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Summary

Intermediary metabolism in cancer cells is regulated by diverse cell-autonomous processes 

including signal transduction and gene expression patterns arising from specific oncogenotypes 

and cell lineages. Although it is well established that metabolic reprogramming is a hallmark of 

cancer, we lack a full view of the diversity of metabolic programs in cancer cells and an unbiased 

assessment of the associations between metabolic pathway preferences and other cell-autonomous 

processes. Here we quantified metabolic features, mostly from 13C enrichment of molecules from 

central carbon metabolism, in over 80 non-small cell lung cancer (NSCLC) cell lines cultured 

under identical conditions. Because these cell lines were extensively annotated for oncogenotype, 

gene expression, protein expression and therapeutic sensitivity, the resulting database enables the 

user to uncover new relationships between metabolism and these orthogonal processes.

eTOC Blurb

Metabolic reprogramming influences therapeutic sensitivity in cancer, but the scope of metabolic 

diversity among cancer cells is unknown. Chen et al. characterized metabolic phenotypes in over 

80 non-small cell lung cancer cell lines, then used genomics, transcriptomics, proteomics and 

therapeutic sensitivities to uncover relationships between metabolism and orthogonal processes.
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Introduction

Malignant cells reprogram metabolism to support cancer progression. Metabolic 

reprogramming is a hallmark of cancer and targeting metabolism is a potential therapeutic 

strategy (Hanahan and Weinberg, 2011; Tennant et al., 2010). This concept dates to the 

1920s, when Otto Warburg observed rapid glucose uptake and lactate secretion (the Warburg 

effect) in tumors (Koppenol et al., 2011). Copious lactate secretion in the presence of 

oxygen was interpreted as evidence that suppressed mitochondrial metabolism is a uniform, 

required component of malignancy (Warburg, 1956). This paradigm was reinforced by 

studies in the 1980s-2000s demonstrating that oncogenes (c-Myc, Ras, Akt, and others) is 

stimulate glycolysis (Elstrom et al., 2004; Flier et al., 1987; Shim et al., 1997). It is now 

recognized that the tricarboxylic acid (TCA) cycle and other aspects of mitochondrial 

metabolism also contribute to cancer cell proliferation by providing energy and biosynthetic 

precursors (Cheng et al., 2011; DeBerardinis et al., 2007; Weinberg et al., 2010). An 
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emerging theme is that tumor cells acquire heterogeneous metabolic phenotypes to 

withstand complex challenges during cancer progression (Boroughs and DeBerardinis, 

2015).

Cancer metabolism is regulated in part by signaling and transcriptional networks activated 

by mutations in oncogenes and tumor suppressors, resulting in heterogeneous, cell-

autonomous phenotypes among genetically diverse cancer cells (DeBerardinis and Chandel, 

2016). Consistent with this idea, cultured cancer cells display variable rates of nutrient 

uptake (Jain et al., 2012). However, neither the breadth of metabolic diversity in cancer cells, 

nor the complement of mechanisms that induce metabolic reprogramming, are known. We 

set out to characterize cell-autonomous metabolic heterogeneity in cell lines derived from a 

particular tumor type. We chose non-small cell lung cancer (NSCLC) because: a) NSCLC is 

the foremost cause of cancer deaths worldwide, indicating the need for new therapies; b) cell 

lines covering the molecular diversity of NSCLC are available; c) recurrently-mutated genes 

in NSCLC, including KRAS, EGFR, PIK3CA, TP53, KEAP1 and PTEN, regulate 

metabolism; and d) access to orthogonal data sets would facilitate correlating metabolism 

with oncogenotypes, gene and protein expression and other features to understand 

mechanisms by which metabolic reprogramming occurs.

Results

Experimental design and metabolic analyses.

Over 80 NSCLC cell lines were analyzed for nutrient utilization, nutrient addiction, cell 

growth and isotope labeling after culture with [U-13C]glucose or [U-13C]glutamine (Table 

S1), and examined relationships between these activities and orthogonal molecular and 

therapeutic sensitivity data (Figure 1A). Multiple replicates cultured on different days were 

used to derive metabolic parameters. Consumption of glucose and glutamine and secretion 

of lactate and glutamate were measured to estimate rates of glycolysis and glutamine 

catabolism. Each cell line was assessed for proliferation in complete medium and survival in 

media lacking glucose or glutamine. Cells were also subjected to two complementary 

isotope labeling experiments to assess the extent to which glucose and glutamine supply 

carbon to metabolite pools. One experiment used medium with [U-13C]glucose and 

unlabeled glutamine, and the other used [U-13C]glutamine and unlabeled glucose.

Metabolites were extracted after 6 and 24 hours and analyzed by gas chromatography–mass 

spectrometry (GC-MS) to obtain mass isotopologue distributions (MID) for citrate (Cit), 

fumarate (Fum), malate (Mal), lactate (Lac), serine (Ser) and glycine (Gly). Other than 

nutrient deprivation assays, the nutrient milieu was consistent across all these experiments 

and in experiments to characterize gene/protein expression and therapeutic sensitivity, 

making it possible to cross-correlate the data. All metabolic features are available through a 

web application at http://Ice.biohpc.swmed.edu/nsclc_cell_metabolism/ designed to allow 

users to explore the data.
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Nutrient consumption, secretion and dependence.

Nutrient consumption/secretion rates varied 6-7-fold for glucose consumption and 15-fold 

for lactate secretion (Table S1). These rates are normalized to protein content, and were not 

affected by further corrections to account for differences in cell proliferation rates (Figure 

S1A; see STAR Methods for explanation of these corrections). As expected, glucose 

consumption correlated with lactate secretion and glutamine consumption correlated with 

glutamate secretion (Figure 1B). On average, cells secreted 1.35 moles of lactate per mole of 

glucose consumed (standard deviation 0.5 moles), and 0.4 moles of glutamate per mole of 

glutamine consumed (standard deviation 0.2 moles), emphasizing that cultured cancer cells 

process both glucose and glutamine at rates exceeding their need to retain carbon from these 

nutrients (Table S1). A positive correlation was also observed between glucose and 

glutamine consumption, indicating an unexpected coordination between glutaminolysis and 

glucose consumption (Figure 1B).

Normalizing lactate secretion to glucose consumption (Lac/Glc ratio) provides an estimate 

of each cell line’s preference for aerobic glycolysis. The cell lines displayed an 8-fold range 

of Lac/Glc ratios, indicating that NSCLC cell lines are diverse in the extent to which they 

discard glucose carbon as lactate (Table S1). Lac/Glc correlated significantly but weakly 

with the growth rate in complete medium (Day3/Day1 ratio; p=0.04) (Table S2). To identify 

associations between Lac/Glc and transcriptional programs, we derived single sample gene 

set enrichment analysis (ssGSEA) scores for each cell line based on the C2-CGP gene sets 

representing expression signatures of genetic and chemical perturbations from MSigDB 

(Subramanian et al., 2005). Enrichment scores from ssGSEA represent the degree to which 

genes in a particular gene set are coordinately up- or down-regulated (Barbie et al., 2009). 

Almost all (25/29) enrichment scores generated by hypoxia-related signatures are positively 

associated with Lac/Glc (Figure 1C); an example gene set is shown in Figure 1D (Winter et 

al., 2007). This gene set includes LDHA and several other glycolytic genes as defined by 

REACTOME (Fabregat et al., 2018; van Wijk and van Solinge, 2005). Individual genes in 

this set exhibit moderate but overall positive correlations with Lac/Glc (Figure 1E). In 

contrast, we found a negative correlation between Lac/Glc and ssGSEA scores derived from 

gene sets related to neuronal processes, which tend to be expressed in cells with 

neuroendocrine differentiation (Ionescu et al., 2007). We derived neuroendocrine scores for 

our cell lines based on a 50-gene signature (Zhang et al., 2018) and found that cells with 

high scores are invariably low in Lac/Glc (Figure 1F). Altogether these data indicate that 

hypoxia gene sets correlate with glycolytic metabolism even when cells are cultured in 

normoxia, and that cell lines with neuroendocrine-like signatures release relatively little 

lactate per glucose consumed.

We also normalized glutamate secretion to glutamine uptake (Glu/Gln ratio) as a surrogate 

for the release of carbon derived from glutamine. Glu/Gln ranged from essentially no 

glutamate released to a 1:1 ratio of glutamate release per glutamine consumed. Glu/Gln 

correlates positively with GLS mRNA, which encodes the glutaminolytic enzyme 

glutaminase (GLS) (Figure 1G). GLS2, which encodes another glutaminase isoform, did not 

correlate with Glu/Gln at the transcript level, and GLS did not correlate with GLS2.
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To understand relationships between nutrient utilization, nutrient dependence and cell 

growth, we examined pairwise correlations amongst these features in a correlation heatmap 

(Figure 1H). The two cell growth features (Day3/Day1 and Day5/Day1) are strongly 

correlated, as expected. The six features related to glucose and glutamine dependence 

(Day1-G, Day3-G, Day5-G, Day1-Q, Day3-Q, Day5-Q) also correlate with each other, 

indicating that cells sensitive to glucose deprivation also tend to be sensitive to glutamine 

deprivation and vice versa. Growth rates correlate negatively with nutrient dependence, 

indicating that cell lines which grow rapidly under nutrient replete conditions perish more 

rapidly upon either glucose or glutamine withdrawal. However, neither glucose nor 

glutamine consumption correlate with growth rates, suggesting that these nutrients are used 

for processes other than or in addition to biomass assimilation.

In some cases, partial correlations produced stronger associations than direct pairwise 

correlations. Figure 1I provides an example where the negative association between Lac and 

Day5-G is more significant in a partial correlation controlling for Glc than in a pairwise 

correlation, indicating that for a given rate of glucose uptake, the more lactate produced, the 

more sensitive the cell line is to glucose deprivation. In Figure 1J, the negative association 

between Lac and Gln is more significant in a partial correlation controlling for Glc than in a 

pairwise correlation. In other words, with the same amount of glucose uptake, the more 

lactate a cell produces, the less glutamine it consumes.

Diversity in metabolic pathway utilization inferred by mass isotopologue distributions.

Mass isotopologue distributions (MIDs) report the fates of 13C-labeled fuels, providing a 

view of metabolism that cannot be achieved from steady-state metabolite levels (Buescher et 

al., 2015; Jang et al., 2018). MID analysis has been used to assess nutrient contributions to 

metabolic intermediates in the TCA cycle and other pathways. For example, oxidative and 

reductive pathways of glutamine metabolism are readily differentiated using MID of citrate 

following culture with [U-13C]glutamine. Glutamine oxidation, a major source of 

anaplerosis, generates m+5 labeling in α-ketoglutarate and m+4 labeling in other TCA cycle 

metabolites (Figure 2A). Glutamine-dependent reductive carboxylation (GDRC) via 

isocitrate dehydrogenase-1 or -2 (IDH1, IDH2) generates α-ketoglutarate m+5, citrate m+5, 

acetyl-CoA m+2, and m+3 labeling in other TCA cycle intermediates (Figure 2B).

To our knowledge, there have been no previous attempts to use parallel-tracer MID analysis 

to capture metabolic diversity in a panel of cell lines as large as ours. We named 13C 

labeling features using an abbreviation for the metabolite, followed by the tracer, labeling 

duration and number of 13C nuclei. For example, m+2 citrate after 6 hours of 

[U-13C]glucose labeling is named CitG6m2. The data revealed remarkable cell-autonomous 

diversity in isotope labeling among the cell lines, but good consistency among replicates 

(Figure S1B–E).

Examination of citrate MIDs after labeling with either [U-13C]glucose or [U-13C]glutamine 

reveals several interesting features (Figure 2C). First, MID distributions are generally 

conserved between the two time points, indicating that most labeling occurs within the first 

6 hours, as expected for glycolysis and the TCA cycle (Jang et al., 2018). The modest 

changes at 24 hours included reduced prominence of unlabeled citrate and increased 
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abundance of isotopologues derived from multiple rounds of the TCA cycle (e.g. m+4 and m

+6 from [U-13C]glucose). Second, labeling patterns are heterogeneous across the panel, with 

some citrate MIDs (particularly those involving m+0 and m+2 from [U-13C]glucose and m

+0, m+4 and m+5 from [U-13C]glutamine) covering about one third of the possible MID 

range. This indicates heterogeneity of intrinsic pathway preference even when cell lines are 

cultured under identical conditions.

Third, the abundant m+2 isotopologues from [U-13C]glucose, coupled with the m+4 

isotopologues from [U-13C]glutamine, demonstrate the expected prominence of glucose-

dependent acetyl-CoA formation and glutamine-dependent anaplerosis (DeBerardinis et al., 

2007). In this common pathway, glucose and glutamine metabolism converge on citrate 

synthesis (Figure 2A). Although CitG6m2 and CitQ6m4 fractions varied widely across the 

panel, they correlated well with each other (Figure 2D). MIDs from other TCA cycle 

intermediates agreed with the prominence of glutamine-dependent anaplerosis (Figure S2A–

E; standard deviations are in Figure S2F). Other pairs of glucose- and glutamine-derived 

isotopologues also demonstrated strong correlations. One of the most striking was the 

positive correlation between CitQ6m5 and CitGlc6m0, two isotopologues characteristic of 

GDRC (Figure 2E). Some cells had as much as 35% m+5 labeling in citrate from 

[U-13C]glutamine; this was unexpected considering that GDRC is observed in hypoxia and 

other conditions of impaired glucose and glutamine oxidation (Gameiro et al., 2013; Metallo 

et al., 2011; Mullen et al., 2011; Rajagopalan et al., 2015). Given the prominent contribution 

of glucose and glutamine to central metabolism, we also determined the overall fraction of 

carbons in citrate, fumarate, malate and lactate derived from these nutrients. The mean 

fractional contribution of glucose and glutamine to carbons in TCA cycle intermediates 

exceeded 75% (Figure 2F).

Relationships among MIDs and other features are summarized in Figure S3 and Table S2 

and illustrated as a dendrogram using absolute correlation-based distances (Figure 2G). The 

same isotopologues are strongly correlated at 6h and 24h, indicating that the cell lines 

approached isotopic steady state within these labeling periods (Figure S3, Table S2). Strong 

correlations are enriched between isotopologues from metabolites in the same pathway, as 

observed among TCA cycle intermediates or between serine and glycine. Surprisingly, there 

was a paucity of associations between 13C labeling and nutrient utilization, cell growth or 

nutrient dependence. Thus, even though pathways reported by 13C labeling contribute to 

growth, the prominence of a given set of labeling features predicts neither the growth rate 

nor nutrient dependence. Despite the overall paucity of associations between 13C and 

non-13C features, we captured some expected associations, including correlations between 

Lac, LacG6m3 and LacG24m3 (Figure S3).

Glucose-dependent anaplerosis inferred from [U-13C]glucose labeling predicts 
dependence on pyruvate carboxylase.

Alternative positional labeling of precursors can simplify interpretation of metabolite 

labeling. For example, [3,4-13C]glucose is a preferred tracer to detect glucose-dependent 

anaplerosis via pyruvate carboxylase (PC). This tracer differentiates PC-dependent vs. PDH-

dependent entry of glucose carbon into the TCA cycle, because [3,4-13C]glucose is 
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converted to [1-13C] pyruvate. PDH removes the labeled carbon as 13CO2, whereas PC 

transfers the label to OAA so that it is retained in TCA cycle intermediates as m+1 

isotopologues (Figure 3A). When [U-13C]glucose is the precursor, glycolysis produces 

[U-13C]pyruvate, and both PDH and PC transfer label from [U-13C]pyruvate to the TCA 

cycle, producing m+2 or m+3 isotopologues on the first turn. However, combined 

contribution of PDH and PC, coupled with multiple turns of the cycle, complicate 

interpretation of MIDs from [U-13C]glucose (Figure 3B and S4A). It would be advantageous 

to infer PC activity from [U-13C]glucose, because a) anaplerosis contributes to biomass 

assimilation and cell growth; b) PC is the primary anaplerotic route in some tumors in vivo 

and accounts for glutamine-independent growth in some cells (Cheng et al., 2011; Sellers et 

al., 2015); and c) the high cost of [3,4-13C]glucose relative to [U-13C]glucose limits use of 

the former tracer in human in vivo experiments.

To test whether [U-13C]glucose tracing can reliably report PC’s contribution to the TCA 

cycle, we cultured 20 cell lines in [3,4-13C]glucose and compared the resulting m+1 

isotopogues to m+3 isotopologues derived from [U-13C]glucose. Specifically, we compared 

citrate m+1 with malate m+3; the latter species arises through malate dehydrogenase-

dependent exchanges with OAA m+3, which was not abundant enough to detect in our 

samples. The strong positive correlation between these isotopologues indicates that 

[U-13C]glucose tracing reports contributions from PC (Figure 3C). MalG6m3 also correlates 

with PC mRNA abundance (Figure S4B). To remove the confounding effect of MalG6m3 

arising from multiple turns of the TCA cycle, we fitted a linear regression model using 

CitG6m4, which also arises from multiple TCA cycle turns, to predict the portion of 

MalG6m3 arising independently of PC (Figure S4C). The residuals from this fit, which we 

take to arise from PC, correlate much better with PC mRNA expression (Figure S4D).

To test whether cells with high PC-dependent labeling of TCA cycle intermediates also had 

enhanced PC dependence, we selected three cell lines each with high (HCC515, H1792, 

H1648) or low (H920, PC9, H2444) PC-dependent labeling (Figure 3C). Each cell line was 

modified to express a control shRNA or an shRNA directed against PC. PC silencing 

reduced soft agar colony formation in cells with high but not low PC-dependent labeling 

(Figure 3D). Thus, mass isotopologues from [U-13C]glucose can be used to predict PC’s 

contribution to the TCA cycle, PC gene expression and dependence on PC for growth in soft 

agar.

Associations between MIDs and oncogenotypes.

Next we explored relationships between metabolic phenotypes and oncogenotypes. We 

clustered cells based on citrate MIDs after [U-13C]glucose labeling for 6h and examined 

mutations in recurrently-mutated NSCLC genes, including EGFR, KRAS and STK11 
(Figure 4A–F). Generally, stronger associations were observed when site-specific rather than 

site-agnostic mutations were considered (Figure 4A). Examination of CitG6m0 

demonstrates this point. Cells with EGFR mutations tended to have higher fractional 

contents of CitG6m0, but this was particularly striking for exon 19 deletions (Figure 4A,B). 

We then used our database of intra-operative [U-13C]glucose infusions in NSCLC patients to 

examine citrate labeling in human NSCLC. In these studies, patients with NSCLC receive 
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[U-13C]glucose infusions during resection of the tumor (Faubert et al., 2017; Hensley et al., 

2016). Fragments from EGFR-mutant tumors had higher citrate m+0 fractions than tumors 

with wild-type EGFR, but no differences were noted for adjacent lung samples from the 

same patients (Figure 4F). These findings indicate that some subtype-selective labeling 

phenotypes translate from cell lines to primary human tumors.

Cells with KRAS mutations at Q61 have low CitG6m0, and KRAS G13 mutants display a 

similar trend (Figure 4A,C,D). KRAS-mutant cells with concurrent loss of function STK11 
mutations have distinct vulnerabilities from cell lines with mutations in KRAS alone (Kim et 

al., 2017; Liu et al., 2013), and tumors with this combination of mutations have enhanced 

aggressiveness (Calles et al., 2015; Ji et al., 2007). We find that cells with concurrent KRAS/
STK11 mutations have low CitG6m0 content, indicating a propensity to supply the TCA 

cycle with glucose carbon (Figure 4E). Re-constituting three co-mutant cell lines with wild-

type STK11 resulted in a small but significant increase in CitG6m0, indicating that STK11 
regulates glucose’s contribution to the TCA cycle (Figure 4G,H), consistent with previous 

studies (Faubert et al., 2014; Kim et al., 2013).

GDRC is associated with an epithelial state and sensitivity to EGFR inhibitors.

The unexpected prominence of GDRC in some NSCLC cells (Figure 2E) prompted us to 

examine orthogonal data for novel associations with this pathway. We used GSEA to 

identify transcriptional programs associated with GDRC, focusing on CitG6m0 and 

CitQ6m5. This yielded positive associations with genes targeted by the epithelial-

mesenchymal transition (EMT)-related transcription repressor ZEB1 (Aigner et al., 2007) 

and negative associations with genes related to resistance to the EGFR inhibitor Gefitinib 

(Coldren et al., 2006) (Figure 5A,B and Figure S5A,B). These associations implied a 

relationship between GDRC and an epithelial phenotype characterized by EGFR signaling. 

Consistent with this idea, reversed-phase proteomics arrays (RPPA) revealed positive 

correlations between GDRC and both beta-catenin and E-cadherin, two components of the 

catenin-cadherin complex that maintains epithelial integrity (Figure 5C). GDRC also 

correlated with EGFR phosphorylation at Y1173 (pY1173), a marker for EGFR signaling 

(Figure 5C). Finally, comparing metabolism to drug sensitivity data (McMillan et al., 2018) 

revealed that GDRC cell lines tend to be sensitive to the EGFR inhibitor Erlotinib; these cell 

lines have low areas under the Erlotinib dose-response curve (AUC) (Figure 5C).

Sensitivity to EGFR inhibitors is predicted by an EMT signature defined by expression of 76 

genes, with mesenchymal cells demonstrating resistance to EGFR inhibitors regardless of 

EGFR mutation status (Byers et al., 2013). Using this signature, we found that cells with 

high GDRC isotopologues were over-represented in the epithelial-like group (Figure 5D and 

Figure S5C). Lac/Glc and Glu/Gln features were similar between the two groups (Figure 

S5C). We selected five GDRC-high and five GDRC-low cell lines for further analysis 

(Figure 5E and Table S3). On western blotting, GDRC-high cells had high E-cadherin and 

low vimentin levels, consistent with the predicted epithelial state (Figure 5F). They also had 

abundant EGFR Y1068 phosphorylation, despite the fact that only two (H1650 and 

HCC1935) had detectable EGFR mutations (Figure 5G). In GDRC-low lines, Y1068 

phosphorylation was only observed in H1975, one of the two EGFR-mutant lines selected in 
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this class (Figure 5G). We also assessed the correlation between CitG6m0 and E-cadherin at 

the level of gene methylation, mRNA and protein expression and found the best correlation 

with protein expression (Figure S5D).

Phosphorylation of two IDH1 residues, Y42 and Y391, fosters GDRC (Chen et al., 2019). 

Y42 phosphorylation promotes substrate binding and formation of catalytically active IDH1 

dimers, while Y391 phosphorylation promotes cofactor binding. These modifications result 

from a cooperative signaling cascade stimulated by recombinant EGF. The association of 

GDRC with EGFR signaling in our panel prompted us to compare Y42 and Y391 

phosphorylation between cells with high and low GDRC-dependent citrate labeling. Among 

8 cell lines, all four with high GDRC have prominent phosphorylation of IDH1 Y42 and 

Y391, and all four low-GDRC lines have little phosphorylation of these residues (Figure. 

5H). Because mutating either Y42 or Y391 to phenylalanine reduces IDH1’s ability to 

engage in GDRC (Chen et al., 2019), the data suggest that tonic IDH1 phosphorylation in 

cells with high EGFR signaling may contribute to GDRC.

To exploit the potential of metabolic features as predictors of EGFR inhibitor sensitivity, we 

fitted a multiple regression model starting from a feature set that includes GDRC-related 

isotopologues (CitG6m0 and CitQ6m5); epithelial/mesenchymal classification based on 

EMT signature clustering; and the RPPA features EGFR-pY1173, E-cadherin and beta-

catenin. Then we performed stepwise feature selection, with the model selected using 

Akaike information criterion (AIC). Features remaining in the final multiple regression 

model included CitG6m0, EGFR-pY1173 and E-cadherin, with significant p-values for 

CitG6m0 and EGFR-pY1173 (Figure 5I, Model 1 and Figure 5J). Importantly, when the 

EMT-signature binary classification feature was added to the model, the p-value for 

CitG6m0 remained significant, indicating that this metabolic feature predicts EGFR 

inhibitor sensitivity independently of features based on gene and protein expression (Figure 

5I, Model2).

De novo serine synthesis is associated with pemetrexed sensitivity.

Serine has garnered increasing attention because of its roles in methionine, lipid, folate and 

nucleotide metabolism, all of which are important in cancer cells (Mattaini et al., 2016). In 

de novo serine synthesis, [U-13C]glucose is converted to serine m+3 via the glycolytic 

intermediate 3-phosphoglycerate (3PG). Serine m+3 is converted to glycine m+2 by serine 

hydroxymethyltransferases (SHMT), resulting in a high correlation between serine SerG6m3 

and GlyG6m2 isotopologues (Figure 6A). A subset of these data were used to discover 

regulation of serine biosynthesis by NRF2 and ATF4 (DeNicola et al., 2015). Indeed, many 

transcripts involved in serine biosynthesis correlate with SerG6m3 (Figure S6A).

A search for correlations between SerG6m3 and therapeutic sensitivities (Table S4) 

identified the antifolate pemetrexed (Figure 6B). This was interesting because pemetrexed 

inhibits several folate-dependent reactions from one-carbon metabolism and hence impacts 

nucleotide biosynthesis (Curtin and Hughes, 2001; Daidone et al., 2011; Ducker and 

Rabinowitz, 2017) (Figure 6C). We selected 5 pemetrexed-sensitive/SerG6m3-high cell lines 

and 5 pemetrexed-resistant/SerG6m3-low cell lines for further characterization (Figure 6D) 

and validated their pemetrexed sensitivities (Figure 6E). Despite the link between serine 
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metabolism and nucleotide synthesis, SerG6m3 was not associated with cell proliferation or 

BrdU staining (Figure S6B,C). Nutrient consumption and secretion were no different 

between the groups (Figure S6D–G), and no differences were observed in intracellular serine 

content or extracellular serine uptake (Figure S6H–J). These findings link serine 

biosynthesis to pemetrexed sensitivity through mechanisms that cannot fully be explained by 

cell proliferation rates or simple markers of nutrient exchange.

To assess whether SerG6m3 also predicts pemetrexed sensitivity in vivo, three cell lines (two 

with high and one with low SerG6m3) were implanted into nude mice. Pemetrexed 

treatment was initiated when the mice developed palpable tumors. Pemetrexed reduced 

tumor growth in both SerG6m3-high cell lines, but not in the SerG6m3-low cell line (Figure 

6F–H).

Discussion

A growing appreciation of metabolic heterogeneity in cancer has increased the need to 

identify mechanisms that regulate metabolic preferences and dependencies in tumors. Many 

relationships between cancer genotypes and metabolism have been established with isogenic 

systems in which gain or loss of a single mutation is used to identify metabolic differences. 

These approaches are productive but cannot fully account for the impact of germline and 

somatic genetic heterogeneity on metabolism. Combining even two mutations can 

dramatically alter metabolism compared to either mutation alone. We performed an unbiased 

assessment of metabolism in a large panel of genetically diverse cell lines cultured under 

identical conditions. Therefore, metabolic features associated with a characteristic of interest 

(e.g. a single mutation) are by definition robust enough to withstand the mitigating effects of 

private differences.

A few limitations warrant mention. We used 21% oxygen and conventional media with a 

non-physiological nutrient composition. Recent studies have demonstrated the benefits of 

media formulated to mimic physiological conditions (Cantor et al., 2017; Vande Voorde et 

al., 2019). We used conventional culture so that we could integrate metabolic data with 

orthogonal data obtained under these same conditions. We are encouraged that several 

predictions arising from our phenotyping were validated in vivo. But studies in physiological 

media would have added value. Also, complementing our dataset with metabolomics would 

likely produce additional associations, as observed in other profiling studies (Li et al., 2019; 

Ortmayr et al., 2019).

NSCLC cells are remarkably diverse in the rate of glucose utilization and pathways supplied 

by glucose. Although the average Lac/Glc ratio was 1.35, the ratio was as low as 0.3 and 

varied 8-fold across the panel. Because this ratio reports the fraction of glucose carbon 

secreted as lactate, it is a surrogate for the Warburg effect. The Warburg effect is therefore 

not a universal feature of these cells, and Lac/Glc correlated only weakly with growth rates. 

Glucose consumption did not correlate with the growth rate, consistent with a previous study 

(Jain et al., 2012), but it did correlate with glutamine consumption, emphasizing the 

cooperative utilization of these two major nutrients in cancer cells.
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The TCA cycle supports growth by producing intermediates for bioenergetics and 

biosynthesis. Despite the consistency of culture conditions, we observed diverse forms of the 

TCA cycle. All cell lines had extensive anaplerotic input into the TCA cycle, but no single 

anaplerotic pathway correlated with growth rates. As expected, each cell line demonstrated 

blending of multiple forms of the TCA cycle, and it will be interesting to study whether this 

reflects multiple activities operating concurrently in the same cell or heterogeneity across the 

population in the dish (e.g. different metabolic activities regulated by cell cycle stage). The 

most dominant pattern was the use of glucose as a precursor for acetyl-CoA and glutamine 

as a precursor for α-ketoglutarate, as indicated by the high CitG6m2 and CitQ6m4 fractions. 

Pyruvate carboxylation was also detected and was studied this pathway in detail because it is 

activated in human NSCLC (Sellers et al., 2015). Isotopologue signatures related to PC 

predicted both PC expression and dependence on PC for colony formation. Reductive 

metabolism of glutamine was surprisingly prominent given the evidence that this pathway is 

induced by metabolic stressors that suppress acetyl-CoA levels or electron transport chain 

function, none of which were anticipated in NSCLC cells growing in nutrient-replete 

conditions. A lack of strong correlations between GDRC labeling and either lactate secretion 

or the Lac/Glc ratio suggested that GDRC was not stimulated by major defects in oxidative 

metabolism in these cells.

Phenotyping these well-annotated cell lines provides the opportunity to observe metabolic 

features in aggregate and discover factors contributing to metabolic heterogeneity. 

Interestingly, while we identified some correlations between metabolic features and single 

oncogenic drivers, we found more with orthogonal data including DNA methylation, 

transcriptomics and protein expression. This implies that cell-autonomous control of cancer 

metabolism arises from the cumulative effects of cell lineage, epigenetics, the constitutional 

genome and multiple somatically-acquired mutations rather than from single drivers. Among 

the detected associations, cells with co-occurring mutations in KRAS and STK11 displayed 

higher overall labeling in citrate from glucose (i.e. lower CitG6m0) than the rest of the 

panel. This association was stronger than associations with either mutant KRAS or mutant 

STK11 alone, indicating metabolic cooperativity between these mutations as reported 

elsewhere (Kim et al., 2013; Kim et al., 2017; Liu et al., 2013). In contrast, EGFR mutations 

were associated with GDRC, indicating a different strategy to produce TCA cycle 

intermediates than in KRAS/STK11 co-mutants. We also noted a high content of unlabeled 

citrate in EGFR-mutant tumors from NSCLC patients subjected to intraoperative 

[U-13C]glucose infusions, increasing our confidence in the translational potential of the data 

set. To our knowledge, this is the first example of a correlation between an oncogenic driver 

and 13C labeling features that translates from cell culture to human tumors. Note that none 

of these patients were infused with 13C-glutamine, so it remains to be seen if GDRC is 

active in EGFR-mutant NSCLCs in patients.

In some cases, metabolism correlated with therapeutic sensitivity. GDRC was accompanied 

by enhanced sensitivity to EGFR inhibitors, as predicted by the epithelial signatures in these 

cells. Importantly, GDRC correlated with sensitivity to EGFR inhibition even in cells 

lacking canonical EGFR mutations. This is potentially important because intra-operative 

isotope infusions in cancer patients may support in situ detection of metabolic phenotypes 

relevant to therapy. Predicting sensitivity to conventional chemotherapy is challenging, as we 

Chen et al. Page 11

Mol Cell. Author manuscript; available in PMC 2020 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lack markers to guide deployment of these agents. Metabolic phenotyping may provide such 

markers. A recent study identified a relationship between sensitivity to the antifolate 

methotrexate and histidine catabolism, which consumes tetrahydrofolate and renders cells 

susceptible to the impact of methotrexate on folate pools (Kanarek et al., 2018). We find that 

sensitivity to pemetrexed, another antifolate, is predicted by de novo serine/glycine synthesis 

from glucose. This association may arise from the fact that many of the reactions supplied 

by serine’s contribution to the folate pool are thought to be inhibited by pemetrexed.

Metabolic phenotypes arise from the complex interplay of factors intrinsic and extrinsic to 

cancer cells. It is remarkable that the cell lines studied here had such heterogeneous 

phenotypes despite our use of uniform culture conditions to isolate cell-autonomous 

regulation of metabolism. Our findings emphasize that diverse metabolic activities can 

support rapid proliferation of malignant cells. We anticipate that defining cell-autonomous 

metabolic diversity will contribute to ongoing efforts to understand metabolic phenotypes of 

human tumors in vivo.

STAR Methods

Lead Contact and Materials Availability

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact Ralph J. DeBerardinis 

(Ralph.DeBerardinis@UTSouthwestern.edu).

Experimental Model and Subject Details

Cell culture—Most NSCLC lines used in this study were part of the NCI and HCC 

(Hamon Cancer Center at UT Southwestern) series, with the exception of A549, Calu-1, 

Calu-6 (American Type Culture Collection; ATCC), DFCI024, DFCI032 (Dana Farber 

Cancer Institute, courtesy of Pasi Janne) and PC-9 (Johns Hopkins University School of 

Medicine, courtesy of Bert Vogelstein). Cell lines were DNA fingerprinted with PowerPlex 

Fusion24 (Promega). All cell lines were cultured in Roswell Park Memorial Institute 

medium (RPMI) with 10 mM glucose and 2 mM glutamine supplemented with 5% FBS 

(Sigma). Nutrient deprivation and metabolic labeling experiments were conducted in RPMI 

supplemented with 5% dialyzed FBS (Hyclone), sodium bicarbonate (42.5 mM), HEPES 

(25 mM), Penicillin/Streptomycin (10 U and 10 μg/mL, respectively) and glucose/glutamine 

as indicated.

Xenograft studies—Female NOD/SCID mice were obtained from Wakeland laboratories, 

UT Southwestern Mouse Breeding Core (Dallas, TX) at approximately 6-8 weeks of age. 

1x106 cancer cells were injected subcutaneously into the shaved right flank and monitored 

by calipers (v = π/6*|*w2; v, volume; l, length, w, width). All mouse procedures were 

performed in compliance with UT Southwestern IACUC policies.

Method Details

Stable Isotope labeling—Dishes of 80–90% confluent cells were rinsed twice in PBS, 

then overlaid with medium containing the isotopically enriched nutrient and cultured for 6 
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hours or 24 hours. Note that 4mM glutamine was used because some cell lines depleted the 

medium of glutamine within 24h if 2mM was used. For analysis of intracellular metabolites 

by GC-MS, cells labeled in 6-cm dishes were rinsed in ice-cold normal saline and lysed with 

three freeze-thaw cycles in cold 50% methanol. The lysates were centrifuged to remove 

precipitated protein, a standard (50 nmols of sodium 2-oxobutyrate) was added, and the 

samples were evaporated and derivatized by trimethylsilylation (Tri-Sil HTP reagent, 

Thermo Scientific). Three microliters of the derivatized material were injected onto an 

Agilent 6970 gas chromatograph equipped with a fused silica capillary GC column and 

networked to an Agilent 5973 mass selective detector. Retention times of all metabolites of 

interest were validated using pure standards. The abundance of the following ions was 

monitored: m/z 245-249 for fumarate, m/z 335-339 for malate, m/z 219-222 for lactate, m/z 

306-309 for serine, m/z 276-278 for glycine, and m/z 465–471 for citrate.

Nutrient utilization rates—To measure metabolic rates, one million cells were plated 

into 6-cm dishes and cultured until 90% confluent. At time 0, the cells were rinsed in PBS, 

fed with 1.5 mL of RPMI with 10 mM glucose, 2 mM glutamine and dialyzed FBS, and 

cultured. End-point experiments proceeded for 7 hours, then the medium was collected and 

analyzed for metabolite abundance. Concentrations of glucose, lactate, glutamine, and 

glutamate were determined from 0.6-mL aliquots of medium using an automated 

electrochemical analyzer (BioProfile Basic-4 analyzer; NOVA). Metabolic rates were 

determined by normalizing absolute changes in metabolite abundances to final protein 

content. For estimated metabolic rates normalized to the average protein content over the 7 

hour culture period, we assumed exponential growth throughout the 7 hour period and 

derived an average protein content from the Day3/Day1 and Day5/Day1 cell proliferation 

data.

Cell growth and nutrient dependence assay—To monitor proliferation, cells were 

seeded at 5,000/well in 48-well plates. The next day, cells were replenished with 0.5 ml of 

test medium (complete RPMI, RPMI without glucose or RPMI without glutamine). After 1, 

3 and 5 days, DNA content was determined by adding 0.25 ml water to each well and 

freezing at −80°C for 2 hr. The cells were then warmed to room temperature, and 0.5 ml of 

0.1 μg/ml Hoechst 33258 in TNE buffer (2 M NaCl, 10 mM Tris-HCl [pH 7.4], and 1 mM 

EDTA) was added. The plate was incubated in the dark at room temperature, and O.D. at 

350 nm was measured using a plate reader. Cell proliferation and survival measurements 

were made by normalizing DNA content of cells from Day 3 and Day 5 to that of Day 1.

Protein expression—Whole-cell lysates were prepared in RIPA buffer and quantified 

using the BCA protein assay (Thermo Scientific). Protein was separated by SDS/PAGE and 

transferred to a PVDF membrane. The membrane was blocked overnight at 4°C in PBS with 

Tween 20 (PBST) containing 5% milk, then probed with primary antibodies overnight at 

4°C.

LKB1 over-expression—The MigCD8t control and LKB1 overexpression plasmids were 

kindly provided by Dr. Russell Jones (Van Andel Research Institute). Selected cell lines 

were infected with supernatants containing MigCD8t or MigCD8t-LKB1 retrovirus. Three 
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days later, flow cytometry was used to enrich for infected cells expressing the CD8t surface 

marker (Nicolas Loof, the Moody Foundation Flow Cytometry Facility of UTSW).

RNA Interference—shPC was cloned into pLKO.1 backbone purchased from Open 

Biosystems. Lentiviral particles were produced by co-transfecting 293FT cells with the 

lentiviral construct, pCMVΔR8.91, and pMD2.G using polyjet (SignaGen Laboratories). 

Virus-containing supernatant was collected 2 days after the transfection and used to infect 

cells. Puromycin (1 μg/mL) was added 2 days after infection, and selection was continued 

for 7 days before any experiments.

Soft agar colony formation assay—1000 cells were plated into 12-well plates with 

0.33% Noble agar (Difco). After 2 weeks, the cultures were stained with 0.05% crystal 

violet in 20% methanol. Colonies >200 μm in diameter were counted.

Immunoprecipitation—Cell lysates (1–2 mg) were incubated with anti-IDHl antibody 

overnight at 4°C. After incubation, protein G-Sepharose was used for precipitation for 2 

hours. The beads were then washed 3 times with 1× TBS and eluted by boiling in SDS 

sample buffer for Western blotting.

BrdU staining—Cells were cultured with 10μΜ BrdU for one hour and fixed in 70% 

ethanol at −20°C. After washing with phosphate/citric buffer (40ml Na2HPO4 with 4ml 

0.1M citric acid), the cells were incubated with anti-BrdU antibody for one hour, then 

stained with propidium iodide (PI). For PI/RNase staining, cells were incubated with 0.5 mL 

of PI/RNAse staining buffer (BD Pharmingen) at 25°C for 15 minutes, then analyzed by 

flow cytometry.

Free amino acid concentration quantitation—Consumption and secretion of amino 

acids were measured by HPLC (Hitachi; L8900). One million cells were cultured in 6cm 

dishes and switched to RPMI medium with dialyzed FBS for 7 hours. Medium samples from 

before and after culture were combined 1:1 with 1M sulfosalicylic acid, followed by 

centrifugation at 10000 rpm for 15 min at 4°C. The supernatant was then combined with an 

AEC standard (1:10 by volume) and analyzed by HPLC.

Pemetrexed sensitivity assay—Selected cell lines were treated with different doses 

(0.01, 0.05, 0.1 and 1 μM) of pemetrexed for 3 days. A standard 4-parameter log-logistic fit 

between the survival rate and the dosage was generated by the “drm” function from the R 

package “drc” (Ritz et al., 2015). Areas under the fitted dose response curve were calculated 

and compared by t-test.

Quantification and Statistical Analysis

All of the statistical details of experiments can be found in the figure legends, results and 

code deposited to GitHub. Majority of the statistical analyses were conducted in R (Team, 

2010).
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Normalization of nutrient utilization to average protein content—If the initial cell 

number is n0 and the doubling time is a, assuming exponential growth, the cell number at 

time t can be calculated by the following equation:

n(t) = n0 ⋅ 2t /a

Our dataset includes two measurements that estimate proliferation rates, Day3/Day1 and 

Day5/Day1. Doubling times inferred from both measurements were averaged. Nutrient 

utilization rates were reestimated to account for drift in cell number during the 7-hr growth 

using this doubling time estimate (by multiplying a factor of n(t)
(n(t) + n0) 2  to normalize each 

rate to the average rather than final protein content). This average protein content normalized 

nutrient utilization rates were compared to the final protein content normalized nutrient 

utilization rates in Figure S1A.

Stable isotope labeling data analysis—The measured distribution of mass 

isotopologues was corrected for natural abundance of 13C using Metran (Yoo et al., 2008). 

Results from multiple experiments were averaged. Fractional carbon contribution was 

calculated by FC =
Σi = 0

n i ⋅ si
n , where n is the number of carbon atoms in the metabolite of 

interest, i is the number of 13C nuclei in an isotopologue for that metabolite, and s is the 

relative fraction of each isotopologue.

Correlation and partial correlation—R package “Hmisc”(Frank E Harrell Jr, 2018) 

was used for calculating correlations and “ppcor”(Kim, 2015) was used for calculating 

partial correlations, and R package “corrplot” was used for correlation matrix visualization 

(Simko, 2017).

Gene set enrichment analysis (GSEA) and single sample GSEA (ssGSEA)—
The C2 (curated gene sets) library was downloaded from Molecular Signatures Database 

(MSigDB). GSEA was performed in continuous mode with the Spearman rank correlation as 

the ranking metric. The analysis used an R script adapted from R-GSEA. Scores from 

ssGSEA were calculated by implementing the “gsva” function from the R package “GSVA” 

with method specification as “ssgsea” (Hanzelmann et al., 2013).

Model based classification of pemetrexed sensitive and resistant cell lines—R 

package “mclust” (Scrucca et al., 2016) was used for classification of pemetrexed sensitive 

and resistant lines based on Gaussian mixture model clustering.

Stepwise regression—Feature selection for the Erlotinib sensitivity prediction model 

was performed by stepwise regression using “stepAIC” function with “both,” as directed by 

the R package “MASS”. Coefficient tables from multiple regression models were visualized 

with the “tab_model” function from the R package “sjPlot”.
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Web Application—Web application was written in R Markdown (Grolemund, 2018; 

Iannone, 2019). Code has been deposited to https://github.com/cailing20/

NSCLC_Metabolism_web/.

Other Statistical Analyses—Hierarchical clustering, two-sided two-sample t-tests, two-

sided two-sample Kolmogorov-Smirnov (K-S) test and density calculations were performed 

using the “stats”(Team, 2010) package in R. Heatmaps were generated by R packages 

“heatmap3”(Shyr, 2015) and “ComplexHeatmap” (Gu et al., 2016). R packages “ggplot2”

(Wickham, 2016), “GGally”(Barret Schloerke, 2018), “ggpubr”(Kassambara, 2018), 

“ggrepel”(Slowikowski), “cowplot”(Wilke, 2019) and “gridExtra”(Auguie, 2017) were also 

used for visualization. R package “RColorBrewer”(Neuwirth, 2014) was used for color 

specification. For multiple comparison adjustment, beta-uniform mixture model was fitted 

by the “Bum” function in R package “ClassComparison”(Coombes, 2018) and the false 

discovery rate (FDR) was set at 0.05 to determine the number of significant p-values. 

Enhanced visualization of dendrogram was generated by “fviz_dend” function from R 

package “factoextra”(Mundt, 2017). R package “openxlsx”(Walker, 2018) was used for 

reading and writing data.

Data and Code Availability—The datasets and code generated during this study are 

available at GitHub: https://github.com/cailing20/NSCLC_Metabolism

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Cell-autonomous metabolic diversity is reported in over 80 lung cancer cell 

lines

• Heterogeneous metabolic phenotypes support lung cancer cell growth

• Relating metabolic and molecular data uncovers new aspects of metabolic 

regulation

• Some metabolic features predict sensitivity to chemotherapy and targeted 

agents
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Figure 1. Experimental design and diversity of nutrient utilization in NSCLC cell lines
(A). Schematic of design for metabolic profiling and association analyses. See also Table S1.

(B). Scatter plots and density plots for nutrient utilization features, with Pearson correlation 

coefficients provided. ***, p<=0.001; **, p<=0.01; *, p<=0.05.

(C). Kernel density estimation of correlation coefficient distribution from the pairwise 

correlations between Lac/Glc and ssGSEA scores from 29 hypoxia-related genesets. The 

hypoxia related genesets were selected from C2-CGP gene sets in MSigDB with the 

criterion that the geneset name contained “HYPOXIA” but not “DN” (short for “Down”).
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(D). Scatterplot showing the positive correlation between Lac/Glc and ssGSEA scores 

derived for “WINTER_HYPOXIA_UP” signature.

(E). Distribution from the pairwise correlation coefficients between Lac/Glc and 84 genes 

from the “WINTER_HYPOXIA_UP” gene set. Glycolytic genes (ALDOA, PGK1, TPI1, 
PGAM1, GAPDH and PFKFB4) from the “REACTOME_GLYCOLYSIS” geneset and 

LDHA are indicated by black and red spots.

(F). Scatterplot showing the negative correlation between Lac/Glc and neuroendocrine 

scores.

(G). Pearson correlation between glutaminolytic rate (Glu/Gln) and expression of GLS and 

GLS2.

(H). Correlation heatmap revealing pairwise Pearson correlations amongst metabolic 

features from nutrient utilization, cell growth and nutrient dependence.

(I and J). Comparisons of partial correlations and pairwise correlations for Lac, Glc and 

Day5-G (I) or Lac, Glc and Gln (J).

Abbreviations: Lac, lactate; Glc, glucose; Gln, glutamine; Glu, glutamate.
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Figure 2. Differential pathway utilization inferred by mass isotopologue distributions
(A and B). Schematics of representative isotopologues generated from [U-13C]glucose or 

[U-13C]glutamine labeling through glutamine-dependent anaplerosis (A) or glutamine-

dependent reductive carboxylation (B).

(C). Violin plots showing distribution of citrate isotopologues from different tracers and 

different labeling durations. See also Figure S2.

(D and E). Scatterplots showing that enrichment of signature isotopologues produced from 

two different tracers for the same metabolic pathway (glutamine-dependent anaplerosis in D 
and glutamine-dependent reductive carboxylation in E) are highly correlated with each 

other. Figure title provides Pearson correlation coefficient and p-value.
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(F). Distribution of the sum of glutamine and glucose fractional carbon contribution into 

different metabolites.

(G). Dendrogram of all metabolic features from hierarchical clustering with absolute 

Pearson correlation-based distance using Ward’s minimum variance method. The branches 

were arbitrarily colored.

Abbreviations: Cit, citrate; Fum, fumarate; Mal, malate; Lac, lactate; Ser, serine; Gly, 

glycine.
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Figure 3. Inferring pyruvate carboxylase contribution from enrichment of malate isotopologues
(A and B). Signature isotopologues produced from pyruvate carboxylation with 

[3,4-13C]glucose (A) or [U-13C]glucose (B) labeling.

(C). Scatter plot showing correlation between m+1 citrate from [3,4-13C]glucose and m+3 

malate from [U-13C]glucose. Cell lines selected for PC dependence testing in (D) are 

indicated with labels. Correlation coefficient and p-value from Pearson correlation are 

provided in title.
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(D). Effect of PC silencing on colony formation in cells lines predicted to have high (red) or 

low (blue) PC-dependent anaplerosis. Data are mean ± SEM. Statistical significance based 

on t-test, ***p < 0.005.

See also Figure S4.
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Figure 4. Associations between oncogenotypes and citrate mass isotopologues
(A). Heatmap with hierarchical clustering of cell lines and citrate mass isotopologues from 

[U-13C]glucose labeling for 6h. Clustering was based on Ward’s minimum variance method. 

Relevant oncogenotypes are indicated.

(B-E). Cumulative distribution function plots showing different levels of CitG6m0 in cell 

lines with EGFR exon 19 deletion (B); KRAS missense mutation of the 13th codon (C); 

KRAS missense mutation of the 61st codon (D); and concurrent KRAS/STK11 mutation (E) 

compared to the rest of the cell lines (p-values based on K-S test). See also Table S3.

(F). Left, cumulative distribution function plots comparing citrate m+0 fractions between 

tumor fragments with or without EGFR mutations. Right, cumulative distribution function 

plots of the adjacent lung samples from the same patients. We compared 14 tumor fragments 

from 6 patients with EGFR mutations to 40 tumor fragments from 22 EGFR WT patients, 

whereas for the adjacent lung, we compared 8 fragments from 6 patients with EGFR 
mutations to 22 fragments from 22 EGFR WT patients. Patient origins of the EGFR mutant 

fragments are indicated by different colors inside the circles. (p-values based on K-S test)

(G). Western blot for LKB1 (encoded by STK11) in three cell lines with co-mutant KRAS 
and STK11. OE, over-expression.

(H). Re-expression of LKB1 in cell lines with co-mutant KRAS and STK11 increases 

CitG6m0 after labeling with [U-13C]glucose. Data are mean ± SEM.
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Figure 5. Reductive carboxylation is associated with an epithelial state and is enriched in cell 
lines sensitive to EGFR inhibitors
(A-B). Gene Set Enrichment Analysis (GSEA) identified CitG6m0 as positively correlated 

with ZEB1 target genes (A) and negatively correlated with Gefitinib resistance genes (B).

(C). Scatterplot and pairwise Pearson correlation among GDRC metabolic features 

CitG6m0, CitQ6m5; RPPA features beta-catenin, E-cadherin and EGFR-pY1173; and 

compound sensitivity feature Erlotinib AUC (higher area under the dosing curve represents 

Chen et al. Page 28

Mol Cell. Author manuscript; available in PMC 2020 December 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



higher resistance). The color scheme for points in the scatterplot is explained in the legend 

for (E). ***, p<=0.001; **, p<=0.01; *, p<=0.05.

(D). Heatmap with hierarchical clustering of samples and EMT signature genes. Clustering 

was based on Ward’s minimum variance method. The CitG6m0 and CitQ6m5 fractions are 

indicated by the color scale. Higher levels of GDRC metabolic features were observed for 

the epithelial cluster.

(E). Scatter plot of CitG6m0 and CitQ6m5 with EGFR mutation status marked by different 

symbols and EGFR inhibitor sensitivity indicated by different color and shapes. Five 

GDRC-high cell lines (magenta lettering) and five GDRC-low cell lines (green lettering) 

were selected for further characterization. These cell lines are also indicated by coloring in 

(C).

(F-G). Validation of EMT status and EGFR activation by western blot in 10 selected cell 

lines. In (F), the epithelial marker E-cadherin is expressed in GDRC-high cell lines, whereas 

the mesenchymal marker vimentin is expressed GDRC-low cell lines. In (G), p-EGFR 

(Y1068) indicative of EGFR activation is more prominent in GDRC-high cell lines.

(H). Higher phosphorylation of IDH1 on Y42 and Y391 in cell lines with high GDRC.

(I). Coefficients and p-values from multiple regression models predicting inhibitor 

sensitivity from different feature sets. Model 1 was obtained from stepwise feature selection 

based on Akaike information criterion (AIC) with input features including CitG6m0, 

CitQ6m5, EGFR-pY1173, E-cadherin, beta-catenin and EMT class. Model 2 adds the EMT-

signature (EMT class) into Model 1. Note that p-values for CitG6m0 are significant in both 

models while controlling for the RPPA features or gene expression-derived EMT feature.

(J). Scatterplot of fitted values from model 1 in (I) and the measured value (Erlotinib AUC).

See also Figure S5 and Table S4.
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Figure 6. De novo serine synthesis from glucose is associated with sensitivity to pemetrexed.
(A). Scatterplot showing positive correlation between SerG6m3 and GlyG6m2. Correlation 

coefficient and p-value from Pearson correlation are provided in the title.

(B). Drug sensitivity correlations with SerG6m3. −log10 (p-values) from Pearson 

correlations are plotted and the hits ranked by decreasing statistical significance. The dashed 

line demarcates the nominal p-value cut-off of 0.05 after −log10 transformation, and the 

darkly-colored bars denote statistical significance after multiple comparison controlled by 

beta uniform mixture modeling of p-values. See also Table S4.

(C). Schematic of serine biosynthesis feeding into one-carbon metabolism. Metabolites are 

in black, serine de novo synthesis enzymes are in blue and enzymes reportedly targeted by 

pemetrexed are in red.

(D). Relationship between SerG6m3 and pemetrexed IC50, and selection of cell lines for 

further characterization. Note that almost all the cell lines with high SerG6m3 are sensitive 

to pemetrexed. Cell lines are colored based on pemetrexed sensitivity. 5 pemetrexed 
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sensitive cell lines with high SerG6m3 and 5 pemetrexed resistant cell lines with low 

SerG6m3 were selected for further characterization.

(E). Validation of pemetrexed sensitivity between selected cell lines with high and low 

SerG6m3 fractions. P-value from t-test is displayed in the title. Each dot represents average 

from triplicates for a single cell line; error bars denote mean ± SD for each group. See also 

Figure S6.

(F-H). In vivo testing of pemetrexed sensitivity in xenograft mouse models. PC-9 (F) and 

H2009 (G), cell lines sensitive to pemetrexed in culture, are also sensitive to pemetrexed in 

vivo, whereas the pemetrexed-resistant cell line H2882 (H) retains this resistance in vivo. 

The arrow indicates the time when pemetrexed therapy was initiated. Data are mean ± SEM. 

Statistical significance at each time point was determined by one-way ANOVA. ***, 

p<=0.001; **, p<=0.01. 4-5 mice were used for each treatment condition.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Actin Cell signaling 4970S

Cyclophilin B Proteintech 11607-1-AP

LKB1 Cell signaling 3047S

E-cadherin Cell signaling 3195P

Vimentin Cell 
Signaling

5741P

p-EGFR (Y1068) Cell signaling 3777P

Brdu ThermoFisher BDB347583

IDH1 Shanghai 
Genomics, 
Inc.

N/A

p-IDH1 (Y42) Shanghai 
Genomics, 
Inc.

N/A

p-IDH1 (Y391) R & D 
Systems

Cat# MAB7049

Chemicals, Peptides, and Recombinant Proteins

pemetrexed (cell line validation) Medchem 
Express

Cat# HY-10820A

pemetrexed (xenograft validation) Eli Lilly N/A

[U-13C] glucose Cambridge 
Isotopes

Cat# CLM-1396

[3,4-13C] glucose Cambridge 
Isotopes

CLM-6750

[U-13C] glutamine Cambridge 
Isotopes

CLM-1822

Puromycin Sigma Cat# P8833

Critical Commercial Assays

Pierce™ BCA Protein Assay Kit ThermoFisher Cat# 23225

Deposited Data

NSCLC cell line microarray data (Kim et al., 
2016)

GEO: GSE32036

NSCLC cell line mutation data (McMillan et 
al., 2018)

described in table S4

NSCLC cell line RPPA data This paper described in table S4

NSCLC cell line methylation data (Walter et al., 
2012)

described in table S4

NSCLC cell line Erlotinib sensitivity data (McMillan et 
al., 2018)

N/A

NSCLC cell line Pemetrexed sensitivity data This paper described in table S4

Experimental Models: Cell Lines

NSCLC cell line collection This paper described in table S4

Experimental Models: Organisms/Strains
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REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse: NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJArc UT 
Southwestern

RRID:IMSR_ARC:NSG

Recombinant DNA

pLKO.1 Open 
Biosystems

N/A

pCMVΔR8.91 (Cheng et al., 
2011)

N/A

pMD2.G (Cheng et al., 
2011)

N/A

MigCD8t (Faubert et 
al., 2014)

N/A

MigCD8t-LKB1 (Faubert et 
al., 2014)

N/A

Oligonucleotides

shPC 
(CCGGGCCAAGGAGAACAACGTAGATCTCGAGATCTACGTTGTTCTCCTTGGCTTTTTG)

(Cheng et al., 
2011)

N/A

Software and Algorithms

GC MSD Chemstation Agilent https://
www.agilent.com/en/
products/software-
informatics/massspec-
workstations/gc-msd-
chemstation-software

R Version 3.3.2 R Core Team, 
2016

https://www.r-project.org/

Gene Set Enrichment Analysis (Subramanian 
et al., 2005)

http://
software.broadinstitute.org/
gsea/downloads.jsp

GSVA (Hanzelmann 
et al., 2013)

https://bioconductor.org/
packages/release/bioc/
html/GSVA.html

drc (Ritz et al., 
2015)

https://cran.r-
project.org/web/
packages/drc/index.html

Other

Fetal bovine serum Gemini Bio-
Products

Cat# 100-106

Dialyzed fetal bovine serum Gemini Bio-
Products

Cat# 100-108

Tri-Sil HTP reagent ThermoFisher N/A

Difco™ Noble Agar VWR N/A

ECL Western Blotting Substrate ThermoFisher Cat# 32106

PolyJet™ In Vitro DNA Transfection Reagent SignaGen 
Laboratories

N/A
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