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Abstract

The need for automated and efficient systems for tracking full animal pose has increased with the 

complexity of behavioral data and analyses. Here we introduce LEAP (LEAP estimates animal 

pose), a deep-learning-based method for predicting the positions of animal body parts. This 

framework consists of a graphical interface for labeling of body parts and training the network. 

LEAP offers fast prediction on new data, and training with as few as 100 frames results in 95% of 

peak performance. We validated LEAP using videos of freely behaving fruit flies and tracked 32 

distinct points to describe the pose of the head, body, wings and legs, with an error rate of <3% of 

body length. We recapitulated reported findings on insect gait dynamics and demonstrated LEAP’s 

applicability for unsupervised behavioral classification. Finally, we extended the method to more 

challenging imaging situations and videos of freely moving mice.
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Further information on research design is available in the Nature Research Reporting Summary 

linked to this article.

Connecting neural activity with behavior requires methods to parse what an animal does into 

its constituent components (movements of its body parts), which can then be connected with 

the electrical activity that generates each action. This is particularly challenging for natural 

behavior, which is dynamic, complex and noisy. Human classification of behavior is slow 

and subject to bias1,2, but speed can be increased through automation1 including methods to 

track and analyze animal centroids and shapes over time3–5, machine learning techniques for 

identifying user-defined behaviors such as fighting and courting6,7, and software to segment 

the acoustic signals produced by an animal8–10. However, one may not know a priori which 

behaviors to analyze; this is particularly true when screening mutant animals or investigating 

the results of neural perturbations that can alter behavior in unexpected ways.

Developments in the unsupervised clustering of postural dynamics have enabled researchers 

to overcome many of these challenges by analyzing the raw frames of videos in a reduced 

dimensional space (for example, generated via principal component analysis (PCA)). By 

comparing frequency spectra or fitting auto-regressive models from low-dimensional 

projections11,12, these methods can both define and record the occurrence of tens to 

hundreds of unique, stereotyped behaviors in animals such as fruit flies and mice. Such 

methods have been used to uncover structures in behavioral data, thereby facilitating the 

investigation of temporal sequences13, social interactions14, genetic mutants12,15 and the 

results of neural perturbation16,17.

A major drawback to the aforementioned techniques is their reliance on PCA to reduce the 

dimensionality of the image time series. While this produces a more manageable substrate 

for machine learning, it would be advantageous to directly analyze the position of each 

actuatable body part, as this is what is ultimately under the control of the motor nervous 

system. However, measuring all of the body-part positions from raw images is a challenging 

computer vision problem18. Previous attempts at automated body-part tracking in insects 

and mammals relied on physically constraining the animal and having it walk on a spherical 

treadmill19 or linear track20; applying physical markers to the animal19,21; or using 

specialized equipment such as depth cameras22–24, frustrated total internal reflection 

imaging19,21,25,26 or multiple cameras27. However, these techniques are all designed to work 

within a narrow range of experimental conditions and are not easy to adapt to disparate 

datasets.

To design a general algorithm capable of tracking body parts from many different kinds of 

experiments, we turned to deep-learning-based methods for pose estimation that have proved 

successful on images of humans28–34. Breakthroughs in the field have come from the 

adoption of fully convolutional neural network architectures for efficient training and 

evaluation of images35,36 and the production of a probabilistic estimate of the position of 

each tracked body part29,31. However, the problems of pose estimation in the typical human 

setting and that for laboratory animals are subtly different. Algorithms built for human 

images can deal with large amounts of heterogeneity in body shape, environment and image 

quality, but use very large labeled training sets of images37–39. In contrast, behavioral 
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laboratory experiments are often more controlled, but the imaging conditions may be highly 

specific to the experimental paradigm, and labeled data, not readily available, must be 

generated for every experimental apparatus and animal type. One recent attempt to apply 

these techniques to images of behaving animals successfully used transfer learning, whereby 

networks initially trained for a more general object-classification task are refined by further 

training with relatively few samples from animal images40.

Our approach combines a GUI-driven workflow for labeling images with a simple network 

architecture that is easy to train and requires few computations to generate predictions. This 

method can automatically predict the positions of animal body parts via iterative training of 

deep convolutional neural networks with as few as ten frames of labeled data for initial 

prediction and training (training on ten frames results in 74% of estimates within a 2.5-pixel 

(px) error). After initial de novo training, incrementally refined predictions can be used to 

guide labeling in new frames, drastically reducing the time required to label sufficient 

examples (50 frames) to achieve a median accuracy of less than 3 px per 86 μm (distance 

from ground truth). Training on a workstation with a modern graphics processing unit 

(GPU) is efficient (<1 h) and prediction on new data is fast (up to 185 Hz after alignment). 

We validated the results of our method using a previously published dataset of high-quality 

videos of freely behaving adult fruit flies (Drosophila melanogaster11) and recapitulated a 

number of reported findings on insect gait dynamics as a test of its experimental validity. We 

then used an unsupervised behavioral classification algorithm to describe stereotyped 

behaviors in terms of the dynamics of individual body parts. Finally, we showed 

generalizability by using more challenging imaging conditions and videos from freely 

moving rodents.

Results

LEAP consists of three phases (see Fig. 1a and Supplementary Results for a full 

description). The first step is registration and alignment, in which raw video of a behaving 

animal is preprocessed into egocentric coordinates with an average error of 2.0°. This step 

increases pose estimation accuracy but can be omitted at the cost of prediction accuracy 

(Supplementary Fig. 1). The second step is labeling and training, in which the user provides 

ground truth labels to train the neural network to find body-part positions on a subset of the 

total images. We used cluster sampling to identify a subset of images that were 

representative of the complete set of poses found in a dataset (Supplementary Fig. 2). A GUI 

with draggable body part markers facilitated the labeling of each training image (Fig. 1b). 

LEAP uses a 15-layer, fully convolutional neural network that produces a set of probability 

distributions for the location of each body part in an image (Fig. 1c and Supplementary Fig. 

3). This simple network performs equivalently to, or better than, more complicated 

architectures that have been used in the past (Supplementary Fig. 3b). For the fly, we tracked 

32 points that define the Drosophila body joints (Supplementary Fig. 4). Labeling and 

training occur in an iterative procedure. Labels from the first ten images are used to train the 

neural network and generate body-part estimates for the rest of the training set images. 

Using these estimates as the initial guesses in the GUI increases the speed of labeling. This 

is repeated periodically, and the time to label an image drops from 2 min per frame for the 

first 10 frames to 6 s per frame for the last 500 frames (Supplementary Fig. 5). The third step 
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is pose estimation, in which the network can be applied to new and unlabeled data (Fig. 1c). 

With minimal training, LEAP faithfully tracks all the body parts, even during challenging 

bouts of locomotion and in the presence of occlusion (Fig. 1d,e and Supplementary Videos 

1–3). In the following sections, we demonstrate the power of this tool, using a previously 

published dataset of 59 male fruit flies, each recorded for 1 h at 100 Hz, for a total of > 21 

million images11. All code and utilities are available at https://github.com/talmo/leap and as 

Supplementary Software.

Performance of LEAP: accuracy, speed, and training sample size.

We evaluated the accuracy of LEAP after full training with 1,500 labeled images by 

measuring error as the Euclidean distance between estimated and ground truth coordinates 

of each body part on a held-out test set of 168 frames (from seven held-out flies) without 

augmentation. We found that the accuracy level depended on the body part being tracked, 

with parts that were more often occluded (for example, hind legs) resulting in slightly higher 

error rates (Fig. 2a). Overall, we found that error distances for all body parts were well 

below 3 px for the vast majority of tested images (Fig. 2b). This error was achieved rather 

quickly during training, with as few as 15 epochs (15–20 min of training time) required to 

achieve approximately 1.97 px per 56 μm overall accuracy, and less than 50 epochs (50–75 

min) required for convergence to 1.63 px per 47 μm accuracy with the full training set (Fig. 

2c). To measure the ground truth accuracy during the alternating labeling-training phase, we 

also measured the errors on the full test set as a function of the number of labeled images 

used for training under the fast training regime (15 epochs). We found that with as few as ten 

labeled images, the network was able to achieve < 2.5 px error (2–3% of body length) in 

74% of the test set, while 1,000 labeled images yielded an accuracy of < 2.5 px in 87% of 

the test set (Fig. 2d). When examining the root-mean-square error (r.m.s. error), we found 

that the performance of the network plateaued at approximately 100 training frames, and 

labeling of only ten frames corresponded to 65% of peak performance (Fig. 2d, inset). This 

level of accuracy when training for few epochs with few samples contributes to the drastic 

reduction in time spent hand-labeling after fast training (Supplementary Fig. 5). For 

reference, labeling of 100 fly images with the 32-point skeleton took a total of 2 h with the 

LEAP GUI (with fast training performed after labeling of 10 and 50 frames), training the 

network took 1 h, and pose estimation on new images occurred at a rate of 185 Hz.

Leg tracking with LEAP recapitulates previously described gait structure.

To evaluate the usefulness of our pose estimator for producing experimentally valid 

measurements, we used it to analyze the gait dynamics of freely moving flies. Previous work 

on Drosophila gait relied on imaging systems that use a combination of optical touch sensors 

and high-speed video recording to follow fly legs as they walk25. Such systems cannot track 

the limbs when they are not in contact with the surface (during swing). Other methods to 

investigate gait dynamics use a semi-automated approach to label fly limbs18,41 and require 

manual correction of automatically generated predictions; these semi-automated approaches 

therefore typically utilize smaller datasets.

We evaluated our network on a dataset of 59 adult male fruit flies11 and extracted the 

predicted positions of each leg tip in each of 21 million frames. For every frame in which the 
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fly was moving forward (7.2 h per 2.6 million frames total), we encoded each leg as either in 

swing or in stance, depending on whether the leg was moving forward or backward relative 

to the fly’s direction of motion (Fig. 3a). Using this encoding, we measured the relationship 

between the fly’s speed and the duration of stance and swing (Fig. 3b). Similar to previous 

work, we found that swing duration was relatively constant across walking speeds, whereas 

stance duration decreased with walking speed25. Because our methods allowed us to 

estimate animal pose during both stance and swing (versus only during stance25), we had the 

opportunity to investigate the dynamics of leg motion during the swing phase. We found that 

swing velocity increased with body speed, in agreement with previous results25 (Fig. 3c). 

We also found that fly leg velocities followed a parabolic trajectory parameterized by body 

speed (Fig. 3c).

We then trained a three-state hidden Markov model (HMM) to capture the different gait 

modes exhibited by Drosophila41. The emission probabilities from the model of the resulting 

hidden states were indicative of tripod, tetrapod and noncanonical/wave gaits (Fig. 3d). As 

expected, we observed tripod gait at high body velocities and tetrapod or noncanonical gaits 

at intermediate and low velocities, in accordance with previous work25,41,42 (Fig. 3e–g). 

These results demonstrate that our pose estimator is able to effectively capture the dynamics 

of known complex behaviors, such as locomotion.

Body dynamics reveal structure in the fly behavioral repertoire.

We next used the output of LEAP as the first step in an unsupervised analysis of the fly 

behavioral repertoire11. We calculated the position of each body part relative to the center of 

the fly thorax for each point in time and then computed a spectrogram for each of these time 

series via the continuous wavelet transform (CWT). We then concatenated these 

spectrograms and embedded the resulting feature vectors for each time point into a two-

dimensional (2D) manifold we term a behavior space (Fig. 4a). The feature vectors represent 

the dynamics of each body part across different time scales, and as has been shown 

previously, the distribution of embedded time points in this space is concentrated into a 

number of strong peaks that represent stereotyped behaviors seen across time and in multiple 

individuals11.

We identified clusters in the behavior space distribution by grouping together regions of high 

occupancy and stereotypy (Fig. 4b). This distribution was qualitatively similar to what we 

found previously by using a PCA-based compression of the images (Supplementary Fig. 6). 

A major advantage to using pose estimation over PCA-based image compression is the 

ability to describe stereotyped behaviors by the dynamics of each body part. We calculated 

the average concatenated spectrogram for each cluster and found that specific behaviors 

were recapitulated in the motion power spectrum for each body part (Fig. 4c–h).

This method can be used to accurately describe grooming, a class of behaviors that is highly 

represented in our dataset. Posterior grooming behaviors exhibited a distinctly symmetric 

topology (Fig. 4b–g), revealing both bilateral (Fig. 4e) and unilateral grooming of the wings 

(Fig. 4c,f) and the rear of the abdomen (Fig. 4d,g). These behaviors involve unilateral, 

broadband (1–8 Hz) motion of the hind legs on one side of the body and a slower (~1.5 Hz) 

folding of the wing on the same side of the body. In contrast, anterior grooming is 
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characterized by broadband motions of both front legs with a peak at ~9 Hz, representing the 

legs rubbing against each other (Fig. 4h).

We also discovered a number of unique clusters related to locomotion (Fig. 5a,b). The 

slowest state (cluster 10) involved several frequencies with a broad peak centered at 5.1 Hz 

(Fig. 5c–e). This can be seen in both the concatenated spectrograms (Fig. 5c) and the power 

spectrum averaged over all leg positions (Fig. 5d). The fly center-of-mass velocity 

distribution for this behavior is shown in Fig. 5e. As the fly speeds up (clusters 10–15, Fig. 

5e), the peak frequency for the legs increases monotonically to 11.5 Hz (cluster 15). We next 

asked whether the tripod and tetrapod gaits we found in our previous analysis (Fig. 3) were 

represented by distinct regions in the behavior space. We found that tripod gait was used 

predominantly in the three fastest locomotion behaviors, whereas the tetrapod (and to a 

lesser extent the noncanonical) gait was used for the three slower locomotion behaviors (Fig. 

5f).

LEAP generalizes to images with complex backgrounds or of other animals.

To test the robustness and generalizability of our approach under more varied imaging 

conditions, we evaluated the performance of LEAP on a dataset in which pairs of flies were 

imaged against a nonuniform and low-contrast background of porous mesh (~4.2 million 

frames, ~11.7 h of video) (Fig. 6a). We first labeled only the male flies from these images, 

and, using the same workflow as in the first dataset, we found that the pose estimator was 

able to reliably recover body-part positions with high accuracy despite poorer illumination 

and a complex background that was at times indistinguishable from the fly (Fig. 6a and 

Supplementary Video 4). We then evaluated the performance of the network when the 

background was masked out14 (Fig. 6b). Even with substantial errors in the masking (for 

example, leg or wing segmentation artifacts), we found that the accuracy improved slightly 

when the background pixels were excluded from the images compared with that achieved 

with the raw images (Fig. 6b and Supplementary Video 4). We also tested whether a single 

network trained on both male and female images performed better or worse than the network 

trained on only male images. We found that the overall performance was similar 

(Supplementary Fig. 7) but that the network trained on only male images performed slightly 

better. This discrepancy is due largely to body parts that are used in very different ways by 

males and females (for example, the wings, which generate song in males but never in 

females), and can be overcome with additional training. Finally, we tested the applicability 

of our framework to animals with different morphology by tracking videos of freely 

behaving mice (Mus musculus) imaged from below in an open arena (Fig. 6c). We observed 

comparable accuracy in these mice despite considerable occlusion during behaviors such as 

rearing (Fig. 6c and Supplementary Video 5).

Discussion

Here we present a pipeline (LEAP) that uses a deep neural network to track the body parts of 

a behaving animal in all frames of a movie via labeling of a small number of images from 

across the dataset. LEAP does not use a single trained ‘generalist’ network to analyze pose 

across datasets, as is done in the case of human pose estimation. Rather, we present a 
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framework that uses an active GUI and simple network architecture that can be quickly 

trained on any new image dataset for which pre-existing labels are not available.

Tracking only the centroid of an animal and its change in position or heading over time is 

probably an insufficient level of description for determining how the nervous system 

controls most behaviors. Previous studies have addressed the issue of pose estimation 

through centroid tracking3, pixel-wise correlations11,12 or specialized apparatus for tracking 

body parts19,22,25,41,43. For the last, applying markers to an animal can limit natural 

behavior, and systems that track particular body parts are not in general scalable to all body 

parts or animals with a very different body plan.

We demonstrate the value of LEAP by showing how it can be applied to the study of 

locomotor gait dynamics and unsupervised behavioral mapping in Drosophila. Previous 

studies of gait dynamics have been limited to short stretches of locomotor bouts that were 

captured with a specialized imaging system25 or to the number of behavioral frames that 

could be hand-labeled41. We show that LEAP not only recapitulates previous findings on 

locomotor gait, but also discovers new aspects of the behavior. Body-part tracking provides a 

solution to a major shortcoming in existing approaches, namely, that researchers have to 

interpret identified behaviors simply by watching videos11,12. When LEAP is used as the 

first step in such unsupervised algorithms, each discovered behavior can be interpreted 

through analysis of the dynamics of each body part.

There are a number of applications for this pipeline beyond those demonstrated here. 

Because the network learns body positions from a small number of labeled frames, the 

network can probably be trained to track a wide variety of animal species and classes of 

behavior. Further, LEAP could be extended to tracking of body parts in three dimensions 

with the use of either multiple cameras or depth-sensitive devices. This will probably be 

useful for tracking body parts of head-fixed animals moving on an air-supported treadmill 

with simultaneous neural recording44,45. Such experiments would be particularly suited to 

our approach, as the videos from head-fixed animals are inherently recorded in egocentric 

coordinates. Body-part positions could then be used to decode neural activity, with mapping 

onto a substrate that approximates muscle coordinates. Additionally, we note that the fast 

prediction performance of our method might make it compatible with closed-loop 

experimentation, where joint positions may be computed in real time to control experimental 

parameters such as stimuli presented to the animal or optogenetic modulation. Lastly, 

through the addition of a segmentation step for analyzing videos of multiple animals3,14,46, 

LEAP can potentially estimate poses for multiple interacting individuals.

An important aspect of LEAP is the active training framework that identifies useful images 

for labeling and provides a GUI for iterative labeling, training and evaluation of network 

performance. We highlight that this framework can be used with any network architecture. 

Although we use a relatively simple network that trains quickly, other networks, such as 

those that utilize transfer learning40 or stacked hourglasses with skip connections and 

intermediate supervision47, can also be implemented within the LEAP framework and may 

increase performance for other kinds of data.
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In summary, we present a method for tracking body-part positions of freely moving animals 

with little manual effort and without the use of physical markers. We anticipate that this tool 

will reduce the technical barriers to addressing a broad range of previously intractable 

questions in ethology and neuroscience through quantitative analysis of the dynamic 

changes in the full pose of an animal over time.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, 

statements of data availability and associated accession codes are available at https://doi.org/

10.1038/s41592-018-0234-5.

Methods

Datasets.

Details on the dataset of 59 adult male Drosophila can be found in refs. 11,13. Animals were 

allowed to move freely in a backlit 100-mm-diameter circular arena covered by a 2-mm-tall 

clear polyethylene terephthalate glycol dome. Videos were captured from the top with a 

Point Grey Gazelle camera at a resolution of ~35 px per mm at 100 frames per second (FPS) 

for 1 h for each fly, totaling ~21 million frames for the dataset. To calculate the spatial 

resolution for these videos, we assumed a mean male fly length of 2.82 mm (ref. 48).

The second fly dataset reported here (Fig. 5) consists of 42 videos of freely moving pairs of 

virgin male and female fruit flies (NM91 strain) 3–5 d post-eclosion. Only males from these 

videos were analyzed in this study. Flies moved freely within a 30-mm-diameter circular 

arena with a 2-mm-tall clear polyethylene terephthalate glycol dome against a white mesh 

floor covering an array of microphones, resulting in an inhomogeneous image background. 

Videos were captured from above with a Point Grey Flea3 camera at a resolution of ~25 px 

per mm at 100 FPS, totaling ~4.2 million frames.

The mouse dataset for Fig. 5 consisted of 29 videos of C57BL/6 strain mice (Mus 
musculus), 15 weeks (108 d) old. Animals moved freely in a 45.7 × 45.7 cm open field arena 

with a clear acrylic floor for 10 min each. Videos were captured from below with infrared 

illumination using a Point Grey Blackfly S camera at a resolution of 1.95 px per mm at 170 

FPS, totaling ~3 million frames. Experimental procedures were approved by the Princeton 

University Institutional Animal Care and Use Committee and conducted in accordance with 

the National Institutes of Health guidelines for the humane care and use of laboratory 

animals. Mice used in this study were ordered through The Jackson Laboratory and had at 

least 1 week of acclimation to the Princeton Neuroscience Institute vivarium before 

experimental procedures were performed. Mice were kept in group cages with food and 

water ad libitum under a reversed 12/12-h dark-light cycle (light, 19:30–07:30).

Preprocessing and alignment to generate egocentric images for labeling and training in 
LEAP.

For the main fly dataset (59 males), we used the alignment algorithm from ref. 11. The raw 

videos consisted of unoriented bounding boxes around the flies from a closed-loop camera 
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tracking system. This technique relies on videos in which the animal remains visible and in 

focus. We then aligned individual frames to a template image of an oriented fly by matching 

the peak of the radon transformed fly image to recover the orientation and then computing 

the cross-correlation to center the fly. The centroid and orientation parameters were used to 

crop a 192 × 192-px oriented bounding box in each frame. Code for alignment is available in 

the repository accompanying the original paper: https://github.com/gordonberman/

MotionMapper.

For the second fly dataset (42 males), we adapted a previously published method for 

tracking and segmentation of videos of courting fruit flies14. We first modeled the mesh 

background of the images by fitting a normal distribution to each pixel in the frame across 

time with a constant variance to account for camera shot noise. The posterior was evaluated 

at each pixel of each frame and then thresholded to segment the foreground pixels. Because 

of the inhomogeneity of the arena floor mesh, substanial segmentation artifacts were 

introduced, particularly when translucent or very thin body parts (that is, wings and legs) 

could not be disambiguated from the dark background mesh holes. The subsequent steps of 

histogram thresholding, morphological filtering and ellipse fitting were performed as 

described previously in ref. 14. We developed a simple GUI for proofreading the automated 

ellipse tracking before extracting 192 × 192-px oriented bounding boxes. We extracted 

bounding boxes for both animals in each frame and saved both the raw pixels containing the 

background mesh and the foreground-only images that contain segmentation artifacts. This 

pipeline was implemented in MATLAB, and the code is available in the code repository 

accompanying this paper.

For the mouse videos, a separate preprocessing pipeline was developed. Raw videos were 

processed in three stages: (1) animal tracking, (2) segmentation from background and (3) 

alignment to the body centroid and tail–body interface. In stage (1), we tracked the mouse’s 

torso centroid by subtracting a background image (median calculated at each pixel value 

across that video), retrieving pixels with a brightness above a chosen threshold from 

background (mice were brighter than background) and using morphological opening to 

eliminate noise and the mouse’s appendages. The largest contiguous region reliably captured 

the mouse’s torso (referred to below as the torso mask) and was used to fit an ellipse whose 

center was used to approximate the center of the animal. In stage (2), a similar procedure as 

in stage (1) was employed to retrieve a full body mask. In this stage, a more permissive 

threshold and smaller morphological opening radius were used than in stage (1) to capture 

the mouse’s body edges, limbs and tail while still eliminating noise. The pixels outside of 

this body mask were set to zero. In stage (3) each segmented video frame was translated and 

rotated such that frame’s center coincided with the center of the animal and the x-axis lay on 

the line connecting the center and tail-body attachment point. The tail-body attachment point 

was defined as the center of a region overlapping between the torso mask and a dilated tail 

mask. The tail mask was defined as the largest region remaining after subtraction of the 

torso mask from the full body mask and application of a morphological opening. After 

applying these masks to segment the raw images, we extracted bounding boxes by using the 

ellipse center and orientation.
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Oriented bounding boxes were cropped to 192 × 192 px for all datasets to ensure 

consistency in output image size after repeated pooling and upsampling steps in the neural 

network. These data were stored in self-describing HDF5 files.

Sampling diverse images for labeling and training in LEAP.

To ensure diversity in image and pose space when operating at low sample sizes, we used a 

multistage cluster sampling technique. First, we sampled n0 images uniformly from each 

dataset by using a fixed stride over time to minimize correlations being temporally adjacent 

samples. We then used PCA to reduce their dimensionality and projected the images down to 

the first D principal components. After dimensionality reduction, the images were grouped 

via k-means clustering into k subgroups from which n images were randomly sampled from 

each group. To minimize the time necessary for the network to generalize to images from all 

groups, we sorted the dataset such that consecutive samples cycled through the groups. This 

way, uniform sampling was maintained even at the early phases of user labeling, ensuring 

that even a network trained on only the first few images would be optimized to estimate 

body-part positions for a diversity of poses. We used n0 = 500, yielding 29,500 initial 

samples; D = 50, which is sufficient to explain 80% of the variance in the data 

(Supplementary Fig. 2); and k = 10 and n = 150 to produce a final dataset of 1,500 frames 

for labeling and training.

LEAP neural network design and implementation.

We based our network architecture on previous designs of neural networks for human pose 

estimation29,31,47. We adopted a fully convolutional architecture that learns a mapping from 

raw images to a set of confidence maps. These maps are images that can be interpreted as 

the 2D probability distribution (that is, a heat map) centered at the spatial coordinates of 

each body part within the image. We trained the network to output one confidence map per 

body part stacked along the channel axis.

Our network consists of 15 layers of repeated convolutions and pooling (Supplementary Fig. 

3a). The convolution block consists of ×3 convolution layers (64 filters, 3 × 3 kernel size, 1 

× 1 stride, ReLU activation). The full network consists of ×1 convolution block, ×1 max 

pooling across channels (2 × 2 pooling size, 2 × 2 stride), × 1 convolution block (128 filters), 

× 1 max pooling (2 × 2 pooling size, 2 × 2 stride), × 1 convolution block (256 filters), ×1 

transposed convolution (128 filters, 3 × 3 kernel size, 2 × 2 stride, ReLU activation, Glorot 

normal initialization), × 2 convolution (128 filters, 3 × 3 kernel size, 1 × 1 stride, ReLU 

activation), and × 1 transposed convolution (128 filters, 3 × 3 kernel size, 2 × 2 stride, linear 

activation, Glorot normal initialization).

We base our decisions of these hyperparameters on the idea that repeated convolutions and 

strided max pooling enable the network to learn feature detectors across spatial scales. This 

allows the network to learn how to estimate confidence maps using a global image structure 

that provides contextual information that can be used to improve estimates, even for 

occluded parts29,31. Despite the loss of resolution from pooling, the upsampling learned 

through transposed convolutions is sufficient to recover the spatial precision in the 

confidence maps. We do not use skip connections, residual modules, stacked networks, 
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regression networks or affinity fields in our architecture as used in other approaches of 

human pose estimation29,31–33,47.

For comparison, we also implemented the stacked hourglass network47. We tested both the 

single hourglass version and × 2 stacked hourglass with intermediate supervision. The 

hourglass network consisted of ×4 residual bottleneck modules (64 output filters) with max 

pooling (2 × 2 pool, 2 × 2 stride), followed by their symmetric upsampling blocks and 

respective skip connections. The stacked version adds intermediate supervision in the form 

of a loss term on the output of the first network in addition to the final output.

We implemented all versions of neural networks in Python via Keras and TensorFlow, 

popular deep learning packages that allow transparent GPU acceleration and easy portability 

across operating systems and platforms. All Python code was written for Python v.3.6.4. 

Required libraries were installed via the pip package manager: numpy (v.1.14.1), h5py (v.

2.7.1), TensorFlow-gpu (v.1.6.0), keras (v.2.1.4). We tested our code on machines running 

either Windows 10 (v.1709) and a RedHat-based Linux distribution (Springdale 7.4) with no 

additional steps required to port the software other than installing the required libraries. All 

networks were compared using the same aligned dataset so as to remove complications due 

to differences in preprocessing.

Code for all network implementations is available in the main repository accompanying this 

paper (https://github.com/talmo/leap) and Supplementary Software.

LEAP training procedure.

Prior to training, we generated an augmented dataset from the user-provided labels and 

corresponding images. We first doubled the number of images by mirroring the images 

along the body symmetric axis (defined from the preprocessing) and adjusting the body-part 

coordinates accordingly, including swapping left/right body part labels (for example, legs). 

Then, we generated confidence maps for each body part in each image by rendering the 2D 

Gaussian probability distribution centered at the ground truth body-part coordinates, μ = (x, 

y), and fixed covariance, Σ = diag(σ) with a constant σ = 5 px. These were pre-generated 

and cached to disk to minimize the necessary processing time during training.

Once confidence maps were computed for each image, we split the dataset into training, 

validation and test sets. The training set was used for backpropagation of the loss for 

updating network weights, the validation set was used to estimate performance and adjust 

the learning rate over epochs, and the test set was held out for analysis. For the fast training, 

the dataset was split into only training (90%) and validation (10%) sets to make the best use 

of data when training with very few labels. For full training, the dataset was split into 

training (76.5%), validation (13.5%) and testing (10%) sets. All analyses reported here share 

the same held-out test set to ensure it is never trained against for any replicate.

All training was done using the Adam optimizer with default parameters as described in the 

original paper49. We started with a learning rate of 1e-3 but used a scheduler to reduce it by 

a factor of 0.1 when the validation loss failed to improve by a minimum threshold of 1e-5 for 

Pereira et al. Page 11

Nat Methods. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/talmo/leap


three epochs. The loss function optimized against is simply the mean squared error between 

estimated and ground truth confidence maps.

During training, we considered an epoch to be a set of 50 batches of 32 images, which were 

drawn sequentially from the training set, cycling back to the first image if there were less 

than 50 × 32 = 1,600 images. Images were then augmented by application of a small random 

rotation (−15–15°) to the input image and the corresponding ground truth confidence maps 

(Supplementary Fig. 1a). At the end of 50 batches of training, 10 batches were sampled from 

the separate validation set, augmented and evaluated, and the loss was used for learning rate 

scheduling described above. Training and validation sets are shuffled at the end of each 

epoch. An epoch was evaluated in 60–90 s, including all augmentation, forward and reverse 

passes, and the validation forward pass when running on a modern GPU (NVIDIA GeForce 

GTX 1080 Ti or P100). We ran this entire procedure for 15 epochs during the fast training 

stage and for 50 epochs during the full training stage. For analyses, a minimum of five 

replicates were fully trained on each dataset to estimate the stability of optimization 

convergence. We evaluated the performance of the network on a held-out test set of images 

without augmentation.

Pose estimation from confidence maps.

Predictions of body-part positions were computed directly on the GPU. We implement a 

channel-wise global maximum operation to convert the confidence maps into image 

coordinates as a TensorFlow function, further improving runtime prediction performance by 

avoiding the costly transfer of large confidence map arrays. All prediction functions 

including normalization and saving were implemented as a self-contained Python script with 

a command-line interface for ease of batch processing.

Computing hardware.

All performance tests were conducted on a high-end consumer-grade workstation equipped 

with an Intel Core i7–5960X CPU, 128 GB DDR4 RAM, NVMe solid state drives and a 

single NVIDIA GeForce 1080 GTX Ti (12 GB) GPU. We also used Princeton University’s 

High Performance Computing cluster with nodes equipped with NVIDIA P100 GPUs for 

batch processing. These higher-end cards afford a speed-up of ~1.5× in processing runtime 

during the training phase.

Accuracy analysis.

For all analyses of accuracy (Figs. 2 and 6 and Supplementary Figs. 3 and 5), we trained at 

least five replicates of the network with the same training/validation/testing datasets. All 

analyses were performed in MATLAB R2018a (MathWorks). We used the gramm toolbox 

for figure plotting50.

Gait analysis.

We translated the body position coordinates to egocentric coordinates by subtracting the 

predicted location of the intersection between the thorax and abdomen from all other body-

position predictions for each frame. We then calculated the instantaneous velocity along the 

rostrocaudal axis of each leg tip within these truly egocentric reference coordinates. The 
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speed of each body part was smoothed using a Gaussian filter with a five-frame moving 

window. For each leg tip, instances in which the smoothed velocity was greater than zero 

were defined as swing, while those with velocity less than zero were defined as stance. 

Information from this egocentric axis was combined with allocentric tracking data to 

incorporate speed and orientation information. The centroids and orientations of the flies 

were smoothed using a moving mean filter with a five-frame window to find the 

instantaneous speed and forward velocity. To remove idle bouts and instances of backward 

walking, all gait analyses were limited to times when the fly was moving in the forward 

direction at a velocity greater than 2 mm s−1 (approximately one body length per second) 

unless otherwise noted. The analyses relating stance and swing duration to body velocity 

were limited to forward velocities greater than 7.2 mm s−1, to remain in line with previous 

work25.

To measure gait modes, we trained an HMM to model gait as described previously41. The 

training data consisted of a vector denoting the number of legs in stance for bouts in which 

the fly was moving forward at a velocity greater than 2 mm s−1 lasting longer than 0.5 s. 

Training data were sampled such that up to 3,000 frames were taken from each video, 

resulting in a total of 159,270 frames. We trained a three-state HMM using the Baum–Welch 

algorithm and randomly initialized transition and emission probabilities51. We designated 

each hidden state as tripod, tetrapod or noncanonical in accordance with the estimated 

emission probabilities. We then used the Viterbi algorithm along with our estimated 

transition and emission matrices to predict the most probable sequence of hidden states from 

which the observed stance vectors for the entire dataset would emerge52.

Unsupervised embedding of body-part dynamics.

In order to create a map of motor behaviors described by body-part movements, we used a 

previously described method for discovering stereotypy in postural dynamics11. First, body-

part positions were predicted for each frame in our dataset to yield a set of 32 time series of 

egocentric trajectories in image coordinates for each video. We recentered these time series 

by subtracting the thorax coordinate at each time point and rescaled them to comparable 

ranges by z-scoring each time series. The time series were then expanded into spectrograms 

by application of the CWT parametrized by the Morlet wavelet as the mother wavelet and 25 

scales chosen to match dyadically spaced center frequencies spanning 1–50 Hz. This time-

frequency representation augments the instantaneous representation of pose at each time 

point to one that captures oscillations across many time scales. The instantaneous spectral 

amplitudes of each body part were then concatenated into a single vector of length 2(J − 1)F, 

where J is the number of body parts before subtraction of the body part used as a reference 

(that is, the thorax) and doubled to account for both x and y coordinates, and F is the number 

of frequencies being measured via CWT. In our data, this resulted in a 1,550-dimensional 

representation at each time point (frame).

Finally, we performed nonlinear dimensionality reduction on these high-dimensional vectors 

by using a nonlinear manifold embedding algorithm53. We first selected representative time 

points via importance sampling, wherein a random sampling of time points in each video is 

embedded into a 2D manifold via t-distributed stochastic neighbor embedding (t-SNE) and 
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clustered via the watershed transform. This allowed us to choose a set of time points from 

each video that were representative of their local clusters—that is, spanning the space of 

postural dynamics. We then computed a final behavior space distribution by embedding the 

selected representative time points using t-SNE to produce the full manifold of postural 

dynamics in two dimensions.

After projecting all remaining time points in the dataset into this manifold, we computed 

their 2D distribution and smoothed with a Gaussian kernel with σ = 0.65 to approximate the 

probability density function of this space. We clipped the range of this density map to the 

range 0.5 × 10−3 to 2.75 × 10−3 to exclude low-density regions and merge very high-density 

regions. We then clustered similar points by segmenting the space into regions of similar 

body-part dynamics by applying the watershed transform to the density. Although both the 

manifold coordinates representation of each time point are not immediately meaningful, we 

were able to derive an intuitive interpretation of each cluster by referring to the high-

dimensional representation of their constituent time points. To do this, we sampled time 

points from each cluster and averaged their corresponding high-dimensional feature vector, 

which we could then visualize by reshaping it into a body-part-frequency matrix (Fig. 4).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Body-part tracking via LEAP, a deep learning framework for animal pose estimation.
a, Overview of the tracking workflow. b, GUI for labeling images. Interactive markers 

denote the default or best estimate for each body part (top left). Users click or drag the 

markers to the correct location (top right). Colors indicate labeling progress and denote 

whether the marker is at the default or estimated position (yellow) or has been updated by 

the user (green). Progress indicators mark which frames and body parts have been labeled 

thus far, while shortcut buttons enable the user to export the labels to use a trained network 

to initialize unlabeled body parts with automated estimates. c, Data flow through the LEAP 
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pipeline. For each raw input image (left), the network outputs a stack of confidence maps 

(middle). Colors in the confidence maps represent the probability distribution for each 

individual body part. Insets overlay individual confidence maps on the image to reveal how 

confidence density is centered on each body part, with the peak indicated by a circle. The 

peak value in each confidence map predicts the coordinate for each body part (right). d, 

Quantification of walking behavior using leg tip trajectories. The distance of each of the six 

leg tips from its own mean position during a walking bout as a function of time (left). Poses 

at the indicated time points (right). Blue and red traces correspond to left and right leg tips, 

respectively. e, Quantitative description of head grooming behavior described by leg tip 

trajectories. Position estimates are not confounded by occlusions when the legs pass under 

the head (right, inset).
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Fig. 2 |. LEAP is accurate and requires little training or labeled data.
a, Part-wise accuracy distribution after full training. Circles are plotted on a reference image 

to indicate the fraction of held-out testing data (168 images from seven held-out flies) for 

which estimated positions of the particular body part are closer to the ground truth than the 

radii. Scale bars indicate image and physical size; 35 px is equivalent to 1 mm at this 

resolution. b, Accuracy summary on held-out test set after full training. PDF, probability 

density function. c, Accuracy as a function of training time. In the ‘fast training’ regime, n = 

1,215 labeled frames were used for training. Lines and shaded area (smaller than line width) 

indicate the mean and s.e.m. for all held-out test images pooled over five runs. Run time 

estimates based on high-end consumer or enterprise GPUs. d, Accuracy as a function of the 

number of training examples. Distributions indicate estimation errors in a held-out test set (n 
= 168 frames) with varying numbers of labeled images used for training, pooled over five 

‘fast training’ runs. CDF, cumulative distribution function. Inset: median overall r.m.s. error 

over these five replicates at each sample size.
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Fig. 3 |. LEAP recapitulates known gait patterning in flies.
a, Schematic of swing and stance encoding. Stance is defined by a negative horizontal 

velocity in egocentric coordinates. b, Duration of swing and stance as a function of average 

body speed. These data comprise approximately 7.2 h in which the fly was moving forward 

(2.6 million frames). Shaded regions indicate 1 s.d. c, Swing velocity as a function of time 

from swing onset, and binned by body speed (n = 1,868,732 swing bouts across all legs). 

Shaded regions indicate 1 s.d. d, Emission probabilities of numbers of legs in stance for each 

hidden state in the HMM (Methods). Hidden state emissions resemble tripod, tetrapod and 

noncanonical gaits. e, Distributions of velocities for each hidden state. f,g, Examples of 

tripod (f) and tetrapod (g) gaits identified by the HMM. RH, right hind leg tip; RM, right 

mid; RF, right fore; LH, left hind; LM, left mid; LF, left fore.
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Fig. 4 |. Unsupervised embedding of body position dynamics.
a, Density of freely moving fly body-part trajectories, after projection of their spectrograms 

into two dimensions via unsupervised nonlinear manifold embedding11. The distribution 

shown was generated from 21.1 million frames. Regions in the space with higher density 

correspond to stereotyped movement patterns, whereas low-density regions form natural 

divisions between distinct dynamics. A watershed algorithm was used to separate the peaks 

in the probability distribution (Methods). b, Cluster boundaries from a with cluster numbers 

indicated. c–h, Average spectrograms for the indicated body parts from time points that fall 

within the dominant grooming clusters; cluster numbers are indicated in b. Qualitative labels 

for each cluster based on visual inspection are provided for convenience. Color map 

corresponds to normalized power for each body part.
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Fig. 5 |. Locomotor clusters in behavior space separate distinct gait modes.
a,b, Density (a) and cluster (b) labels of locomotion clusters (from the same behavioral 

space shown in Fig. 4a). c, Average spectrograms (similar to Fig. 4c–h) quantifying the 

dynamics in each cluster. d, Average power spectra calculated from the leg joint positions 

for each cluster in c. Colors correspond to the cluster numbers in b. e, The distribution of 

forward locomotion velocity as a function of cluster number. Colors correspond to cluster 

numbers in b. Inset, forward locomotion velocity as a function of peak leg frequency. f, Gait 

modes identified by HMM from swing/stance state correspond to distinct clusters.
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Fig. 6 |. LEAP generalizes to images with complex backgrounds or of other animals.
a, LEAP estimates on a separate dataset of 42 freely moving male flies, each imaged against 

a heterogeneous background of mesh and microphones, with side illumination (~4.2 million 

frames, ~11.7 h). 32 body parts (Supplementary Fig. 4) were tracked, and 1,530 labeled 

frames were used for training. Error rates for position estimates were calculated on a held-

out test set of 400 frames (center) and were comparable to those achieved for images with 

higher signal to noise (compare with Fig. 2b). Part-wise error distances (right). b, LEAP 

estimates on masked images from the dataset described in a. Background was subtracted 

using standard image processing algorithms (Methods) to reduce the effect of background 

artifacts. c, LEAP estimates on a dataset of freely moving mice imaged from below (~3 

million frames, ~4.8 h). Three points are tracked per leg, in addition to the tip of the snout, 
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neck, and base and tip of the tail (left)—1,000 labeled frames were used for training. 

Accuracy rates on a held-out test set (of 242 frames) (center).

Pereira et al. Page 24

Nat Methods. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Reporting Summary.
	Results
	Performance of LEAP: accuracy, speed, and training sample size.
	Leg tracking with LEAP recapitulates previously described gait structure.
	Body dynamics reveal structure in the fly behavioral repertoire.
	LEAP generalizes to images with complex backgrounds or of other animals.

	Discussion
	Online content

	Methods
	Datasets.
	Preprocessing and alignment to generate egocentric images for labeling and training in LEAP.
	Sampling diverse images for labeling and training in LEAP.
	LEAP neural network design and implementation.
	LEAP training procedure.
	Pose estimation from confidence maps.
	Computing hardware.
	Accuracy analysis.
	Gait analysis.
	Unsupervised embedding of body-part dynamics.

	References
	Fig. 1 |
	Fig. 2 |
	Fig. 3 |
	Fig. 4 |
	Fig. 5 |
	Fig. 6 |

