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Abstract

Regulatory monitoring networks are often too sparse to support community-scale PM2.5 exposure 

assessment while emerging low-cost sensors have the potential to fill in the gaps. To date, limited 

studies, if any, have been conducted to utilize low-cost sensor measurements to improve PM2.5 

prediction with high spatiotemporal resolutions based on statistical models. Imperial County in 

California is an exemplary region with sparse Air Quality System (AQS) monitors and a 

community-operated low-cost network entitled Identifying Violations Affecting Neighborhoods 

(IVAN). This study aims to evaluate the contribution of IVAN measurements to the quality of 

PM2.5 prediction. We adopted the Random Forest algorithm to estimate daily PM2.5 concentrations 

at 1-km spatial resolution using three different PM2.5 datasets (AQS-only, IVAN-only, and AQS/

IVAN combined). The results showed that the integration of low-cost sensor measurements is an 

effective way to significantly improve the quality of PM2.5 prediction with an increase of cross-

validation (CV) R2 by ~0.2. The IVAN measurements also contributed to the increased importance 
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of emission source-related covariates and more reasonable spatial patterns of PM2.5. The 

remaining uncertainty in the calibrated IVAN measurements could still cause apparent outliers in 

the prediction model, highlighting the need for more effective calibration or integration methods to 

relieve its negative impact.
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1. Introduction

Fine particulate matter with an aerodynamic diameter less than or equal to 2.5 micrometers 

(PM2.5) has been contributing to a growing disease burden worldwide, causing premature 

mortalities and a variety of morbidities including cardiovascular, cerebrovascular, and 

respiratory diseases (Bose et al. 2015; Burnett et al. 2014; Madrigano et al. 2013; Sorek-

Hamer et al. 2016). Traditionally, ambient PM2.5 exposure assessments have mainly relied 

on measurements from ground monitoring stations. However, as regulatory monitoring is 

designed to support compliance with ambient air quality standards (Hall et al. 2014), it lacks 

spatial coverage to reflect detailed PM2.5 variations at the community level. Even in the 

United States, more than 70% of counties do not have regulatory PM2.5 monitoring so far. 

Exposure misclassification due to insufficient coverage of regulatory PM2.5 monitoring can 

significantly bias the estimated health impacts of PM2.5 (Zeger et al. 2000).

Over the past decade, satellite aerosol remote sensing has emerged as a useful tool to extend 

the coverage of ground PM2.5 monitoring (Bi et al. 2019; Di et al. 2016; Hu et al. 2017; 

Kloog et al. 2011; Ma et al. 2016; Xiao et al. 2017). Instruments aboard polar-orbiting 

satellites such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the 

Multi-angle Imaging SpectroRadiometer (MISR) have been supplying Aerosol Optical 

Depth (AOD) retrievals with global coverage. AOD is a measure of aerosol extinction of the 

solar beam along the entire vertical atmospheric column. The relationship of AOD to 

ground-level PM2.5 depends on factors such as aerosol vertical profile, water content, size 

distribution, and composition (Paciorek et al. 2008; van Donkelaar et al. 2010). Since many 

of these factors are not available at large spatial scales, strategies such as statistical models 

(Hu et al. 2014; Paciorek et al. 2008; Xiao et al. 2017) and chemical transport model 

(CTM)-based scaling approaches (Liu et al. 2004; van Donkelaar et al. 2010) have been 

developed to recover the AOD-PM2.5 relationship. Statistical models have been widely used 

at urban to national scales due to their excellent performance and ability to yield high-

resolution predictions (Chu et al. 2016). Recently, there is a growing trend of using non-

parametric machine learning models such as artificial neural networks (Di et al. 2016; Zou et 

al. 2015) and random forests (Bi et al. 2019; Brokamp et al. 2018; Hu et al. 2017) to better 

estimate PM2.5 based on AOD and other covariates. With these methods, spatiotemporally 

complete estimates of PM2.5 levels in the areas without ground measurements have been 

able to be generated (Di et al. 2016; Just et al. 2015; Ma et al. 2016; Wang et al. 2017).
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Sufficient and well-distributed ground measurements are critical to the successful 

development of statistical PM2.5 models. An unevenly distributed network may limit the use 

of statistical models and the quality of models may significantly decrease as the number of 

ground measurements reduces (Geng et al. 2018b). The validation of prediction results may 

become unreliable when ground measurements are sparse and the actual quality of 

predictions is even unknown in the areas without ground measurements. The requirements 

on ground stations are stricter when PM2.5 has significant variations at a fine scale especially 

in the areas with complex terrain and many local sources (Saide et al. 2011; van Donkelaar 

et al. 2010; van Donkelaar et al. 2006) such as Western United States (Geng et al. 2018a; van 

Donkelaar et al. 2006). Additionally, as regulatory monitoring primarily aims to examine the 

compliance of air quality standards rather than assess exposure, existing ground stations are 

unlikely to represent concentrations where sensitive subpopulations reside. This issue can 

further limit the utility of regulatory monitoring data in community-level exposure 

assessment.

Recently emerged low-cost PM2.5 sensors have the potential to fill in the gaps of regulatory 

PM2.5 monitoring and to overcome the limitations of statistical models based solely on 

regulatory measurements. With the features of lower instrument cost, ease of use, and 

portability (Jiao et al. 2016; Snyder et al. 2013), low-cost PM2.5 sensors can be densely 

deployed by researchers, grass-roots organizations, and citizen scientists. For example, a 

commercial low-cost PM monitoring network established in 2015, PurpleAir (https://

www.purpleair.com/), has more than 7,000 nodes worldwide with a growth rate of ~30 per 

day (Morawska et al. 2018). The emergence of low-cost sensors has been shifting the 

paradigm of air pollution monitoring from being based solely on regulatory networks to 

mixed networks consisting of both regulatory and low-cost monitors (Snyder et al. 2013), 

and from being conducted by government agencies to increasingly commercial/crowd-

funded projects (Morawska et al. 2018; Snyder et al. 2013). As most of the low-cost PM2.5 

sensors use optical light scattering to count particles and convert them to mass 

concentrations, they tend to have a lower accuracy than regulatory monitors (Xu 2001). 

However, growing efforts have been made to calibrate low-cost PM2.5 measurements in both 

laboratory and ambient settings (Broday 2017; Cao and Thompson 2017; Castell et al. 2017; 

Holstius et al. 2014; Kelly et al. 2017; Wang et al. 2015). With a significant amount and a 

high growth rate, low-cost sensors are expected to shed light on more detailed spatial 

variations of PM2.5 at finer scales.

To date, limited studies have focused on using low-cost sensor measurements to improve 

PM2.5 prediction with high spatiotemporal resolutions. This study aimed to evaluate the 

contribution of low-cost sensor measurements to the estimation of PM2.5 levels in the areas 

where sparse regulatory monitors alone cannot support reliable predictions. This case study 

focused on Imperial County, California, an exemplary region with PM2.5 pollution 

intermittently exceeding the U.S. air quality standard (35 μg/m3 for 24-hour PM2.5 and 12 

μg/m3 for annual PM2.5) especially near the U.S.-Mexico border. The PM2.5 pollution is also 

associated with critical health issues which promoted a community-based low-cost 

monitoring network designed to address public concerns about the ability of regulatory 

monitors to reflect true pollutions in local communities (English et al. 2017). Daily PM2.5 

predictions with a 1-km resolution were generated by the Random Forest algorithm with 
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satellite AOD and relevant covariates. The reliability of PM2.5 predictions before and after 

the integration of low-cost PM2.5 measurements were investigated. The limitation of low-

cost PM2.5 measurements caused by their remaining uncertainty and the future perspectives 

of better utilizing these measurements were also discussed.

2. Data and Methods

2.1. Study Domain

Imperial County is located in the southern part of the U.S. state of California, bordering the 

Mexican state of Baja California. This county has PM2.5 levels frequently exceeding the 

U.S. air quality standard with a high rate of childhood asthma-related emergency room visits 

(CEHTP 2018). The desert on its west side, the dry lake bed of a saline lake (the Salton Sea) 

where an exposed playa is contributing to dust levels (Parajuli and Zender 2018), and the 

transboundary pollution have caused substantial variability of PM2.5 levels in different 

communities of the county (English et al. 2017). However, there were only three U.S. 

Environmental Protection Agency (EPA) Air Quality System (AQS) stations within the 

county and three additional near the county that spans over 40,000 square kilometers by 

2017 (Figure 1). To meet the request of local communities about more extensive PM2.5 

measurements, a low-cost PM2.5 monitoring network, Identifying Violations Affecting 

Neighborhoods (IVAN), has been established by a community-engaged research project 

(English et al. 2017). As of 2017, the IVAN had built ~40 community PM2.5 monitoring 

sites throughout the county.

In this study, the AQS and calibrated IVAN measurements in Imperial County were served 

as ground truth for PM2.5 prediction. Figure 1 shows the study domain with the locations of 

AQS and IVAN sites. The study domain includes a 50-km buffer beyond county border to 

include nearby AQS stations and better illustrate the patterns of transboundary pollution. 

Within the study domain, there were 6 AQS stations and 39 IVAN sensors. A 1-km modeling 

grid covers the study domain, which totals 41,344 grid cells. The modeling period was from 

September 2016 to November 2017 to be consistent with the time span of available 

calibrated IVAN PM2.5 measurements.

2.2. PM2.5 Measurements

Regulatory PM2.5 measurements were provided by the U.S. EPA AQS (https://www.epa.gov/

outdoor-air-quality-data). Low-cost PM2.5 measurements were provided by the IVAN air 

monitoring system (https://www.ivan-imperial.org/). The IVAN low-cost PM sensor was a 

modified version of particle counter Dylos 1700 (Dylos Corporation, Riverside, California). 

Raw particle counts from Dylos sensors were calibrated and converted to hourly PM2.5 mass 

concentrations using the conversion equation developed by Carvlin et al. (2017). After a 

validation with additional collocated reference instruments, Carvlin et al. (2017) found that 

the conversion accuracy was moderate to high with R2 values ranging from 0.35 to 0.81 with 

an average of 0.59. In this study, hourly IVAN PM2.5 concentrations were further averaged 

into daily means (Section 1, Supplementary Material). Negative PM2.5 measurements from 

both networks caused by random errors in a clean environment (approaching 0 μg/m3) were 

retained to prevent systematic biases (Paciorek et al. 2008).
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2.3. AOD Retrievals

The Multi-Angle Implementation of Atmospheric Correction (MAIAC) is an advanced 

MODIS AOD product with global coverage at a 1-km spatial resolution on a daily basis 

(MCD19, https://modis-land.gsfc.nasa.gov/MAIAC.html). In order to reflect daytime 

changes of AOD, Terra (descending node at 10:30 A.M. local time) and Aqua (ascending 

node at 1:30 P.M. local time) AOD served as two separate variables in the prediction models. 

According to the quality assessment parameters within MAIAC, the AOD retrievals with 

poor quality were filtered out. We followed the approach proposed by Bi et al. (2019) to fill 

in missing AOD observations, in which Random Forest models with AOD-related predictors 

were established at the daily level (Section 2, Supplementary Material).

2.4. Meteorological Data

Cloud fraction, as the percentage of cloud cover, is an important covariate in AOD gap-

filling since most of the missing AOD data were caused by the existence of cloud in Imperial 

County. In this study, satellite-observed cloud fractions were obtained from the MODIS 

Level-2 Cloud product (MOD06_L2/MYD06_L2, https://modis.gsfc.nasa.gov/). Other 

meteorological variables were obtained from the High-Resolution Rapid Refresh (HRRR) 

(https://rapidrefresh.noaa.gov/hrrr/), a National Oceanic and Atmospheric Administration 

real-time 3-km resolution updated atmospheric model. The HRRR meteorological 

parameters included 2-meter temperature and specific humidity, planetary boundary layer 

(PBL) height, sensible heat net flux, frictional velocity, and 10-meter wind direction and 

wind speed. These HRRR fields were from the initial forecast hour of operational hourly 18-

hour forecast runs. The fields were obtained from the University of Utah Center for High-

Performance Computing real-time HRRR archive (http://hrrr.chpc.utah.edu/) (Blaylock et al. 

2017).

2.5. Land-Use Data

The land-use parameters included 1) the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) Global Digital Elevation at a 1 arc-second (~30 m) 

resolution (https://asterweb.jpl.nasa.gov/gdem.asp). 2) LandScan ambient population in 

2016 at a 900-m resolution (https://web.ornl.gov/sci/landscan/), 3) Normalized Difference 

Vegetation Index (NDVI) from the MODIS vegetation indices (MOD13/MYD13) at a 500-m 

resolution, 4) the distance to the nearest major road computed from Topologically Integrated 

Geographic Encoding and Referencing (TIGER)/Line Geodatabases of the U.S. Census 

Bureau and DIVA-GIS (http://www.diva-gis.org/), 5) 0 – 10 cm soil moisture from the North 

American Land Data Assimilation System (NLDAS) Noah Land Surface Model at a 0.125-

degree resolution, 6) 8-day land surface temperature from the MODIS land products 

(MOD11A2/MYD11A2) at a 1-km resolution, and 7) the percentages of grassland and water 

body calculated from GlobCover V2.3 land cover product (European Space Agency, http://

due.esrin.esa.int/page_globcover.php).

2.6. PM2.5 Prediction Models

To evaluate the contribution of low-cost sensor measurements to the quality of PM2.5 

estimates, three models with different types of dependent variables were built: 1) the AQS-
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only model, 2) the IVAN-only model, and 3) the AQS/IVAN-combined model. In the first 

two models, either AQS or IVAN PM2.5 measurements were used as the dependent variable. 

In the third model, both AQS and IVAN PM2.5 measurements were combined. Since the 

IVAN measurements had been calibrated and validated with collocated reference-grade 

measurements (Carvlin et al. 2017), we treated these measurements as ground truth and 

simply merged them with AQS measurements. Three models shared the same set of 

independent variables shown in Table 1. The models were based on the Random Forest (RF) 

algorithm. RF is an “ensemble learning” method generating a number of decision trees and 

aggregating the regressing results from these trees (Breiman 2001). Other statistical models 

such as the multi-stage LME-GAM (Linear Mixed Effects-Generalized Additive Model) 

(Xiao et al. 2017), XGBoost (Xiao et al. 2018), and artificial neural networks (Di et al. 

2016) were also tested in the pilot stage of this study, but RF was able to generate the most 

stable and accurate predictions. The number of decision trees in the forest (ntree) and the 

number of predictors randomly tried at each split (mtry) are two major hyperparameters of 

RF. In this study, ntree was set to be 1000 to guarantee the stability of predictions and mtry 

was tuned with cross-validation (CV) and determined to be 6. The prediction model could 

generate spatiotemporally continuous PM2.5 estimates with a 1-km resolution at the daily 

level. The evaluation of the models was conducted with 10-fold CV (i.e., dropping 10% of 

PM2.5 observations). Evaluation metrics included CV R2 and root-mean-square error 

(RMSE). The 10-fold CV consisted of overall, spatial, and temporal CVs (Xiao et al. 2017). 

10-fold spatial/temporal CV creates validation sets according to the locations/Julian days of 

measurements (i.e., dropping 10% of all locations/days of observations). Spatial and 

temporal CVs demonstrate model predictability at different locations and times than the 

observations used to train the model. Additionally, RF-specific “permutation accuracy 

importance” (Breiman 2001) was used to reflect the importance of covariates in the 

prediction model. This importance measure is estimated according to the decrease of 

prediction accuracy when randomly permuting the “out-of-bag” sample of the targeting 

variable (Liaw and Wiener 2002).

The independent variables were determined based on the PM2.5 emission features in 

Imperial County. As fugitive dust was emitted from the dry lake bed of the Salton Sea (King 

et al. 2011; Parajuli and Zender 2018), we used wind speed and direction, surface soil 

moisture, and land surface temperature to reflect the properties of dust emission jointly. 

PM2.5/PM10 ratio, i.e., the percentage of PM2.5 in PM10, was found to be a critical predictor 

with a high RF variable importance value. This predictor has rarely been considered in 

previous studies related to PM2.5 prediction. As several PM2.5 emission sources in Imperial 

County also emitted a large amount of PM10 (e.g., dust emissions) (Chow et al. 2000; 

Parajuli and Zender 2018), this ratio could help to modify the relationship between AOD and 

PM2.5. Another ancillary covariate, PM2.5 convolutional layer, was created following Hu et 

al. (2017) who showed that this variable could improve the accuracy of PM2.5 prediction by 

considering PM2.5 spatial autocorrelation.
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3. Results

3.1. Summary Statistics and Modeling Performance

Within the study domain, AQS PM2.5 measurements had a mean of 8.55 μg/m3 with an 

interquartile range (IQR) of 5.80 μg/m3 (25% and 75% percentiles: [5.00 μg/m3, 10.80 μg/

m3]). IVAN PM2.5 measurements had a mean of 7.44 μg/m3 with an IQR of 5.28 μg/m3 

(25% and 75% percentiles: [3.65 μg/m3, 8.93 μg/m3]). AQS measured slightly higher PM2.5 

concentrations (~1 μg/m3) than IVAN during the study period. The performance of three 

PM2.5 prediction models (AQS-only, IVAN-only, and AQS/IVAN) was summarized in Table 

2. Figure 2 shows cross-validation’s scatter plots of the models. Six AQS stations only 

provided 1,617 samples and the overall 10-fold CV R2 of the AQS-only model was 0.53. 

The spatial CV R2 of the model dropped to 0.24, indicating that the AQS measurements 

alone could not support reliable prediction of PM2.5 spatial patterns. In contrast, 39 IVAN 

sensors provided 11,965 samples and the IVAN-only model had an overall 10-fold CV R2 of 

0.75. The spatial and temporal CV R2 values of this model (0.64 and 0.70, respectively) 

were slightly lower than the overall R2 but still significantly higher than those of the AQS-

only model. All three models had similar RMSE values ranged from 3.71 to 3.76 μg/m3. 

This was a reasonable value consistent with Hu et al. (2017) who had a regional RMSE of 

3.32 μg/m3 in the western climate region (including California and Nevada) in their U.S. 

national PM2.5 prediction model for the year of 2011.

Apart from the regular CV, the AQS measurements were also used as a test set to validate 

the IVAN-only model. This validation was designed to examine to what extent the IVAN-

based predictions could agree with AQS measurements and whether the IVAN 

measurements alone could support a reliable PM2.5 prediction model. The validation showed 

an R2 of 0.43 between the AQS measurements and the IVAN-based predictions. This R2 

value is lower than the CV R2 of the AQS-only model, 0.53 (Table 2). The decreased R2 

indicated that the IVAN-based predictions still deviated from actual PM2.5 levels to a certain 

degree. Given the moderate to high correlation between calibrated IVAN measurements and 

collocated reference observations (Carvlin et al. 2017), we infer that the deviation may be 

due to the uncertainty in calibrated IVAN measurements which was not able to be reduced 

(the remaining uncertainty of IVAN hereinafter). Less representative monitor siting of IVAN 

could be another potential reason behind the lower agreement (Geng et al. 2018b). This 

validation emphasized the importance and necessity of keeping high-quality regulatory 

measurements in PM2.5 prediction, although they are temporally less-frequent and spatially 

sparser.

After combining the AQS and IVAN observations, the modeling performance had a slight 

decrease with overall, spatial, and temporal CV R2 values of 0.73, 0.63, and 0.70, 

respectively. Again, we inferred that the decreased performance could be caused by the 

remaining uncertainty of IVAN. This uncertainty could be seen in the scatter plot of the 

IVAN-only model as there were apparent outliers deviating from the 1:1 line (Figure 2(b)). 

The remaining uncertainty again indicated that good fitting performance of the IVAN-only 

model did not necessarily mean an accurate representation of actual PM2.5 levels. We 

considered the AQS/IVAN model as the optimal model because it incorporated both detailed 
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spatial patterns of PM2.5 provided by IVAN and additional accurate PM2.5 information 

provided by AQS.

3.2. Analyses with PM2.5 Predictions

Statistical metrics such as CV R2 and RMSE could only reflect model predictability at 

monitoring locations. Within our study domain, ground monitors were not evenly 

distributed, leaving large areas in the southern and eastern parts uncovered (Figure 1). This 

uneven distribution reduced the effectiveness of the statistical metrics. Due to the lack of 

reliable references regarding PM2.5 pollution in Imperial County from other sources, we 

focused more on analyzing the features of prediction results to examine the quality of PM2.5 

estimates and the contribution of IVAN measurements to the prediction.

Figure 3 shows the averaged distributions of daily PM2.5 estimates during the study period. 

The AQS-based distribution emphasized PM2.5 pollution near major roads by showing 

spatially resolved PM2.5 concentrations on the road network (Figure 3(a)). This road-specific 

feature may be related to a fact that the AQS stations were relatively close to the major roads 

in the study domain. The mean distance from 6 AQS stations to the major roads was ~600 m 

and the maximum distance was ~2,000 m. On the contrary, the IVAN sites had a mean 

distance of ~7,600 m with a maximum longer than 10,000 m. The distance-to-road of the 

IVAN sites also distributed more evenly within its range compared to which of the AQS 

stations. The lack of AQS stations away from the major roads reduced the ability of AQS to 

reflect off-road pollution. The PM2.5 estimates derived from the IVAN-only model (Figure 

3(b)) and the AQS/IVAN model (Figure 3(c)) did not show road-specific patterns but 

smoother PM2.5 distributions. This result indicates that more extensively distributed IVAN 

measurements could better reflect off-road pollution sources such as dust, transboundary, 

and agricultural emissions.

Apart from more credible PM2.5 spatial patterns, the contribution of IVAN measurements 

can also be reflected by the importance of pollution source-related covariates in the models. 

Table 3 shows the top-10 important covariates determined by the RF algorithm in three 

models. In the AQS-only model, temporally varying parameters such as meteorological 

parameters (PBL height, wind speed and direction, and sensible heat net flux) dominated the 

most important covariates. This feature reflects that sparse AQS measurements well captured 

temporal patterns of PM2.5 but provided limited information regarding the spatial 

distribution of PM2.5, which echoes the low spatial CV R2 in the AQS-only model (Table 2). 

On the contrary, time-invariant and source-related parameters, especially population, 

elevation, the nearest distance to road, and the percentage of grassland, had increased 

importance in the IVAN-only and AQS/IVAN models. The increased importance of these 

source-related covariates indicated that spatially denser IVAN measurements resolved more 

spatial information of PM2.5 in different geographical environments associated with varying 

pollution sources.

The PM2.5 spatial patterns derived from the AQS/IVAN model can be explained 

appropriately with the emission sources in Imperial County, and these patterns were also 

consistent with the coarser distributions observed in previous studies (Di et al. 2016; Hu et 

al. 2017; Parajuli and Zender 2018). In the AQS/IVAN-based estimates, the highest PM2.5 
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levels occurred on the U.S.-Mexico border, especially in the border cities Calexico and 

Mexicali where annual PM2.5 level exceeded the U.S. air quality standard of 12 μg/m3 

during the study period. This transboundary PM2.5 hot-spot was also shown in Hu et al. 

(2017) who estimated PM2.5 levels in the contiguous U.S. at 12-km resolution. This hot-spot 

was not captured by the AQS-based predictions because of limited AQS stations located in 

similar geographical environments (only one station near the border). Elevated PM2.5 levels 

also occurred on the desert and exposed playa over the southwest shore of the Salton Sea. 

These high PM2.5 levels were likely to be associated with dust emissions in the areas, which 

is supported by Parajuli and Zender (2018) who suggested that newly exposed playa of the 

Salton Sea has contributed to a large number of dust emissions in the southwest side of the 

lake. Brawley, a city in the south of the Salton Sea, showed a moderate PM2.5 hot-spot with 

mean PM2.5 concentrations ranged from 7.1 to 7.8 μg/m3. The elevated PM2.5 might be 

related to the significant cattle and feed industry in the city as the pulverized manure and 

animal activity in cattle feedlots may contribute to the emissions of ammonia and nitric 

oxide that subsequently lead to the formation of secondary PM2.5 (Rogge et al. 2006; Wilson 

et al. 2002).

It should be noted that although the PM2.5 patterns derived from the AQS/IVAN model 

(Figure 3(c)) were similar to which of the IVAN-only model (Figure 3(b)) due to the 

dominance of IVAN measurements, the additional AQS measurements still led to noticeable 

changes. For example, the lower-left AQS station outside the county’s border resulted in the 

decreased PM2.5 levels in its neighboring broad, mountainous areas covered by dense 

vegetation. The lower PM2.5 levels could be explained by the reduced ventilation and 

transport of pollutants affected by topography and less residential emissions associated with 

fewer people living in the region (Chow et al. 2006). This result again shows the importance 

of keeping AQS measurements in the prediction model despite their smaller sample size. 

Figure S1 shows the PM2.5 distributions by season. In spring and summer, PM2.5 had higher 

background levels and lower peak levels due to the atmospheric conditions favorable for 

diffusion. In contrast, PM2.5 tended to be accumulated in winter due to stagnant weather 

conditions.

3.3. Impact of IVAN Remaining Uncertainty

Given the moderate to high agreement between IVAN and collocated reference 

measurements after calibration (Carvlin et al. 2017), we analyzed the prediction outliers to 

evaluate the influence of the remaining uncertainty of IVAN on the prediction accuracy. We 

defined an outlier as a prediction a factor of two greater or smaller than the corresponding 

measurement in cross-validation. As we kept negative PM2.5 observations, the predictions 

with a reversed sign were also considered as outliers. Figure 4 shows the CV scatter plot the 

same as Figure 2(c) with outliers in different colors. There were 1,500 outliers among the 

total 12,902 predictions, in which 312 were underestimated and 1,188 were overestimated. 

Compared to previous PM2.5 modeling efforts based solely on regulatory measurements in 

the U.S. (Ma et al. 2016; Xiao et al. 2017), this CV scatter plot had more apparent outliers. 

Figure S2 shows the frequencies of outliers in different grid cells and Figure S3 shows the 

relationships between the number of outliers and the number of total observations in a grid 

cell. We found that the outliers were randomly distributed without specific spatiotemporal 
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patterns and the number of outliers was positively associated with the number of total 

observations in a grid cell. The results reflected that the remaining uncertainty of IVAN still 

had an evident influence on the predictions, which homogeneously affected the modeling 

accuracy. The only collocated AQS/IVAN site (Calexico-Ethel Site, located at the Calexico 

High School on East Belcher Street) in the study domain could not support comprehensive 

analyses of outliers, and it remains unknown that what the sources of these outliers were, 

how these sources were associated with the prediction accuracy, and why overestimated 

outliers dominated the prediction biases.

4. Discussion

Imperial County is an exemplary region for studying the effectiveness of low-cost PM 

measurements in the U.S. The PM (PM2.5 and PM10) pollution in this county frequently 

exceeds state and national air quality standards (CARB 2017). Poor air quality, poverty, and 

a high unemployment rate are associated with severe health issues such as childhood asthma 

and lead to increasing needs voiced by the local residents for a comprehensive and accurate 

display of air quality (English et al. 2017). During the development of the IVAN network, 

community members were involved in the study design and monitor siting, and the study 

community partner staff were trained in monitor assembly/troubleshooting and data transfer 

and analysis (Wong et al. 2018). The IVAN network is now community operated and 

maintained. Developed community capacity to run the low-cost network addresses the core 

of environmental health issues in this primarily Hispanic and monolingual area by providing 

neighborhood-level data on air quality and increasing local environmental health literacy 

(Garzón-Galvis et al. 2019).

In this study, we evaluated the contribution of IVAN to PM2.5 prediction in the region with 

complex local PM2.5 sources and a sparse regulatory network. On the one hand, our results 

showed that current AQS within the county could not support reliable PM2.5 predictions as 

indicated by the significantly lower spatial CV R2 of the AQS-only model compared to its 

overall CV R2. The IVAN measurements, albeit noisier, were found to be able to serve as an 

effective supplement to the regulatory measurements to improve the modeling performance 

and prediction quality. Dense IVAN measurements also helped the predictions better resolve 

the spatial details of local pollution sources. On the other hand, although AQS were spatially 

sparser and temporally less-frequent than IVAN, its “gold-standard” measurements are still 

indispensable in PM2.5 prediction. The necessity of keeping AQS was reflected by a lower 

validation R2 when using the IVAN-only model to predict AQS measurements compared to 

the CV R2 of the AQS-only model itself. The necessity was also reflected by more 

reasonable PM2.5 prediction patterns around the AQS stations when combining AQS and 

IVAN. The combined AQS/IVAN predictions were in line with the coarser PM2.5 patterns 

generated by the national-level models (Di et al. 2016; Hu et al. 2017), and the predicted 

PM2.5 hot-spots can be appropriately explained by local PM2.5 sources such as dust, 

transboundary, and agricultural pollution. Our analyses implicated that the combination of 

regulatory and low-cost sensor measurements is an effective way to improve the quality of 

PM2.5 modeling and enable high-resolution PM2.5 predictions in which they were 

impossible previously.
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To date, the proposed calibration methods for low-cost PM2.5 measurements have mainly 

focused on correcting systematic biases rather than reducing random errors commonly 

existing in the measurements (Carvlin et al. 2017; Holstius et al. 2014). In this study, we 

found that the remaining errors in the IVAN measurements, especially random errors, still 

had an apparent impact on the quality of PM2.5 prediction after a calibration aiming to 

reduce the systematic biases (Carvlin et al. 2017). The influence of remaining uncertainty 

was reflected by obvious outliers in cross-validation scatters. As the uncertainty had a 

homogeneous effect on the predictions without obvious spatiotemporal patterns, it was 

difficult to pinpoint and remove inaccurate measurements. Additional studies with sufficient 

collocated regulatory/low-cost monitor pairs are needed for in-depth analyses regarding the 

low-cost sensor measurements’ remaining uncertainty, e.g., the sources of uncertainty and 

the quantitative influence of uncertainty on the prediction quality. The calibration methods 

aiming to reduce the random errors of low-cost sensor measurements, in addition to 

systematic biases, are also a potential way to improve the quality of PM2.5 prediction.

Although spatiotemporally continuous PM2.5 can be generated with CTMs, their simulations 

are difficult to reflect detailed PM2.5 pollution patterns at the community level. Specifically, 

the relatively coarse resolution and restricted emission information of CTMs limit their 

ability to characterize PM2.5 distribution at small scales (Jerrett et al. 2005). Our study 

proved that the combination of dense and frequent low-cost sensor measurements, 

spatiotemporally continuous satellite AOD retrievals, and accurate reference-grade 

measurements is a possible solution to derive high-resolution PM2.5 distribution details. 

Although the U.S. has one of the densest regulatory air quality monitoring networks in the 

world, only ~2% of its counties have more active AQS PM2.5 stations than Imperial County 

(with 3 active stations) (Figure 5(a)), and only ~20% of the counties have a higher AQS 

station density than Imperial County (2.58 × 10−4 stations per square kilometers) (Figure 

5(b)). Accordingly, low-cost sensors have enormous potential to be applied to the vast 

regions in the U.S. and a large part of the world with sparse regulatory monitors to better 

support small-scale PM2.5 prediction and help address PM2.5-related health issues.

A major limitation of this study is the lack of reliable reference PM2.5 measurements in 

Imperial County from other sources, which prevented quantitative assessments of our PM2.5 

estimates. However, many clues regarding the prediction models such as CV performance, 

variable importance, and spatial patterns of PM2.5 estimates provided evidence that the 

integration of IVAN could lead to a better prediction quality in the region. Additional studies 

with sufficient reference measurements are needed to further prove the findings. The scale of 

the IVAN network is another potential limitation affecting the generalizability of our 

findings. As a county-level low-cost network with ~40 sensors, which has been well 

maintained and operated by local communities, IVAN is less representative of other low-cost 

PM networks worldwide which may not be well maintained as such. A more general and 

extensive low-cost PM network is needed to further examine the effectiveness of our 

proposed PM2.5 prediction framework and to test new methods regarding better utilization of 

low-cost sensor measurements in PM2.5 prediction. PurpleAir (https://www.purpleair.com/), 

a worldwide commercial PM monitoring network built with low-cost sensors, is a potential 

one when it evolves to have enough coverage and density.
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5. Conclusion

With an exemplary low-cost air quality monitoring network in Imperial County, IVAN, we 

evaluated the contribution of low-cost sensor measurements to PM2.5 prediction when 

regulatory measurements are insufficient to support reliable small-scale PM2.5 modeling. 

This study proved that the integration of a large number of low-cost sensor measurements 

with sparse regulatory measurements is an effective way to improve the quality of PM2.5 

prediction significantly. This study also highlighted the needs of more effective calibration 

or integration methods to mitigate the negative impact caused by the remaining uncertainty 

in low-cost sensor measurements on the prediction quality. This is the first study to report 

high-resolution PM2.5 distributions in Imperial County by virtue of dense low-cost sensor 

measurements. The proposed PM2.5 prediction framework with low-cost sensor 

measurements has enormous potential to be applied in vast areas worldwide with insufficient 

regulatory stations to identify PM2.5 pollution details which are fundamental to PM2.5-

related health research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Ground-level PM2.5 was assessed with low-cost, regulatory, and satellite data

• Low-cost sensor measurements contributed to improved modeling 

performance

• Reasonable PM2.5 spatial details were revealed due to abundant low-cost data

• Remaining uncertainty in calibrated low-cost data still affected modeling 

accuracy
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Figure 1. 
Study domain (latitude: [32.2°N, 33.9°N]; longitude: [116.6°W, 113.9°W]). Imperial County 

is part of the Southern California border region contiguous to the Mexican state of Baja 

California. The area surrounded by the dashed line is a buffer mainly used for better 

reflecting transboundary pollution.

Bi et al. Page 17

Environ Res. Author manuscript; available in PMC 2021 January 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Figure 2. 
10-fold CV scatter plots of three models: (a) AQS-only model, (b) IVAN-only model, and 

(c) AQS/IVAN model.
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Figure 3. 
Mean PM2.5 distributions for the period September 2016 to November 2017 generated by 

three models: (a) AQS-only model, (b) IVAN-only model, and (c) AQS/IVAN model. The 

points show mean PM2.5 concentrations at the AQS and IVAN stations during the period.
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Figure 4. 
The 10-fold CV scatter plot of the AQS/IVAN model. The black dashed lines (with slopes of 

2 and 0.5) divide the points into normal predictions and outliers. The points in red are 

overestimated outliers and the points in blue are underestimated outliers.
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Figure 5. 
The contiguous U.S. counties in blue are those with a higher (a) number (~2% of the total 

counties) or (b) density (~20% of the total counties) of AQS PM2.5 stations than Imperial 

County as of 2017. The red areas are the potential regions in the U.S. where our proposed 

PM2.5 prediction framework with low-cost sensor measurements can be applied to generate 

PM2.5 spatial details.
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Table 1

Independent variables in three PM2.5 prediction models (s - spatially varying; t - temporally varying).

MAIAC AOD PM2.5-ancillary variables

 Gap-filled Terra/Aqua AOD(s,t)  PM2.5 convolutional layer(s,t)

Land-use variables  PM2.5/PM10 ratio(t)

 Elevation(s) Meteorological variables

 Population(s)  2-meter temperature(s,t)

 NDVI(s,t)  2-meter specific humidity(s,t)

 Nearest distance to road(s)  Planetary boundary layer height(s,t)

 0 – 10 cm soil moisture(s,t)  Sensible heat net flux(s,t)

 Land surface temperature(s,t)  Frictional velocity(s,t)

 Percentage of grassland(s)  10-meter wind direction(s,t)

 Percentage of water body(s)  10-meter wind speed(s,t)
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Table 2

The performance of three models with overall, spatial, and temporal CV R2 and RMSEs.

Model N Overall CV R2 Spatial CV R2 Temporal CV R2 RMSE

AQS-Only 1,617 0.53 0.24* 0.55 3.76 μg/m3

IVAN-Only 11,965 0.75 0.64 0.70 3.71 μg/m3

AQS/IVAN 12,902 0.73 0.63 0.70 3.72 μg/m3

*
6-fold (leave-one site-out) spatial CV as there were only 6 AQS stations
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Table 3

The top-10 important covariates determined by the RF algorithm in three prediction models. The bold font 

highlighted the time-invariant and source-related covariates with the increased importance after the addition of 

IVAN.

Rank AQS-Only IVAN-Only AQS/IVAN

1 PM2.5 convolutional layer PM2.5 convolutional layer PM2.5 convolutional layer

2 PBL height PBL height Population

3 NDVI Population Elevation

4 0 – 10 cm soil moisture Elevation PBL height

5 10-meter wind direction PM2.5/PM10 ratio NDVI

6 2-meter specific humidity 0 – 10 cm soil moisture Percentage of grassland

7 10-meter wind speed NDVI PM2.5/PM10 ratio

8 Sensible heat net flux Nearest distance to road 0 – 10 cm soil moisture

9 PM2.5/PM10 ratio Percentage of grassland Nearest distance to road

10 Frictional velocity 2-meter specific humidity 2-meter temperature
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