F, Sorensen PS, Gomez R, Caillier SJ, Cree BA, Oksenberg 
JR, Hauser SL, D’Alfonso S, Leone MA, Martinelli Boneschi F, Sorosina M, van der Mei I, Taylor 
BV, Zhou Y, Schaefer C, & Barcellos LF (2016). Multiple sclerosis risk loci and disease severity in 
7,125 individuals from 10 studies. Neurol Genet, 2(4), e87. doi:10.1212/NXG.0000000000000087 
[PubMed: 27540591] 

Gregorutti B, Michel B, & Sainte-Pierre P (2017). Correlation and variable importance in random 
forests. Statistics and Computing, 27(3), 659–678. doi:10.1007/s11222-016-9646-1

International Multiple Sclerosis Genetics Consortium, Patsopoulos Nikolaos, Baranzini Sergio E., 
Santaniello Adam, Shoostari Parisa, Cotsapas Chris, Wong Garrett, Beecham Ashley H., James 
Tojo, Replogle Joseph, Vlachos Ioannis, McCabe Cristin, Pers Tune, Brandes Aaron, White 
Charles, Keenan Brendan, Cimpean Maria, Winn Phoebe, Panteliadis Ioannis-Pavlos, Robbins 
Allison, Andlauer Till F. M., Zarzycki Onigiusz, Dubois Benedicte, Goris An, Bach Sondergaard 
Helle, Sellebjerg Finn, Soelberg Sorensen Per, Ullum Henrik, Wegner Thoerner Lise, Saarela Janna, 
Cournu-Rebeix Isabelle, Damotte Vincent, Fontaine Bertrand, Guillot-Noel Lena, Lathrop Mark, 
Vukusik Sandra, Berthele Achim, Biberacher Viola, Buck Dorothea, Gasperi Christiane, Graetz 
Christiane, Grummel Verena, Hemmer Bernhard, Hoshi Muni, Knier Benjamin, Korn Thomas, Lill 
Christina M., Luessi Felix, Muhlau Mark, Zipp Frauke, Dardiotis Efthimios, Agliardi Cristina, 
Amoroso Antonio, Barizzone Nadia, Benedetti Maria Donata, Bernardinelli Luisa, Cavalla Paola, 
Clarelli Ferdinando, Comi Giancarlo, Cusi Daniele, Esposito Federica, Ferre Laura, Galimberti 
Daniela, Guaschino Clara, Leone Maurizio A., Martinelli Vittorio, Moiola Lucia, Salvetti Marco, 

JACKSON et al. Page 10

Ann Hum Genet. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sorosina Melissa, Vecchio Domizia, Zauli Andrea, Santoro Silvia, Zuccala Miriam, Mescheriakova 
Julia, van Duijn Cornelia, Bos Steffan D., Celius Elisabeth G., Spurkland Anne, Comabella Manuel, 
Montalban Xavier, Alfredsson Lars, Bomfim Izaura L., Gomez-Cabrero David, Hillert Jan, Jagodic 
Maja, Linden Magdalena, Piehl Fredrik, Jelcic Ilijas, Martin Roland, Sospedra Mireia, Baker Amie, 
Ban Maria, Hawkins Clive, Hysi Pirro, Kalra Seema, Karpe Fredrik, Khadake Jyoti, Lachance 
Genevieve, Molyneux Paul, Neville Matthew, Thorpe John, Bradshaw Elizabeth, Caillier Stacy J., 
Calabresi Peter, Cree Bruce A. C., Cross Anne, Davis Mary F., de Bakker Paul, Delgado Silvia, 
Dembele Marieme, Edwards Keith, Fitzgerald Kate, Frohlich Irene Y., Gourraud Pierre-Antoine, 
Haines Jonathan L., Hakonarson Hakon, Kimbrough Dorlan, Isobe Noriko, Konidari Ioanna, Lathi 
Ellen, Lee Michelle H., Li Taibo, An David, Zimmer Andrew Lo Albert, Madireddy Lohith, 
Manrique Clara P., Mitrovic Mitja, Olah Marta, Patrick Ellis, Pericak-Vance Margaret A., Piccio 
Laura, Schaefer Cathy, Weiner Howard, Lage Kasper, Compston Alastair, Hafler David, Harbo 
Hanne F., Hauser Stephen L., Stewart Graeme, D’Alfonso Sandra, Hadjigeorgiou Georgios, Taylor 
Bruce, Barcellos Lisa F., Booth David, Hintzen Rogier, Kockum Ingrid, Martinelli-Boneschi 
Filippo, McCauley Jacob L., Oksenberg Jorge R., Oturai Annette, Sawcer Stephen, Ivinson Adrian 
J., Olsson Tomas, & De Jager, Philip L (2017). The Multiple Sclerosis Genomic Map: Role of 
peripheral immune cells and resident microglia in susceptibility. bioRxiv. doi:10.1101/143933

Ioannidis JP (2008). Why most discovered true associations are inflated. Epidemiology, 19(5), 640–
648. doi:10.1097/EDE.0b013e31818131e7 [PubMed: 18633328] 

Isobe N, Keshavan A, Gourraud PA, Zhu AH, Datta E, Schlaeger R, Caillier SJ, Santaniello A, Lizee 
A, Himmelstein DS, Baranzini SE, Hollenbach J, Cree BA, Hauser SL, Oksenberg JR, & Henry 
RG (2016). Association of HLA Genetic Risk Burden With Disease Phenotypes in Multiple 
Sclerosis. JAMA Neurol, 73(7), 795–802. doi:10.1001/jamaneurol.2016.0980 [PubMed: 
27244296] 

Jokubaitis VG, & Butzkueven H (2016). A genetic basis for multiple sclerosis severity: Red herring or 
real? Mol Cell Probes, 30(6), 357–365. doi:10.1016/j.mcp.2016.08.007 [PubMed: 27546889] 

Kosa P, Ghazali D, Tanigawa M, Barbour C, Cortese I, Kelley W, Snyder B, Ohayon J, Fenton K, 
Lehky T, Wu T, Greenwood M, Nair G, & Bielekova B (2016). Development of a Sensitive 
Outcome for Economical Drug Screening for Progressive Multiple Sclerosis Treatment. Front 
Neurol, 7, 131. doi:10.3389/fneur.2016.00131 [PubMed: 27574516] 

Kosa P, Komori M, Waters R, Wu T, Cortese I, Ohayon J, Fenton K, Cherup J, Gedeon T, & Bielekova 
B (2015). Novel composite MRI scale correlates highly with disability in multiple sclerosis 
patients. Mult Scler Relat Disord, 4(6), 526–535. doi:10.1016/j.msard.2015.08.009 [PubMed: 
26590659] 

Kraus DM, Elliott GS, Chute H, Horan T, Pfenninger KH, Sanford SD, Foster S, Scully S, Welcher 
AA, & Holers VM (2006). CSMD1 is a novel multiple domain complement-regulatory protein 
highly expressed in the central nervous system and epithelial tissues. Journal of Immunology, 
176(7), 4419–4430.

Kurtzke JF (1983). Rating neurologic impairment in multiple sclerosis: an expanded disability status 
scale (EDSS). Neurology, 33(11), 1444–1452. [PubMed: 6685237] 

Lau LW, Keough MB, Haylock-Jacobs S, Cua R, Doring A, Sloka S, Stirling DP, Rivest S, & Yong 
VW (2012). Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination. Ann 
Neurol, 72(3), 419–432. doi:10.1002/ana.23599 [PubMed: 23034914] 

Llinas L, Lazaro A, de Salort J, Matesanz-Isabel J, Sintes J, & Engel P (2011). Expression profiles of 
novel cell surface molecules on B-cell subsets and plasma cells as analyzed by flow cytometry. 
Immunol Lett, 134(2), 113–121. doi:10.1016/j.imlet.2010.10.009 [PubMed: 20951740] 

Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, & Lassmann H (2000). Heterogeneity 
of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol, 
47(6), 707–717. [PubMed: 10852536] 

MacArthur Jacqueline, Bowler Emily, Cerezo Maria, Gil Laurent, Hall Peggy, Hastings Emma, 
Junkins Heather, McMahon Aoife, Milano Annalisa, Morales Joannella, Pendlington Zoe May, 
Welter Danielle, Burdett Tony, Hindorff Lucia, Flicek Paul, Cunningham Fiona, & Parkinson 
Helen. (2017). The new NHGRI-EBI Catalog of published genome-wide association studies 
(GWAS Catalog). Nucleic Acids Research, 45(D1), D896–D901. doi:10.1093/nar/gkw1133 
[PubMed: 27899670] 

JACKSON et al. Page 11

Ann Hum Genet. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Manouchehrinia A, Westerlind H, Kingwell E, Zhu F, Carruthers R, Ramanujam R, Ban M, Glaser A, 
Sawcer S, Tremlett H, & Hillert J (2017). Age Related Multiple Sclerosis Severity Score: 
Disability ranked by age. Mult Scler, 1352458517690618. doi:10.1177/1352458517690618

Muhlau M, Andlauer TF, & Hemmer B (2016). HLA Genetic Risk Burden in Multiple Sclerosis. 
JAMA Neurol, 73(12), 1500–1501. doi:10.1001/jamaneurol.2016.4329 [PubMed: 27775759] 

Nalls MA, Bras J, Hernandez DG, Keller MF, Majounie E, Renton AE, Saad M, Jansen I, Guerreiro R, 
Lubbe S, Plagnol V, Gibbs JR, Schulte C, Pankratz N, Sutherland M, Bertram L, Lill CM, 
DeStefano AL, Faroud T, Eriksson N, Tung JY, Edsall C, Nichols N, Brooks J, Arepalli S, Pliner 
H, Letson C, Heutink P, Martinez M, Gasser T, Traynor BJ, Wood N, Hardy J, Singleton AB, 
International Parkinson’s Disease Genomics, Consortium, & Parkinson’s Disease meta-analysis, 
consortium. (2015). NeuroX, a fast and efficient genotyping platform for investigation of 
neurodegenerative diseases. Neurobiol Aging, 36(3), 1605 e1607–1612. doi:10.1016/
j.neurobiolaging.2014.07.028

Pan G, Simpson S Jr., van der Mei I, Charlesworth JC, Lucas R, Ponsonby AL, Zhou Y, Wu F, & 
Taylor BV (2016). Role of genetic susceptibility variants in predicting clinical course in multiple 
sclerosis: a cohort study. J Neurol Neurosurg Psychiatry, 87(11), 1204–1211. doi:10.1136/
jnnp-2016-313722 [PubMed: 27559181] 

Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, 
Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, 
Thompson AJ, Waubant E, Weinshenker B, & Wolinsky JS (2011). Diagnostic criteria for multiple 
sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol, 69(2), 292–302. doi:10.1002/ana.
22366 [PubMed: 21387374] 

R Core Team. (2018). R: A Language and Environment for Statistical Computing. Vienna, Austria.

Ramos Erin M., Hoffman Douglas, Junkins Heather A., Maglott Donna, Phan Lon, Sherry Stephen T., 
Feolo Mike, & Hindorff Lucia A. (2013). Phenotype–Genotype Integrator (PheGenI): synthesizing 
genome-wide association study (GWAS) data with existing genomic resources. European Journal 
Of Human Genetics, 22, 144. doi:10.1038/ejhg.2013.9610.1038/ejhg.2013.96https://
www.nature.com/articles/ejhg201396#supplementary-informationhttps://www.nature.com/articles/
ejhg201396#supplementary-information [PubMed: 23695286] 

Roxburgh RH, Seaman SR, Masterman T, Hensiek AE, Sawcer SJ, Vukusic S, Achiti I, Confavreux C, 
Coustans M, le Page E, Edan G, McDonnell GV, Hawkins S, Trojano M, Liguori M, Cocco E, 
Marrosu MG, Tesser F, Leone MA, Weber A, Zipp F, Miterski B, Epplen JT, Oturai A, Sorensen 
PS, Celius EG, Lara NT, Montalban X, Villoslada P, Silva AM, Marta M, Leite I, Dubois B, Rubio 
J, Butzkueven H, Kilpatrick T, Mycko MP, Selmaj KW, Rio ME, Sa M, Salemi G, Savettieri G, 
Hillert J, & Compston DA (2005). Multiple Sclerosis Severity Score: using disability and disease 
duration to rate disease severity. Neurology, 64(7), 1144–1151. doi:10.1212/01.WNL.
0000156155.19270.F8 [PubMed: 15824338] 

Sadovnick AD, Traboulsee AL, Zhao Y, Bernales CQ, Encarnacion M, Ross JP, Yee IM, Criscuoli 
MG, & Vilarino-Guell C (2017). Genetic modifiers of multiple sclerosis progression, severity and 
onset. Clin Immunol, 180, 100–105. doi:10.1016/j.clim.2017.05.009 [PubMed: 28501589] 

Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, Dilthey A, Su Z, 
Freeman C, Hunt SE, Edkins S, Gray E, Booth DR, Potter SC, Goris A, Band G, Oturai AB, 
Strange A, Saarela J, Bellenguez C, Fontaine B, Gillman M, Hemmer B, Gwilliam R, Zipp F, 
Jayakumar A, Martin R, Leslie S, Hawkins S, Giannoulatou E, D’Alfonso S, Blackburn H, 
Boneschi FM, Liddle J, Harbo HF, Perez ML, Spurkland A, Waller MJ, Mycko MP, Ricketts M, 
Comabella M, Hammond N, Kockum I, McCann OT, Ban M, Whittaker P, Kemppinen A, Weston 
P, Hawkins C, Widaa S, Zajicek J, Dronov S, Robertson N, Bumpstead SJ, Barcellos LF, 
Ravindrarajah R, Abraham R, Alfredsson L, Ardlie K, Aubin C, Baker A, Baker K, Baranzini SE, 
Bergamaschi L, Bergamaschi R, Bernstein A, Berthele A, Boggild M, Bradfield JP, Brassat D, 
Broadley SA, Buck D, Butzkueven H, Capra R, Carroll WM, Cavalla P, Celius EG, Cepok S, 
Chiavacci R, Clerget-Darpoux F, Clysters K, Comi G, Cossburn M, Cournu-Rebeix I, Cox MB, 
Cozen W, Cree BA, Cross AH, Cusi D, Daly MJ, Davis E, de Bakker PI, Debouverie M, 
D’Hooghe M B, Dixon K, Dobosi R, Dubois B, Ellinghaus D, Elovaara I, Esposito F, Fontenille C, 
Foote S, Franke A, Galimberti D, Ghezzi A, Glessner J, Gomez R, Gout O, Graham C, Grant SF, 
Guerini FR, Hakonarson H, Hall P, Hamsten A, Hartung HP, Heard RN, Heath S, Hobart J, Hoshi 
M, Infante-Duarte C, Ingram G, Ingram W, Islam T, Jagodic M, Kabesch M, Kermode AG, 

JACKSON et al. Page 12

Ann Hum Genet. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Kilpatrick TJ, Kim C, Klopp N, Koivisto K, Larsson M, Lathrop M, Lechner-Scott JS, Leone MA, 
Leppa V, Liljedahl U, Bomfim IL, Lincoln RR, Link J, Liu J, Lorentzen AR, Lupoli S, Macciardi 
F, Mack T, Marriott M, Martinelli V, Mason D, McCauley JL, Mentch F, Mero IL, Mihalova T, 
Montalban X, Mottershead J, Myhr KM, Naldi P, Ollier W, Page A, Palotie A, Pelletier J, Piccio L, 
Pickersgill T, Piehl F, Pobywajlo S, Quach HL, Ramsay PP, Reunanen M, Reynolds R, Rioux JD, 
Rodegher M, Roesner S, Rubio JP, Ruckert IM, Salvetti M, Salvi E, Santaniello A, Schaefer CA, 
Schreiber S, Schulze C, Scott RJ, Sellebjerg F, Selmaj KW, Sexton D, Shen L, Simms-Acuna B, 
Skidmore S, Sleiman PM, Smestad C, Sorensen PS, Sondergaard HB, Stankovich J, Strange RC, 
Sulonen AM, Sundqvist E, Syvanen AC, Taddeo F, Taylor B, Blackwell JM, Tienari P, Bramon E, 
Tourbah A, Brown MA, Tronczynska E, Casas JP, Tubridy N, Corvin A, Vickery J, Jankowski J, 
Villoslada P, Markus HS, Wang K, Mathew CG, Wason J, Palmer CN, Wichmann HE, Plomin R, 
Willoughby E, Rautanen A, Winkelmann J, Wittig M, Trembath RC, Yaouanq J, Viswanathan AC, 
Zhang H, Wood NW, Zuvich R, Deloukas P, Langford C, Duncanson A, Oksenberg JR, Pericak-
Vance MA, Haines JL, Olsson T, Hillert J, Ivinson AJ, De Jager PL, Peltonen L, Stewart GJ, 
Hafler DA, Hauser SL, McVean G, Donnelly P, & Compston A (2011). Genetic risk and a primary 
role for cell-mediated immune mechanisms in multiple sclerosis. Nature, 476(7359), 214–219. 
doi:nature10251 [pii] 10.1038/nature10251 [PubMed: 21833088] 

Stein N, Tsukerman P, & Mandelboim O (2017). The paired receptors TIGIT and DNAM-1 as targets 
for therapeutic antibodies. Hum Antibodies, 25(3–4), 111–119. doi:10.3233/HAB-160307 
[PubMed: 28035916] 

The International HapMap Consortium, Frazer Kelly A., Ballinger Dennis G., Cox David R., Hinds 
David A., Stuve Laura L., Gibbs Richard A., Belmont John W., Boudreau Andrew, Hardenbol 
Paul, Leal Suzanne M., Pasternak Shiran, Wheeler David A., Willis Thomas D., Yu Fuli, Yang 
Huanming, Zeng Changqing, Gao Yang, Hu Haoran, Hu Weitao, Li Chaohua, Lin Wei, Liu Siqi, 
Pan Hao, Tang Xiaoli, Wang Jian, Wang Wei, Yu Jun, Zhang Bo, Zhang Qingrun, Zhao Hongbin, 
Zhao Hui, Zhou Jun, Gabriel Stacey B., Barry Rachel, Blumenstiel Brendan, Camargo Amy, 
Defelice Matthew, Faggart Maura, Goyette Mary, Gupta Supriya, Moore Jamie, Nguyen Huy, 
Onofrio Robert C., Parkin Melissa, Roy Jessica, Stahl Erich, Winchester Ellen, Ziaugra Liuda, 
Altshuler David, Shen Yan, Yao Zhijian, Huang Wei, Chu Xun, He Yungang, Jin Li, Liu Yangfan, 
Shen Yayun, Sun Weiwei, Wang Haifeng, Wang Yi, Wang Ying, Xiong Xiaoyan, Xu Liang, Waye 
Mary M. Y., Tsui Stephen K. W., Xue Hong, Wong J. Tze-Fei, Galver Luana M., Fan Jian-Bing, 
Gunderson Kevin, Murray Sarah S., Oliphant Arnold R., Chee Mark S., Montpetit Alexandre, 
Chagnon Fanny, Ferretti Vincent, Leboeuf Martin, Olivier Jean-François, Phillips Michael S., 
Roumy Stéphanie, Sallée Clémentine, Verner Andrei, Hudson Thomas J., Kwok Pui-Yan, Cai 
Dongmei, Koboldt Daniel C., Miller Raymond D., Pawlikowska Ludmila, Taillon-Miller Patricia, 
Xiao Ming, Tsui Lap-Chee, Mak William, Qiang Song You, Tam Paul K. H., Nakamura Yusuke, 
Kawaguchi Takahisa, Kitamoto Takuya, Morizono Takashi, Nagashima Atsushi, Ohnishi Yozo, 
Sekine Akihiro, Tanaka Toshihiro, Tsunoda Tatsuhiko, Deloukas Panos, Bird Christine P., Delgado 
Marcos, Dermitzakis Emmanouil T., Gwilliam Rhian, Hunt Sarah, Morrison Jonathan, Powell 
Don, Stranger Barbara E., Whittaker Pamela, Bentley David R., Daly Mark J., de Bakker Paul I. 
W., Barrett Jeff, Chretien Yves R., Maller Julian, McCarroll Steve, Patterson Nick, Pe’er Itsik, 
Price Alkes, Purcell Shaun, Richter Daniel J., Sabeti Pardis, Saxena Richa, Schaffner Stephen F., 
Sham Pak C., Varilly Patrick, Altshuler David, Stein Lincoln D., Krishnan Lalitha, Vernon Smith 
Albert, Tello-Ruiz Marcela K., Thorisson Gudmundur A., Chakravarti Aravinda, Chen Peter E., 
Cutler David J., Kashuk Carl S., Lin Shin, Abecasis Gonçalo R., Guan Weihua, Li Yun, Munro 
Heather M., Steve Qin Zhaohui, Thomas Daryl J., McVean Gilean, Auton Adam, Bottolo 
Leonardo, Cardin Niall, Eyheramendy Susana, Freeman Colin, Marchini Jonathan, Myers Simon, 
Spencer Chris, Stephens Matthew, Donnelly Peter, Cardon Lon R., Clarke Geraldine, Evans David 
M., Morris Andrew P., Weir Bruce S., Tsunoda Tatsuhiko, Johnson Todd, Mullikin James C., 
Sherry Stephen T., Feolo Michael, Skol Andrew, Zhang Houcan, Zeng Changqing, Zhao Hui, 
Matsuda Ichiro, Fukushima Yoshimitsu, Macer Darryl R., Suda Eiko, Rotimi Charles N., 
Adebamowo Clement A., Ajayi Ike, Aniagwu Toyin, Marshall Patricia A., Nkwodimmah 
Chibuzor, Royal Charmaine D. M., Leppert Mark F., Dixon Missy, Peiffer Andy, Qiu Renzong, 
Kent Alastair, Kato Kazuto, Niikawa Norio, Adewole Isaac F., Knoppers Bartha M., Foster Morris 
W., Wright Clayton Ellen, Watkin Jessica, Gibbs Richard, Belmont John W., Muzny Donna, 
Nazareth Lynne, Sodergren Erica, Weinstock George M., Wheeler David A., Yakub Imtaz, Gabriel 
Stacey B., Onofrio Robert C., Richter Daniel J., Ziaugra Liuda, Birren Bruce W., Daly Mark J., 

JACKSON et al. Page 13

Ann Hum Genet. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Altshuler David, Wilson Richard K., Fulton Lucinda L., Rogers Jane, Burton John, Carter Nigel P., 
Clee Christopher M., Griffiths Mark, Jones Matthew C., McLay Kirsten, Plumb Robert W., Ross 
Mark T., Sims Sarah K., Willey David L., Chen Zhu, Han Hua, Kang Le, Godbout Martin, 
Wallenburg John C., L’Archevêque Paul, Bellemare Guy, Saeki Koji, Wang Hongguang, An 
Daochang, Fu Hongbo, Li Qing, Wang Zhen, Wang Renwu, Holden Arthur L., Brooks Lisa D., 
McEwen Jean E., Guyer Mark S., Ota Wang Vivian, Peterson Jane L., Shi Michael, Spiegel Jack, 
Sung Lawrence M., Zacharia Lynn F., Collins Francis S., Kennedy Karen, Jamieson Ruth, & 
Stewart John. (2007). A second generation human haplotype map of over 3.1 million SNPs. 
Nature, 449, 851. doi:10.1038/nature0625810.1038/nature06258https://www.nature.com/articles/
nature06258#supplementary-informationhttps://www.nature.com/articles/
nature06258#supplementary-information [PubMed: 17943122] 

Vergara Candelaria, Parker Margaret M., Franco Liliana, Cho Michael H., Valencia-Duarte Ana V., 
Beaty Terri H., & Duggal Priya. (2018). Genotype imputation performance of three reference 
panels using African ancestry individuals. Human Genetics, 137(4), 281–292. doi:10.1007/
s00439-018-1881-4 [PubMed: 29637265] 

Weideman AM, Barbour C, Tapia-Maltos MA, Tran T, Jackson K, Kosa P, Komori M, Wichman A, 
Johnson K, Greenwood M, & Bielekova B (2017). New Multiple Sclerosis Disease Severity Scale 
Predicts Future Accumulation of Disability. Front Neurol, 8, 598. doi:10.3389/fneur.2017.00598 
[PubMed: 29176958] 

Weideman AM, Tapia-Maltos MA, Johnson K, Greenwood M, & Bielekova B (2017). Meta-analysis 
of the Age-Dependent Efficacy of Multiple Sclerosis Treatments. Front Neurol, 8, 577. doi:
10.3389/fneur.2017.00577 [PubMed: 29176956] 

Wright Marvin N., & Ziegler Andreas. (2017). ranger: A Fast Implementation of Random Forests for 
High Dimensional Data in C++ and R. 2017, 77(1), 17. doi:10.18637/jss.v077.i01

Zerbino Daniel R., Achuthan Premanand, Akanni Wasiu, Amode M Ridwan, Barrell Daniel, Bhai 
Jyothish, Billis Konstantinos, Cummins Carla, Gall Astrid, Girón Carlos García, Gil Laurent, 
Gordon Leo, Haggerty Leanne, Haskell Erin, Hourlier Thibaut, Izuogu Osagie G., Janacek Sophie 
H., Juettemann Thomas, To Jimmy Kiang, Laird Matthew R., Lavidas Ilias, Liu Zhicheng, 
Loveland Jane E., Maurel Thomas, McLaren William, Moore Benjamin, Mudge Jonathan, Murphy 
Daniel N., Newman Victoria, Nuhn Michael, Ogeh Denye, Ong Chuang Kee, Parker Anne, 
Patricio Mateus, Riat Harpreet Singh, Schuilenburg Helen, Sheppard Dan, Sparrow Helen, Taylor 
Kieron, Thormann Anja, Vullo Alessandro, Walts Brandon, Zadissa Amonida, Frankish Adam, 
Hunt Sarah E., Kostadima Myrto, Langridge Nicholas, Martin Fergal J., Muffato Matthieu, Perry 
Emily, Ruffier Magali, Staines Dan M., Trevanion Stephen J., Aken Bronwen L., Cunningham 
Fiona, Yates Andrew, & Flicek Paul. (2018). Ensembl 2018. Nucleic Acids Research, 46(D1), 
D754–D761. doi:10.1093/nar/gkx1098 [PubMed: 29155950] 

JACKSON et al. Page 14

Ann Hum Genet. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Schematic diagram of the random forest (RF) and variable elimination pipeline.
(A) Each SNP identified in public databases and literature search comprised the feature 

space available for the RF modeling step. (B) In a RF, features are assembled into several 

decision trees that differentiate the observations. The relative importance of each feature can 

be calculated by assessing the change in out-of-bag (OOB) error of the RF when the feature 

values are permuted. (C) Features can be sorted by order of importance, allowing for 

removal of the least important feature. The pipeline continues to remove the least important 

variant from the RF model and rebuilding the forest until the (D) change in OOB error of the 

subsequent model exceeds 1%. (E) Such a stabilized model is then tested in the independent 

validation cohort.
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Figure 2. The GeM-MSS model predicts future accumulation of disease progression in training 
and independent validation cohorts.
(A) GeM-MSS correlates strongly with the observed MS-DSS in the training cohort. (B) We 

observed a weak, but significant correlation between GeM-MSS and the observed MS-DSS 

in the validation cohort. MS-DSS was calculated according to a published formula 

(Weideman, Barbour, et al., 2017) using clinical data from the last visit. (C) Relative 

influence of the 19 remaining variants in GeM-MSS. The random forest (RF) assigned the 

greatest variable importance to variants in the YWHAG gene are assigned the greatest 

importance to the predicted outcome. Subsequent variants represent the following genes in 

order of importance: XYLT1, CAMK2D, KDM2B, MAGI2, ARID1B, C1GALT1, CHD13, 

CSMD1, PSD3, PVRL2, SLAMF7
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Figure 3. Correlation of GeM-MSS with MS severity scales for training and validation cohorts.
(A) GeM-MSS correlates with the MS severity scale (MSSS) and its complement, (B) the 

age-related MS severity score (ARMSS) in the training cohort. (C) In the validation cohort, 

GeM-MSS correlates with MSSS, and shows a similar, but non-significant trend when 

compared to (D) ARMSS
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Table 1

Demographic data of training and validation cohorts

RR-MS
a

SP-MS
b

PP-MS
c

Training (n = 205)

n 86 42 77

Females/Males 54/32 21/21 39/38

Age, years 43.99 (18.01–76.43) 54.28 (31.24–73.82)
e

57.94 (27.61–74.66)
e

Disease Duration, years 13.91 (4–44) 26.52 (9–49)
e

17.38 (6–45)
d,f

MS-DSS 1.44 (0.56–3.42) 2.43 (0.87–5.19)
e

2.30 (0.34–4.90)
e

MSSS 2.83 (0.16–9.57) 6.21 (1.43–9.82)
e

6.64 (0.64–9.85)
e

Validation (n = 94)

n 47 28 19

Females/Males 30/17 10/18 11/8

Age, years 43.39 (24.95–65.44) 53.44 (22.02–68.04)
d

59.19 (34.90–69.68)
e

Disease Duration, years 14.51 (3–33) 23.32 (8–33)
d

19.39 (8–46)
e

MS-DSS 1.61 (0.51–2.31) 2.49 (0.81–5.33)
d

2.22 (0.81–4.43)
d

MSSS 2.98 (0.26–8.75) 6.98 (1.7–9.56)
e

6.71 (2.55–9.56)
e

Continuous data are shown as the mean of all measurements and the minimum and maximum values are in parentheses.

a
Relapsing-remitting MS

b
Secondary progressive MS

c
Primary progressive MS

d
p < 0.05 when compared to RR-MS using one-way ANOVA with Holm adjustment for multiple comparisons

e
p < 0.0001 when compared to RR-MS using one-way ANOVA with Holm adjustment for multiple comparisons

f
p < 0.0001 when compared to SP-MS using one-way ANOVA with Holm adjustment for multiple comparisons
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