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Abstract

Purpose/Aim: Abnormal activation of signaling pathways related to angiogenesis, inflammation, 

and oxidative stress has been implicated in the pathophysiology of retinopathy of prematurity 

(ROP), a leading cause of blindness in pre-term infants. Therapies for ROP include laser and anti-

vascular endothelial growth factor agents. However, these therapies have side effects, and even 

with adequate treatment, visual acuity can be impaired. Novel therapeutic options are needed. 

Stanniocalcin-1 (STC-1) is neuroprotective protein with anti-inflammatory and anti-oxidative 

stress properties. Rodent models of oxygen-induced retinopathy (OIR) were selected to determine 

whether STC-1 plays a role in the development of OIR.

Materials and methods: STC-1 gene and protein expression was first evaluated in the Sprague 

Dawley rat OIR model that is most similar to human ROP. OIR was then induced in wild-type and 

Stc-1−/− mice. Retinas were isolated and evaluated for avascular and neovascular area on retinal 

flat mounts. Quantification of gene expression by quantitative real-time PCR was performed. 

VEGF was assayed by ELISA in media obtained from induced pluripotent stem cell derived 

retinal pigment epithelial (iPS-RPE) cells following treatment with recombinant STC-1.

Results: STC-1 was significantly upregulated in a rat model of OIR compared to room air 

controls at the gene (P<0.05) and protein (P<0.001) level. Stc-1−/− OIR mice showed significantly 

worse ROP compared to wild-type mice as assessed by avascular (20.2 ± 2.4% vs 15.2 ± 2.5%; 

P=0.02) and neovascular area (14.3 ± 2.7% vs 8.8 ± 3.7%; P<0.05). Transcript levels of vascular 
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endothelial growth factor-A were significantly higher in Stc-1−/− OIR mice compared to wild-type 

controls (P=0.03). STC-1 reduced VEGF production in iPS-RPE cells (P=0.01).

Conclusions: STC-1 plays a role in the OIR stress response and development of pathologic 

vascular features in rodent OIR models by regulating VEGF levels.
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Introduction

Retinopathy of prematurity (ROP) is a leading cause of childhood blindness. 1–3 Aberrant 

vascular endothelial growth factor (VEGF) signaling contributes to neovascularization and 

retinal detachment in advanced disease.4 While laser ablation of avascular retina and anti-

VEGF agents can be effective treatments, 5–12 there are concerns regarding local and 

systemic side effects.13, 14 Targeted therapies15 with lower side effect profile are needed. 

Multiple pathways,16 have been implicated in ROP pathogenesis, and therapies that regulate 

angiogenesis, inflammation, and neurodegeneration have been proposed.17

Stanniocalcin-1 (STC-1) is a multi-functional protein that is upregulated by cellular stresses.
18–20 STC-1 is cytoprotective in neurons,20, 21 photoreceptors,22 and retinal ganglion cells,23 

and reduces intraocular pressure24, oxidative stress22, and inflammation.25 Its 

neuroprotective effects have been associated with uncoupling oxidative phosphorylation by 

induction of mitochondrial uncoupling protein-2, yielding anti-oxidant capacity.22 We 

hypothesized that STC-1 might be a stress-response protein that is capable of decreasing 

inflammatory and oxidative stress underlying ROP.

Materials and methods

Rodent oxygen induced retinopathy models

To determine whether STC-1 signaling was altered in a representative ROP model,4 we 

selected the rat OIR model.26, 27 To determine the effects of STC-1 knockdown, we used the 

Stc-1(−/−) mouse.28 Studies were approved by University of Utah and Mayo Clinic 

(Rochester, MN) IACUC and adhered to ARVO guidelines. Newborn Sprague-Dawley rats 

(Charles River, Wilmington, MA) and mothers were housed in cycled oxygen which 

alternated between 50% and 10% every 24 hours for 14 days and sacrificed (post-natal day; 

P14) or placed room air (RA) for 3 (P17), 4 (P18), or 6 (P20) additional days. Controls were 

maintained at RA throughout the experiment and sacrificed at identical time-points. 

Stc-1(−/−) and wild-type control mice were obtained from the Sheikh-Hamad laboratory 

(Baylor College of Medicine) and bred at Mayo Clinic. P7 wild-type (n=19) and Stc-1(−/−) 

mice (n=15, 3 separate litters)29 with alternating surrogate mothers were maintained in 75% 

oxygen for 5 days (P7-P12), and then RA (21% oxygen) for 5 days (P12-17) and sacrificed 

at P17.
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Expression of STC-1 in rat OIR

Rat OIR pups were euthanized at P18 (n=3 RA, n=10 OIR). Retinas were harvested, and 

lysates were probed by western blot for β-actin and STC-1 (R&D Systems, Minneapolis, 

MN),30 and relative quantification (RQ) values for STC-1 expression normalized to β-actin 

were calculated with UN-SCAN-IT Gel 6.1 (Orem, UT).27 For STC-1 RNA expression 

analysis, rat OIR pups were euthanized at P14 (n=3 wild-type, n=4 OIR), P17 (n=3 wild-

type, n=4 OIR), or P20 (n=3 wild-type, n=3 OIR). Retinas were harvested for molecular 

analysis as previously described.22 Samples were homogenized in RNA Bee (Fisher 

Scientific, Waltham, MA) on ice by passage through a 19.5g needle. After aqueous phase 

extraction, RNA was purified (RNeasy Mini; Qiagen, Valencia, CA) and cDNA generated by 

reverse transcription (SuperScript III; Invitrogen). Quantitative real-time PCR (qPCR) 

amplification was performed using TaqMan Universal PCR Master Mix (Applied 

Biosystems, Carlsbad, CA), and Taqman Gene Expression Assay probes (Fisher Scientific) 

for Stanniocalcin-1 (Stc-1-Rn00579636) and normalized to 18s ribosomal RNA (18s-

Rn03928990).

Retinal flat mounts

To examine the effect of OIR on Stc-1(−/−) mice, OIR pups were euthanized at P17. One eye 

from each mouse was enucleated and the retina was harvested for flat mounts.31 Eyes were 

fixed in 4% paraformaldehyde (0.1M phosphate buffer) for 90 minutes then transferred to 

phosphate buffered saline (PBS). Retinas were dissected, washed in PBS, blocked with 1% 

bovine serum albumin, incubated overnight with TRITC-labeled IsolectinB4 (Invitrogen, 

Carlsbad, CA), probed with primary antibodies against GFAP (DakoCytomation, Denmark) 

to label glia, and NG2 (Chemicon, Temecula, CA) to label pericytes, and incubated with 

secondary antibody Alexa-Fluor 488 goat anti-rabbit (Invitrogen) for 1 hour. Specimens 

were incubated with DAPI (Sigma, St. Lois, MO) for 10 minutes for nuclear staining, flat-

mounted using FluorSave Reagent (Calbiochem, San Diego, CA), and analyzed by 

microscopy. Adobe Photoshop v20.0.1 (San Jose, CA) was used to delineate neovascular 

and avascular retina as percentage of total flat mount area (Supplementary Figure 1).32 

Three masked investigators (2 board-certified ophthalmologists, 1 American Society of 

Clinical Pathology certified pathology assistant) independently performed segmentation 

analysis, and percentages were averaged. Graders were trained to manually exclude false 

positive areas due to hyaloid or background autofluorescence.

Gene expression in mouse OIR

Retina from P17 mice was harvested for molecular analysis as above. qPCR amplification 

was performed Taqman Gene Expression Assay probes (Fisher Scientific) for tumor necrosis 

factor, alpha-induced protein 2 (TNFAIP2-Mm00447578_m1), placental growth factor 

(PGF-Mm00435613_m1), chemokine ligand 11 (CCL11-Mm00441238_m1), complement 

component 3 (CC3-Mm01232779_m1), Stanniocalcin-1 (STC-1-Mm01322191_m1), 

vascular endothelial growth factor A (VEGF-A-Mm00437306_m1), toll-like receptor 4 

(TLR4-Mm00445273_m1), fibroblast growth factor 2 (FGF2-Mm01285715_m1), hypoxia 

inducible factor 1, alpha subunit (HIF-1α-Mm00468869_m1), kinase insert domain protein 

receptor (KDR/VEGFR2-Mm01222421_m1), tumor necrosis factor (TNFα-
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Mm00443258_m1), complement factor B (CFB- Mm00433909_m1), complement 

component 1, q subcomponent (c1qb- Mm01179619_m1), and 18S ribosomal RNA (18s-

Mm03928990_g1) per manufacturer’s directions. RQ for qPCR values were normalized to 

18s RNA and then to wild-type OIR controls.

Cell culture experiments

Induced pluripotent stem cell derived retinal pigment epithelial cells (iPSC-RPE) which 

produce VEGF in culture,33 were purchased from LAgen laboratories and cultured per 

manufacturer’s instructions. After normalization of VEGF levels in conditioned media, 24 

hrs of conditioned media was collected to serve as an untreated control. STC-1 (Biovender 

Research and Diagnostic Products; 500ng/mL) was added, and conditioned media was 

collected 24 hrs following initiation of treatment. Conditioned media was centrifuged to 

remove cellular debris and assayed for VEGF by ELISA (R&D Systems).

Statistical analysis

Statistical analysis was performed with ANOVA and Tukey post-hoc protected tests 

(densitometry for western blot), Mann-Whitney U test (quantification of avascular and 

neovascular retina), or Student’s t-test (qPCR and ELISA analysis).

Results

Compared to RA controls, OIR rat pups showed significantly increased expression of STC-1 

mRNA (Fig 1A) at P17 (P<0.01) and P20 (P=0.02). This corresponded with the significant 

increase in STC-1 protein levels at P18 by western blot (Fig 1B) which was confirmed by 

densitometry (Fig 1C, P<0.001) .

To determine whether STC-1 upregulation was pathologic or protective, we subjected 

Stc-1(−/−) and wild-type mice to OIR. Stc-1(−/−) mice subjected to OIR had increased 

avascular (Fig 2 15.2 ± 2.5% vs 20.2 ± 2.4%, P=0.02) and neovascular (Fig 2, 8.8 ± 3.7% vs 

14.3 ± 2.7%, P<0.05) areas at P17 compared to wild-type.

To examine differential gene expression between wild-type and Stc-1(−/−) OIR mice, we 

selected known upregulated genes in the mouse OIR model at P17 as markers of disease 

induction.34 VEGF-A was upregulated in Stc-1(−/−) vs. wild-type controls (Fig 3, P=0.03). 

There were no significant differences between wild-type and Stc-1(−/−) mice for HIF-1α, 

VEGFR2, TNFα, Cfb, C1qb, FGF2, TLR4, TNFAIP2, PGF, or CCL11 (Supplementary Fig 

2). However, CC3 was higher in Stc-1(−/−) mice (Supplementary Fig 2, P<0.05), and as 

expected, STC-1 gene expression was undetectable in Stc-1(−/−) mice (Supplementary Fig 2, 

P<0.001).

To determine whether STC-1 has an effect on VEGF production, we selected iPS-RPE cells 

which produce VEGF in standard culture conditions. Treatment with STC-1 significantly 

reduced VEGF concentration in iPS-RPE conditioned media at 24 hours (Fig 4, P=0.01).
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Discussion

STC-1 is induced by pathologic stresses, including inflammation,35 oxidation,36 and 

hypoxia.18–20 We have now shown that STC-1 is induced by OIR at the gene and protein 

level, adding OIR to the list of cellular stresses that induce STC-1 expression. Under 

physiologic conditions, Stc-1(−/−) mice appear phenotypically indistinguishable from wild-

type including ocular anatomy. 24 However, when subjected to pathologic stress, Stc-1(−/−) 

mice develop worse disease compared to controls, as previously demonstrated in models of 

acute kidney injury37 and stroke.20 This study adds ROP to the list of disease models with 

worse outcomes in the absence of STC-1.

Assessment of genes previously reported to be altered in OIR compared to wild-type mouse 

models showed only VEGF-A and CC3 with increased expression. While increased VEGF-

A levels are known to be upregulated in rodent OIR models, we also found that they were 

significantly higher in Stc-1(−/−) mice compared to wild-type mice subjected to OIR, 

consistent with worse ROP in these animals. Our finding that STC-1 treated iPS-RPE cells 

resulted in decreased levels of VEGF in conditioned media suggest that STC-1 may be a 

regulator of VEGF expression. Because we did not find any expression change in HIF1α in 

Stc-1(−/−) mice compared to wild-type control, this suggests STC-1 may regulate VEGF 

levels downstream of HIF1α. Consistent with this hypothesis, STC-1 expression can be 

induced by binding of HIF1α to the STC-1 promoter.38 Paradoxically, STC-1 has been 

reported to induce VEGF signaling leading to increased angiogenesis in other model 

systems.39–41 Additional studies in multiple cell types and disease models are needed to 

clarify the role of STC-1 in VEGF expression and signaling.

Regarding higher levels of CC3 in Stc-1(−/−) mice, it remains unclear whether this is related 

to VEGF regulation (VEGF can affect complement regulation42), or secondary to direct anti-

inflammatory effects of STC-1. A recent clinical study found increased CFH, CC3, and C4 

in addition to VEGF at the protein level in the vitreous of ROP patients.16

Our data suggests STC-1 is a regulator of OIR severity in part due to its effect on VEGF 

production. Reduction in both avascular and neovascular retina in the presence of STC-1 

could be related to a combined effect of neuroprotective and anti-VEGF properties. Further 

studies are needed to evaluate the therapeutic potential of STC-1 in ROP and other retinal 

vascular disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Stanniocalcin-1 is upregulated in a rat model of oxygen induced retinopathy.
(A) Quantitative real-time PCR shows a significant increase in STC-1 expression at P17 

(P<0.01) and P20 (P=0.02) in wild-type oxygen induced retinopathy (OIR) rats compared to 

room air (RA) controls. Note there was no significant difference at P14. (B) Representative 

western blot reveals that STC-1 is upregulated in retinal lysates obtained from P18 OIR rats 

compared to RA. (C) Densitometry of STC-1 normalized to β-actin (Relative Quantification; 

RQ) revealed significantly increased STC-1 in OIR (n=10, p<0.001)*** compared to P18 

RA controls (n=3). Error bars represent SEM.
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Figure 2. Stc-1−/− mice develop worse retinopathy in a mouse model of oxygen induced 
retinopathy.
(A) Representative retinal flat mount of mice subjected to OIR shows avascular (asterisk) 

and neovascularization (arrow head) in wild-type mice (left panel) that is less severe 

compared to Stc-1−/− mice (right panel) at P17. (B) Graph showing increased avascular 

(P=0.02) and neovascular (P<0.05) regions in Stc-1−/− mice compared to wild-type controls 

at P17. Error bars represent SEM.
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Figure 3. Stc-1−/− mice show higher levels of VEGFA compared to wild-type in a mouse model of 
oxygen induced retinopathy
Quantitative real-time PCR shows that Stc-1−/− mice had a significant increase in expression 

of VEGF-A (P=0.03)* at P17 compared to wild-type controls. Error bars represent SEM.

Dalvin et al. Page 11

Curr Eye Res. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. VEGF is decreased in cultures of induced pluripotent stem cell derived retinal pigment 
epithelium cell cultures following addition of STC-1.
ELISA for VEGF in conditioned media from induced pluripotent stem cell derived retinal 

pigment epithelium (iPS-RPE) shows a decrease in VEGF expression 24 hours after addition 

of recombinant human STC-1 (500ng/mL) (n=4, P=0.01). Error bars represent SEM.
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