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Abstract

Symbiotic microbes are essential to the ecological success and evolutionary diversification of 

multicellular organisms. The establishment and stability of bipartite symbioses are shaped by 

mechanisms ensuring partner fidelity between host and symbiont. In this minireview, we 

demonstrate how the interface of chemical signals and host structures influences fidelity between 

legume root nodules and rhizobia, Hawaiian bobtail squid light organs and Allivibrio fischeri, and 

fungus-growing ant crypts and Pseudonocardia. Subsequently, we illustrate the morphological 

diversity and widespread phylogenetic distribution of specialized structures used by hosts to house 

microbial symbionts, indicating the importance of signal-structure interfaces across the history of 

multicellular life. These observations, and the insights garnered from well-studied bipartite 

associations, demonstrate the need to concentrate on the signal-structure interface in complex and 

multipartite systems, including the human microbiome.
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Introduction

The diversity and complexity of plants and animals has been shaped, at least in part, through 

the formation of beneficial associations with symbiotic microbes [1]. The importance of 

beneficial symbioses in the evolution of plants and animals is illustrated by the virtual 

ubiquity of symbiotic microbes in aiding digestion across metazoans and by many plants 

engaging in mutualisms with mycorrhizal fungi. Despite the critical role symbiotic microbes 

play in shaping the biology of their hosts, our understanding of the formation, maintenance, 

and codiversification of symbiotic associations is limited, and largely informed by our 

understanding of a relatively small number of symbioses.
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Symbiotic associations, by definition, are interactions that involve two or more species 

living together in an intimate association. Thus, the host-microbe interface—where the host 

and symbiont interact directly and exchange complex chemical signals—is fundamental for 

the establishment and maintenance of the symbiosis. The importance of this interface has 

been demonstrated through extensive studies of several model bipartite symbiosis, where 

high host specificity of single symbiont strains greatly facilitates studying how partner 

fidelity is shaped by chemical signaling and host physiology, behavior, and morphology. 

Herein, we illustrate the importance of the host-microbe interface in shaping the 

establishment and maintenance of symbiosis by reviewing three well-studied symbiotic 

systems involving elaborate structures: legume root nodules and rhizobia, Hawaiian bobtail 

squid light organs and Allivibrio fischeri, and fungus-farming ant crypts and 

Pseudonocardia. Finally, we document the widespread distribution of convergently evolved 

specialized structures for maintaining microbial symbionts across animals and plants and 

argue that deeper understanding of the general principles of symbiosis are possible through 

determining the chemical and physical underpinnings that shape the interface between hosts 

and symbiotic microbes.

Partner fidelity is maintained through cognate signal exchange in the 

legume root nodule-rhizobia symbiosis.

Many legumes acquire nitrogen through symbiosis with nitrogen-fixing rhizobia, which are 

housed in specialized structures called root nodules (Figure 1A). These structures 

accommodate the rhizobial symbionts in an anoxic environment suitable for nitrogenase 

activity [2]. During the establishment of this symbiosis, the rhizobia gain access into inner 

cortical root cells through infection threads and are able to directly exchange molecules with 

the legume host [3,4]. Consequently partner fidelity is obtained through legumes screening 

rhizobial symbionts from the milieu of incompatible microbes and potential pathogens 

occupying the rhizosphere [5].

Nodulation begins when legume roots release flavonoids, which function as 

chemoattractants for rhizobia. Notably, different legume species produce distinct suites of 

flavonoids that attract coadapted rhizobial symbionts (recently reviewed in [6]). In turn, the 

coevolved rhizobia respond to the flavonoid signal by activating expression of nod genes to 

produce lipochitooligosaccharides called Nodulation Factors (NFs). NFs stimulate root hairs 

to curl and enclose the rhizobia, leading to infection thread formation, differentiation of the 

rhizobia into bacteroids, and ultimately to root nodulation (reviewed in [7,8]). Rhizobia 

produce specific NFs comprised of variable numbers of N-acetylglucosamine units that may 

be further modified by the addition of acetyl, carbamoyl, methyl, or variable acyl groups to 

the terminal non-reducing sugar and addition of acetate, D-arabinose, fucose, glycerol, or 

sulfate groups to the terminal reducing sugar [9]. Because NFs directly bind to legume 

membrane receptors called NF Receptors 1 and 5 [10,11], incompatible NF-receptor pairs 

will fail to initiate signal transduction in the host legume and prevents incompatible 

symbionts from stimulating nodule formation.
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In addition to providing the rhizobia with an environment for nitrogen fixation, the root 

nodule facilitates the transfer of nodule-specific cysteine-rich (NCR) peptides from the host 

to the symbiont. These peptides are comprised of 30–50 variable amino acids with 4 or 6 

conserved cysteine residues [12]. As many NCR peptides exhibit antimicrobial activity 

against rhizobia in vitro, it was initially thought NCR peptides function solely in rhizobia 

population control [13]. However, mutants of the model legume Medicago truncatula that 

are unable to produce specific NCR peptides form defective root nodules and are unable to 

fix nitrogen [14], suggesting that NCR peptides have additional functions in the symbiosis. 

Indeed, the antimicrobial activity of NCR peptides occurs at high concentrations [15], but at 

sublethal concentrations these peptides alter the bacterial transcriptional program. 

Specifically, NCR peptides activate regulons that are crucial for symbiosis [15,16], essential 

for rhizobia to adapt to the intracellular environment of their legume hosts, and necessary for 

their transition into differentiated bacteroids [17]. Furthermore, variation in NCR peptide 

sequence coupled with observations that differences in peptide regioisomeric and reduction 

state modulate the biological activity of these peptides [15,18]. These various modifications 

bestow NCR peptides with strain-specific activity toward different rhizobial species, which 

is exemplified by the large number of predicted NCR peptides encoded per genome (often 

>100) that control the resulting bacteroid’s morphology and size [19]. In summary, root 

nodule symbioses are formed, and partner fidelity is maintained through production of 

highly variable and specific chemical signals by both legume hosts and their coevolved 

rhizobial symbionts.

Non-specific signals and structural adaptations maintain partner fidelity in 

Hawaiian bobtail squid light organ symbiosis.

The nocturnal Hawaiian bobtail squid (Euprymna scolopes) masks its shadow from 

predators using counterillumination produced by the bioluminescent Gram-negative 

bacterium Aliivibrio fischeri (formerly Vibrio fischeri), which colonize a specialized 

structure called the light organ [20] (Figure 1B). Similar to the legume-rhizobia symbiosis, 

acquisition of A. fischeri by squid is horizontal and dependent upon screening to select 

symbionts from the greater ocean bacterial community [21]. As the bioluminescence 

produced by A. fischeri is essential for camouflage and bacterial colonization of the light 

organ is concomitant with irreversible morphological changes [22], there is strong selective 

pressure for squid to maintain partner fidelity and occlude non-bioluminescent bacteria from 

persistently colonizing the light organ.

Colonization of the light organ by A. fischeri occurs in three phases [23]. In the first phase, 

newly hatched squid pass microbe-laden seawater through their mantle cavity and over a pair 

of mucus-coated organs called the ciliated epithelial fields. In response to peptidoglycan 

derivatives, this appendage secretes mucus stores that facilitate bacterial aggregation on the 

ciliated epithelial fields [24]. During the second phase of colonization, the squid uses ciliary 

motions to draw aggregates toward pores at the base of the ciliated epithelial field and into 

portal ducts [24]. The final colonization phase occurs when A. fischeri migrate in response 

to a gradient of chitin oligosaccharides (chitobiose) produced in the duct and into the deep 

crypts of the light organ [23]. Analogous to bacteroid differentiation in the root nodule, 
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when A. fischeri cells colonize the light organ, they proliferate and undergo transcriptional 

reprogramming [21], which results in the loss of flagella [25] and the release a 

diaminopimelic acid-type peptidoglycan fragment called tracheal cytotoxin and lipid A. 

Together these molecules act as synergistic signals to trigger widespread morphological 

changes that include apoptosis and regression of the ciliated fields [22]. However, it was 

recently discovered that A. fischeri shed outer membrane vesicles (OMVs) containing lipid 

A during proliferation in the light organ, which are devoid of tracheal cytotoxin, yet are 

sufficient to trigger equivalent morphological differentiation in the squid [26,27]. Moreover, 

exposure to OMVs shed by non-symbiotic Gram-negative bacteria induces hemocyte 

migration in squid, which is a hallmark for light organ morphogenesis [26]. Together, the 

non-specific signal exchange between A. fischeri and squid suggest that mechanisms to 

maintain partner fidelity must occur upstream of light organ colonization.

A major determinant of squid colonization specificity is biofilm formation by A. fischeri 
[28,29]. Furthermore, squid also contribute to partner fidelity with A. fischeri through 

specialized mucosal structures that function as intrinsic physical barriers to colonization [30] 

and by generating environmental conditions to select A. fischeri over non-symbiotic bacteria 

[31]. For instance, though peptidoglycan isolated from distantly related bacteria 

indiscriminately induces mucus secretion by the squid, these secretions contain galaxin 

protein EsGal1, which contains an antimicrobial repeat domain that inhibits the growth of 

Gram-positive bacteria in vitro [32]. During colonization bacteria are exposed to nitric oxide 

produced by squid [33]. By producing a flavohemoglobin [34] and an alternative oxidase 

[35] A. fischeri survive oxygen radical stress, which inhibits competing bacteria. In addition, 

nitric oxide may disperse A. fischeri biofilms and prompt entry of A. fischeri into the light 

organ ducts [36]. In specific response to small aggregates of A. fischeri (≤5 cells) the squid 

produce and secrete an enzyme called chitotriosidase into the mucus fields and ducts. This 

enzyme is an endochitinase that produces chitobiose, which primes A. fischeri for 

chemotaxis toward light organ ducts [37]. In conclusion, by coupling signaling to 

specialized structures, the squid maintains partner fidelity with A. fischeri, despite the 

reliance on generic microbial signals, such as lipopolysaccharide and peptidoglycan in the 

microbial world.

Behavioral and structural adaptations maintain partner fidelity in the Attine 

ant-Pseudonocardia symbiosis.

Attine ants engage in an ancient, coevolved, and obligate mutualism with fungi they 

cultivate for food in specialized gardens. The cultivated fungi are host to coevolved and 

specialized fungal parasites in the genus Escovopsis [38], which function as “crop diseases”, 

directly consuming the fungal cultivar [39,40]. To help defend their fungus garden from 

Escovopsis many attine ants engage in a mutualism with bacteria in the genus 

Pseudonocardia, which occur as exosymbionts, growing directly on the cuticle of worker 

ants and queens [41,42] (Figure 1C). Pseudonocardia produce antifungal antibiotics with 

potent and directed antagonistic properties towards Escovopsis [43,44].
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New adults emerge from their pupal casing aposymbiotic, immediately after which 

Pseudonocardia-covered workers inoculate the new adult’s exoskeleton with the symbiont 

[45]. If a new adult worker does not acquire Pseudonocardia within the first two hours after 

emerging, it is no longer able to associate with the exosymbiont [45]. Thus, the specialized 

transmission behavior and narrow temporal window for acquisition helps ensure the 

specificity and maintenance of ant-Pseudonocardia symbiosis, as the chance for introduction 

of other microbial symbionts or opportunists is greatly reduced. Indeed, there is high partner 

fidelity between attine ants and Pseudonocardia: a single strain of Pseudonocardia colonizes 

worker ants and queens within an individual colony [46,47]. Across generations, partner 

fidelity is supported by maternal transmission: Pseudonocardia are transferred vertically 

between generations by colony-founding queens [41]. As predicted by vertical transmission, 

there is high relatedness of Pseudonocardia both between ant colonies within populations as 

well as across species within the attine ant genera [48,49], indicating that this partner fidelity 

is maintained over large evolutionary scales.

Just as with legumes and squid, attine ants have specialized structures and glands associated 

with the ant-Pseudonocardia interface. The structures can be elaborate, including large 

crypts or invaginations in the ant exoskeleton [42,50]. In most genera, the structures include 

tubercles, on which Pseudonocardia directly grow. These tubercles are connected to internal 

glands that provide nutrients for Pseudonocardia growth [51]. Although the chemical signals 

involved at the ant-Pseudonocardia interface remain to be determined, it is clear that this 

interface is critical to the stability and fidelity of the association. First, amino acid based 

stable isotope studies indicating that Pseudonocardia obtain all their nutrition directly from 

ants [51]. Second, by restricting the temporal window for Pseudonocardia acquisition before 

newly emerged adult workers leave the relatively hygienic environment of the fungus 

garden, it is improbable that these ants will become colonized by non-partner 

Pseudonocardia or other non-symbiotic microbes. Though the precise mechanisms are still 

under investigation, this narrow acquisition window is likely controlled by a programed 

disruption of gland cells that feed the Pseudonocardia. Third, ant-Pseudonocardia switching 

experiments have demonstrated significant reductions in Pseudonocardia acquisition in non-

native pairings [52], indicating nutritional and glandular secretion coadaptation at finer 

phylogenetic levels. Fourth, phylogenomic analyses show that the anatomical modification 

to house Pseudonocardia have arisen independently at least three times throughout 

evolutionary history of attine ants [50]. Taken together, the above evidence indicates that the 

maintenance, stability, and fidelity of the ant-Pseudonocardia association is largely mediated 

by the chemical signaling occurring embedded within the interface of the symbiosis on the 

ant exoskeleton.

Conclusion

Signal-structure interfaces between hosts and their microbial symbionts are crucial for 

maintaining legume-rhizobia, squid-A. fischeri, and ant-Pseudonocardia partner fidelity 

(Figure 1). Integral to each symbiosis is the presence of modified morphological structures 

that are essential for maintaining the microbial symbionts and mediating host-symbiont 

signal exchange. Similar to these three well-studied bipartite associations highlighted above, 

elaborate structural modifications for housing microbial symbionts occur across plants and 
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animals (Figure 2). For example, crypt structures that house fungal symbionts—mycangia—

have evolved numerous times within beetles [53] and the crypts that house Pseudonocardia 
in attine ants evolved at least three independent times [50]. Similar to the light organ of 

bobtail squid, an analogous structure has convergently evolved in flashlight fish for 

harboring bioluminescent bacteria, including A. fischeri [54]. Notably, biofilm formation by 

A. fischeri is required for successful colonization of both squid and fish light organs. 

However, production of biofilm exopolysaccharide is regulated by distinct A. fischeri 
lineage-specific pathways, suggesting specific adaptations have arisen to modulate the 

signal-structure interface across different hosts [55]. In addition, there are many more 

examples of structural modifications that house symbiotic microbes across eukaryotes, 

including the gills of shipworms [56] and the vesicles of nematodes [57], . Taken together, 

this suggests host structural modification are critical to the host-microbe interface within 

bipartite symbioses.

Beyond bipartite host-microbe systems, within the widespread occurrence of microbiomes 

associating with diverse hosts, the presence of structural modifications at the host-microbe 

interface are much less recognized. These modifications may not be as well characterized in 

part because the associations between hosts and their microbiomes appear more plastic than 

bipartite associations. In animals, the majority of microbe-host interfaces occur in the 

gastrointestinal tract, which may harbor structural modifications to accommodate microbial 

symbionts that are analogous to the modifications observed in bipartite systems [58-64]. For 

example, both ruminants (Class Mammalia) and the hoatzin (Class Aves) have convergently 

evolved specialized structures, the rumen and the crop, respectively, in their foreguts that 

facilitate the growth of communities of fermentative microbes [65]. Further, examples 

showing concordance between host phylogeny and microbiome composition [66] and co-

diversification of microbial symbionts with their hosts [67] suggest that there are suitable 

frameworks in place for the evolution of signal-structure interfaces in all animals, including 

mammals. It is tempting to hypothesize that the suite of antimicrobial peptides produced by 

the human immune system may be analogous to NCR peptides in modulating the physiology 

of microbes and to promote the growth of specific symbionts, as recently uncovered in 

amphibian systems [68]. Nevertheless, it is clear that signal-structure interfaces influence 

partner fidelity across the tree of life and these interfaces likely occur not only in bipartite 

associations, but also within more complex microbiomes. We believe more concerted efforts 

examining the signal-structure interfaces that occur across phylogenetically diverse host-

microbe associations will help identify the general principles that govern the maintenance, 

stability, and coevolution of symbiotic systems.
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Highlights

• Partner fidelity is essential for establishing and maintaining symbioses

• Exchange of specific signals is one mechanism to ensure partner fidelity

• Signal-structure interfaces evolve to ensure fidelity when using non-specific 

signals

• Specialized structures for accommodating symbionts are widespread

• Signal-structure interfaces are common and may occur within the human 

microbiome
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Figure 1. Signal-structure interfaces in bipartite associations between (A) legumes and rhizobia, 
(B) Hawaiian bobtail squid and A. fischeri, and (C) attine ants and Pseudonocardia.
The arrows indicate the direction of signals from producer to respondent and are arranged 

from top to bottom in each panel to indicate the order of signaling. FLV, flavonoids; NF, 

nodulation factors; NCR, nodule-specific cysteine-rich peptides; PG, peptidoglycan; OMVs; 

outer membrane vesicles; TCT, tracheal cytotoxin; NO, nitric oxide. Image credits: legume, 

rhizobia, and root nodule, Jean Michel Ané; bobtail squid, Mark Mandell; A. fischeri from 

[28]; light organ from Spencer Nyholm, under the terms of the Creative Commons 

Attribution License; attine ant, Ted Schultz; Pseudonocardia, Cameron Currie; ant crypt, 

Cameron Currie.
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Figure 2. Convergent evolution of structures to maintain microbial symbionts across the 
eukaryotic tree of life.
The phylogenetic tree shows the relationships between different eukaryotic lineages. Each 

inset represents an example of a eukaryotic host (left) from the specified lineage that uses a 

specialized structure (right) to establish and maintain a bipartite association with a microbial 

symbiont. Image credits: flashlight fish, Stefan Herlitze; flashlight fish light organ adapted 

from [69] under the terms of the Creative Commons Attribution License; ship worm and gill, 

Margo Haygood; bobtail squid and light organ, Mark Mandel; southern pine beetle, Erich 

Vallery under the terms of the Creative Commons Attribution License; mycangia, Kier 

Klepzig [70]; attine ant, Don Parsons; ant crypt, Cameron Currie; nematode and vesicle 

Stubbendieck et al. Page 14

Curr Opin Microbiol. Author manuscript; available in PMC 2020 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



modified from [71] under the terms of the Creative Commons Attribution License; legume 

and root nodule, Jean Michel Ané.
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