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Aim. To assess changes in locomotion and balance in adolescents affected by ataxia secondary to acquired brain injury a�er a 
rehabilitation treatment with physiotherapy and the Gait Real-time Analysis Interactive Lab (GRAIL), an immersive virtual reality 
platform. Methods. 11 ataxic adolescents (16(5) years old, 4.7(6.7) years from injury) underwent 20 45-minute sessions with GRAIL 
plus 20 45-minute sessions of physiotherapy in one month. Patients were assessed before and a�er rehabilitation with functional 
scales and three-dimensional multiple-step gait analysis. Results. Results showed significant improvements in ataxia score assessed by 
the Scale for the Assessment and Rating of Ataxia, in dimension D and E of Gross Motor Function Measure, in walking endurance 
and in balance abilities. Moreover, the training fostered significant changes at hip, knee, and ankle joints, and the decrease of gait 
variability, toward healthy references. Interpretation. In spite of the pilot nature of the study, data suggest that training with immersive 
virtual reality and physiotherapy is a promising approach for ataxic gait rehabilitation, even in chronic conditions.

1. Introduction

Ataxia is a neurological sign resulting in cognitive and motor 
deficits that have a significant impact on quality of daily life. 
�e locomotion ability is impaired by decreased balance due 
to loss of coordination, dysmetria, tremors, and hypotonia [1]. 
Cerebellar ataxia is a form of ataxia that originates from a 
deficit located in the cerebellum [2]. Its etiology is either 
genetic or it is a consequence of an acquired brain injury 
(ABI). In the latter case, it can be due to a focal lesion as a 
result of hemorrhagic events, traumatic brain injury or brain 
tumor, o�en located in the posterior cranial fossa. Ataxia in 
children and adolescents usually entails a relevant social and 
economic burden, since it involves young subjects that may 
need assistance and restorative treatments to be paid by the 
community throughout all life.

Cerebellar ataxic gait shows some common clinical signs: 
a generalized irregular gait pattern, reduced gait speed and 
cadence, shorter step and stride length, reduced swing phase, 
increase of the step width[3], augmented stance phase and 
double limb support time [4], increased variability in timing 
[1, 5], knee hyperextension, reduced power at the ankle joint, 

loss of smoothness during the gait, and decomposition of 
multijoint movements into a series of single-joint movements 
[6]. �ese signs can increase the exposure to fall risk, reduce 
the endurance during the walk and, in more severe cases, 
require the use of orthosis, limiting a complete access to peer 
activities.

�erefore, the recovery of locomotion is commonly con-
sidered one of the primary goals in rehabilitation of ataxic 
patients.

Previous studies described motor recovery [7] and 
reported successful outcome in patients with degenerative 
ataxia [8–11], while only few low-level evidence publications 
tackle the rehabilitation of patients with ataxia secondary to 
ABI [7].

Two main rehabilitative approaches are usually considered 
[12], named as restorative and compensatory strategy. �e 
former aims at restoring the functional ability through the 
recovery of the neuro-musculoskeletal system, while the latter 
consists of a series of strategies that the patient has to learn to 
get access to a determinate function.

�e choice is guided by the distance from the injury: a very 
early intervention exploits the plasticity mechanisms and the 
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subject has a better chance to regain functions working with 
a restorative approach, trying to re-learn the more correct 
patterns. In contrast, when the distance from the injury 
increases and the residual potential relearning declines, the 
compensatory approach is usually preferred.

In the last years, the advent of advanced technologies in 
rehabilitation and, specifically, of Virtual Reality (VR)-based 
devices, has unfolded new possibilities in the world of reha-
bilitation [13–16]. VR is a promising strategy that incorporates 
many principles recognized as crucial for motor relearning, 
such as high intensity, repetitive and goal-oriented tasks, 
enhanced synchronized sensorial cues and active participation 
[17–19]. Furthermore, the combination of biofeedback has 
already shown to be effective [20]. �e virtual environment is 
suitable for a tailor-made work too, as it can be adapted to the 
individual needs of each patient.

Platforms integrating immersive VR (IVR) with an instru-
mented treadmill and a motion capture system combine 
assessment and rehabilitation purposes. Instrumented tread-
mills are able to acquire gait data recording many consecutive 
steps, differently to traditional gait analysis devices. �is allows 
to evaluate the step variability, which is particularly relevant 
in the ataxic population [21], who exhibits an increased vari-
ability in terms of step length, excursion, and timing of hip, 
knee, and ankle joints [5].

VR training with these kinds of platforms has been previ-
ously studied on children affected by Cerebral Palsy (CP) [22] 
and with ABI [23].

Since there are no studies about the rehabilitation of ataxic 
children and adolescents by means of similar platforms, the aim 
of this work is to investigate the potential of the use of IVR, 
biofeedback, and treadmill walking combined with physiother-
apy, in this population and to highlight the advantages given by 
the assessment of the multistep gait analysis in ataxic subjects.

2. Methods

2.1. Participants.  Patients affected by ABI who exhibited 
ataxia secondary to trauma, brain tumor, stroke, encephalitis, 
anoxia, or arteriovenous malformation were recruited at the 
Scientific Institute Medea. �e inclusion criteria were: signs 
of ataxia, identified by clinical assessment; age between 7 
and 30; mild to moderate gross motor ability–level I–III 
of Gross Motor Function Classification System (GMFCS) 
[24, 25]; compliance and ability to understand and execute 
test instructions. �e exclusion criteria were: severe muscle 
spasticity, a diagnosis of severe learning disability or 
behavioral problems, and visual difficultiesthat would impact 
on function and participation.

�e protocol was approved by the ethics committee of 
Scientific Institute Medea and conducted in accordance with 
the Declaration of Helsinki. Patients or their parents sub-
scribed a written informed consent.

2.2. Gait Real-Time Analysis Interactive Lab.  Medea is equipped 
with an IVR system, the Gait Real-time Analysis Interactive 
Lab (GRAIL) by Motekforce Link (the Netherlands). �is 
device integrates IVR with an instrumented treadmill and 

a motion capture system, that can be used for rehabilitation 
and assessment purposes. It includes a semicircular screen 
where the virtual reality environment is projected and a dual-
belt treadmill, which integrates two force platforms and is 
synchronized with the projected environment. To assure a safe 
use, a harness and two lateral handrails are used (Figure 1(a)).

As a rehabilitative tool, the GRAIL provides biofeedback 
based on kinematic or kinetic gait features, allowing to train 
le� and right body side thanks to the split-belt treadmill, and 
to coach balance and coordination control.

As assessment tool, the GRAIL is equipped with 10 opto-
electronic cameras and three video cameras that, together with 
the two force platforms, can be used to acquire spatial, tem-
poral, kinematic, and kinetic parameters of many consecutive 
steps in real time. �ese data can also be exploited as visual 
feedback to the operator and patient during the training.

2.3. Study Design and Intervention.  Patients underwent 20 
45-minute sessions of training with GRAIL plus 20 45-minute 
sessions of physiotherapy within one month. �e therapeutic 
scheme was customized over the patients’ need, tailoring the 
setting and the difficulty of proposed exergames on patients’ 
skills, and it was oriented to the recovery of balance ability and 
of a correct locomotion pattern.

�e balance training encompassed le�-right shi�ing of 
body weight, monopodalic support, or balance maintenance 
while receiving external swinging stimuli (Figure 1(b)).

�e gait training included gradually increasing difficulty 
exercises, from the control of the center of mass during walking 
without the upper limb support to more challenging tasks, like 
multitasking activities during walking, external perturbations 
(i.e., changes of treadmill slope, single belt sliding, medio-
lateral belt sways) and locomotion with decreased step width 
(i.e., one belt only activated). �e kinetics and kinematics of 
target districts were projected in real time as feedback and 
overlaid to healthy reference values (Figure 1(c)).

Concerning physiotherapy, exercises were aimed at 
reinforcing the activities trained with VR, focusing on 
monopodalic balance training, walking on narrow path, 
walking on irregular path, get up and down the stairs, jump 
and run.

2.4. Outcome Measures.  Patients’ performance was evaluated 
before (T0) and a�er (T1) rehabilitation by means of functional 
scales and three-dimensional gait analysis.

�e Scale for the Assessment and Rating of Ataxia (SARA) 
is a scale developed to quantify the severity of the ataxia from 
0 (no ataxia) to 40 (severe ataxia). It includes motor tasks (that 
investigate the most common deficits, like imbalance, tremors, 
dysmetria, and rhythmic movements) and speech [26].

�e gross motor ability of patients was assessed by 
means of Gross Motor Function Measure (GMFM-88): it 
ranges from 0 (severe deficit) to 100 and is composed of 88 
items divided into 5 sections: A–lying and rolling; B–sitting; 
C–crawling and kneeling; D–standing; E–walking, running, 
and jumping [27].

�e six-minute walking test (6MWT) evaluated walking 
endurance [28], measuring the distance covered over six min-
utes of self-paced walking along a standardized path.
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�e Berg Balance Scale (BBS) assesses patients’ fall risk 
and was used to evaluate patient’s balance ability [29]. BBS is 
composed of 14 items scored with a five-point scale (0–4) 
according to functional level. �e total score ranges from 0 
(high fall risks) to 56 (low fall risks).

�e 3D gait analysis (GA) was acquired on the GRAIL. 
Subjects were asked to walk wearing socks for an adaptation 
period of six minutes on the instrumented treadmill at a fixed 
velocity, customized over the patient’s ability. �en, about 20 
steps were acquired. During this assessment no biofeedback 
was provided with the GRAIL.

At the end of the treatment, qualitative improvements of 
each patient in terms of activities and participation were col-
lected by patients and their families.

2.5. Data Analysis.  Concerning GA data, the Gait Offline 
Analysis Tool was used to load the .mox file, to filter data (2nd 
order Butterworth filter, cut off frequency at 6 Hz), to exclude 
strides with misplaced feet (e.g., foot on both belts or on the 
opposite belt) and to export the kinematics and kinetics traces 
in a .csv file. �e gait parameters were then computed with an 
ad-hoc MATLAB (�e MathWorks®) so�ware that, for each 
step, extracted gait features at hip, knee, and ankle levels for 
le� and right side. Since ataxia is not characterized by laterality, 
the mean value between the right and le� parameters was 
considered.

�e gait parameters computed were: the stance period, 
computed as the percentage ratio between the stance phase 
(from the initial contact of foot and the toe off of the same 
limb) and the gait cycle, the step length, the step width, and 
the gait speed as spatio-temporal parameters; the peak flexion 
power for the ankle, knee, and hip joints for kinetic evalua-
tions; the peak of flexion and extension for the three joints in 
the sagittal plane; the range of motion (ROM) of hip abduc-
tion/adduction, and the ROM of pelvis in the three planes (tilt, 
obliquity and rotation).

To evaluate the variability of gait, for each parameter the 
coefficient of variation (CV) was computed as the percentage 
ratio between the SD and the mean of the steps of each i-th 
subject [30], as in Equation (1).

�e coefficient of variation is not appropriate for negative 
datasets or with values around zero [31]. For parameters that 
assumed values ≤0, the SD has been reported.

�e normality of the data was checked with the Shapiro–
Wilk test. Since not all the measures were normal, nonpara-
metric statistical analysis was carried out; medians and 
interquartile ranges are reported.

A within-group comparison was performed by means of 
the Wilcoxon test.

(1)CV� =
SD�

mean�
100.

Figure 1: (a) �e GRAIL system. (b) Example of balance training exercise: the subject performs a slalom on the snow by shi�ing the body 
weight le� and right. (c) Example of exercise to train locomotion and gait pattern: the kinetics and kinematics of joints during walking are 
projected in real time as feedback.

(a)

(c)(b)
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for the recovery of locomotion and balance in adolescents 
affected by ataxia secondary to ABI.

�e study showed that the training was feasible and well 
tolerated by patients. No subject withdrew from the study, and 
patients and their families gave positive feedbacks in terms of 
engagement and functional recovery.

Our findings support that 20 sessions of treadmill training 
augmented by IVR together with 20 sessions of physiotherapy 
are effective for a significant improvement of balance and loco-
motion functions in ataxic adolescents. �e ataxia level was 
significantly diminished, the gross motor ability was signifi-
cantly improved in terms of standing and walking, and the 
balance and the walking endurance improved as well.

In terms of GA, subjects showed at T0 reduced gait speed, 
shorter step length and swing phase, diminished maximal 
ankle power, reduced knee flexion, and a generalized increase 
in step variability, with respect to their healthy pairs. �ese 
gait features well match with the typical clinical signs of cer-
ebellar ataxic gait [3–6].

Data obtained a�er the proposed treatment showed 
improvements towards the pattern of typically developing 
subjects in terms of step length, gait speed, kinetic of the 
movement at ankle, and kinematic of knee, hip and pelvic 
joints. Evidence of reduction of the variability among steps 
was also obtained, suggesting the achievement of a more 
regular gait pattern. Furthermore, a reduction of step width, 
even if not significant, was observed and the two patients 
that were affected by knee hyperextension showed improve-
ments a�er the combination of IVR and physiotherapy 
treatment.

To help the interpretation of GA, patients outcomes were 
compared with those obtained by a healthy control group of 
16 subjects (mean (SD) age of 10.0 (1.3) years, 15 males). �ese 
data were included in a previous study on autism [32]. �e 
between-group comparison of GA outcomes was performed 
with Mann–Whitney U-test.

�e analysis was carried out with IBM SPSS Statistics v15 
and the significance level was set at 5%.

3. Results

According to the inclusion criteria, 11 subjects (age from 9 to 
27) were recruited for the study. Demographic characteristics 
are summarized in Table 1. Accidentally, only patients with 
GMFCS level of II agreed to participate.

Table 2 shows the results in terms of functional scales.
�e signs of ataxia significantly diminished across the 

training, with a reduction of 20% of the SARA. GMFM-88, 
and its subscales, 6MWT and balance ability showed signifi-
cant improvements a�er the treatment.

Table 3 summarizes results obtained in terms of GA.
A significant variation of step length, gait speed, maximal 

ankle power, maximal degree of knee flexion, and ROM of hip 
during abduction was obtained over time. Furthermore, the 
significant differences observed with respect to the healthy 
control group in terms of step length, gait speed, maximal 
ankle power, maximal knee extension and ROM of pelvic rota-
tion disappeared a�er treatment.

Finally, the CV of step length, gait speed, maximal ankle 
power, and ROM of pelvic obliquity and rotation significantly 
reduced a�er therapy. �is was supported by an overall trend 
of reduction of CV in almost all the parameters.

All the data were collected for the whole group.
Concerning qualitative changes of each patient in terms 

of activities and participation, improvements for 9 patients 
out of 11 were observed. Specifically, three patients had signif-
icant improvement in terms of safety during activities in 
standing and walking; three patients, that had reported diffi-
culties in dual task activities such as walking and speaking 
before the treatment, enhanced their ability to fix a trajectory 
and keep balance while interacting with other people; one 
patient was able to go out alone, using public transports a�er 
the treatment; two patients showed pain decrease due to the 
improvement of their gait pattern.

4. Discussion

Children and adolescents with ataxia exhibit coordinative 
limitations, which o�en affect their locomotion and balance. 
In recent years, more and more attention has been devoted to 
training that exploit the potential of VR in rehabilitative con-
text, but up to now only few studies described improvements 
on children with ABI treated with VR [23, 33], and, to our 
knowledge, none specifically on ataxic patients.

�is manuscript aims at investigating the feasibility and 
effectiveness of a rehabilitation program that exploits IVR, 
biofeedback, and treadmill walking coupled to physiotherapy 

Table 1:  Demographic features of the patients included into the 
study.

Data are reported as median (interquartile ranges). M: male; F: female; y: 
years; AVM: arteriovenous malformation; TBI: traumatic brain injury; GM-
FCS: gross motor function classification system.

Age (y) 16.0 (5.0)
Gender (M/F) 6/5
Time from injury (y) 4.7 (6.7)
Etiology (tumor/AVM/TBI) 9/1/1
GMFCS (I/II/III) 0/11/0

Table 2:  Results of functional scales before (T0) and a�er (T1) 
training.

Data are reported as median (interquartile ranges). �-values refer to the non 
parametric paired Wilcoxon test. SARA: Scale for the assessment and rating 
of ataxia; GMFM-88: gross motor function measure expressed as percent-
age, dimension D (standing) and E (walking); 6MWT: six minute walking 
test; BBS: Berg balance scale.

T0 T1 �-value
SARA 10.5 (4.5) 8.5 (2.8) 0.012
GMFM-88 97.0 (4.0) 98.0 (2.5) 0.004
GMFM-D 92.0 (4.0) 97.0 (3.5) 0.008
GMFM-E 90.0 (14.0) 94.0 (7.5) 0.001
6MWT 500 (96) 548 (100) 0.005
BBS 53.0 (3.5) 54.0 (2.0) 0.016
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However, its performance in young patients with ABI has been 
previously studied [23], with comparable improvements in 
terms of gross motor abilities (GMFM-D improved of 6.6% in 
ABI and of 5.4% in ataxic patients; GMFM-E improved of 
11.5% in ABI and of 4.4% in ataxic patients), but smaller ones 
in terms of 6MWT (improvements of 60.0% in ABI and of 9.6% 
in ataxic subjects). However the different mean value at baseline 
(277 m vs 500 m in the current work) may have limited the 
improvements due to ceiling effect (95% of confidence interval 
in age-matched healthy population is 651–742 m [38]).

Modifications induced by training based on IVR and phys-
iotherapy look effective in modifying both the locomotion 
pattern as a whole and the control of the local districts in ataxic 
patients. Indeed, the present work supports that the treatment 
induces a modification of the gait kinematics. With respect to 
other technologically-advanced tools, such as robot-assisted 

Comparison among our results and what was previously 
reported is limited by the paucity and low-level of evidence 
reported on ataxia [7]. Previous case-studies have shown 
some improvements induced by treadmill training or virtual 
exergames on ataxic adults. �ree case reports evaluated five 
adult ataxic patients (three secondary to traumatic brain 
injury and two secondary to tumor resection) who underwent 
trunk exercises and treadmill training with body weight 
support (15 and 30 sessions). �e participants obtained some 
improvements in terms of BBS and gait [34–36]. Differently, 
no evidence of improvements induced by a four-week 
training with VR exergames on five ataxic adults have been 
reported in terms of balance ability and gait parameters, 
although SARA highlighted progresses [37].

�e effectiveness of IVR treadmill training plus 
physiotherapy on ataxic adolescents has never been investigated. 

Table 3: Temporal, spatial, kinematics and kinetics characteristics acquired with gait analysis on GRAIL before (T0) and a�er (T1) 
training.

Data are reported as median (interquartile ranges); CV: coefficient of variation; SD: standard deviations; ROM: range of motion; flex: flexion; ext: extension; 
�-val: � values. � values refer to the nonparametric paired Wilcoxon test in column “T0 vs T1”, while they refer to the nonparametric Mann–Whitney  
U-test in column “T0 vs healthy” and “T1 vs healthy”.

T0 T1 Healthy �-val T0 vs T1 �-val T0 vs healthy �-val T1 vs healthy
Stance% 69.4 (1.7) 69.1 (2.1) 67 (2.5) 0.123 0.001 0.008
CV% 4 (1.6) 3 (1.8) 2.1 (1.3) 0.175 0.013 0.094
Step length [cm] 36.6 (2.5) 42.7 (8) 42.1 (10) 0.001 0.019 0.863
CV% 12 (3.6) 9.4 (3.4) 7.5 (2.3) 0.001 0.004 0.225
Step width [cm] 18.9 (7) 16.6 (4.1) 15 (5) 0.206 0.190 0.387
CV% 16.9 (6.2) 19.6 (8.9) 14 (5) 0.147 0.226 0.132
Gait speed [cm/s] 66.9 (10.7) 78.1 (12.1) 88.4 (24.9) 0.001 0.000 0.057
CV% 10.2 (4.8) 8.5 (3.2) 5.4 (1.1) 0.019 0.000 0.000
Max ankle power [W] 0.9 (0.2) 1.3 (0.5) 1.3 (1.3) 0.020 0.008 0.477
CV% 31.5 (15) 24.1 (8.5) 28.2 (12.4) 0.002 0.215 0.692
Max knee power [W] 0.6 (0.3) 0.6 (0.3) 0.9 (0.3) 0.322 0.003 0.014
CV% 27 (12.9) 26.1 (7.4) 29.8 (13.6) 0.492 0.895 0.732
Max hip power [W] 0.4 (0.2) 0.5 (0.1) 0.9 (0.4) 0.105 0.001 0.016
CV% 25.3 (8.7) 23.1 (7.6) 20.8 (9.3) 0.193 0.179 0.895
Max ankle flex [°] 11.9 (2.3) 13.9 (3.1) 17.6 (2.7) 0.067 0.001 0.002
CV% 11.2 (7.5) 12.3 (7) 7.3 (4.3) 0.520 0.019 0.021
Max ankle ext [°] 6.1 (3.5) 6.7 (4.9) 5.4 (4.7) 0.577 0.711 0.289
SD∗ 2.2 (1.2) 2.3 (1) 2.9 (2.5) 0.898 0.474 0.474
Max knee flex [°] 57 (6.8) 59 (5.2) 63.2 (5) 0.032 0.001 0.005
CV% 6.2 (2.9) 6.2 (2.2) 3.8 (1.7) 0.240 0.004 0.007
Max knee ext [°] −3.1 (3.4) −3 (4.3) 0.1 (4.4) 0.966 0.025 0.051
SD∗ 2.2 (0.5) 1.9 (0.8) 1.5 (1.1) 0.966 0.160 0.289
Max hip flex [°] 33.3 (7.3) 35.3 (9.4) 32.4 (10.2) 0.278 0.786 0.388
CV% 6 (2.3) 5.8 (1.5) 5.5 (2.3) 0.638 0.245 0.473
Max hip ext [°] 2.2 (7.5) 1.2 (7.8) 3.4 (9.6) 0.413 0.336 0.388
SD∗ 2.6 (1.1) 2.5 (1.1) 2.1 (0.8) 0.700 0.098 0.160
ROM hip abd [°] 9.2 (4.3) 11.9 (4) 11.7 (4) 0.001 0.145 0.863
CV% 16.9 (7.9) 17 (3.9) 15.3 (1.9) 0.365 0.097 0.287
ROM pelvic tilt [°] 4.9 (0.9) 5.2 (1.8) 4.2 (1.2) 0.102 0.022 0.005
CV% 30.2 (4.5) 28.7 (3.1) 26 (6.2) 0.240 0.040 0.174
ROM pelvic ob [°] 5.7 (2.1) 6.4 (1.9) 6.6 (2.4) 0.413 0.604 0.980
CV% 23.7 (4.8) 18.3 (7.2) 17.7 (4.8) 0.010 0.006 0.415
ROM pelvic rot [°] 10.8 (4.4) 11.5 (4.7) 8.4 (5.1) 0.175 0.120 0.013
CV% 28.1 (9.1) 28.5 (6.6) 28.8 (8.9) 0.042 0.711 0.748
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(ii)	� Modifiability of locomotion and balance of ataxic 
adolescents, even in chronic condition.

(iii)	� Reliable evaluation of gait pattern and step variability 
in ataxic population.
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gait training applied in the context of ABI rehabilitation, the 
effects obtained combining physiotherapy with IVR treadmill 
training seems to be particularly promising at ankle and knee 
levels. Indeed, a previous study on 23 children with ABI 
showed improvements induced by 20 sessions of robot-as-
sisted gait training in terms of gross motor abilities, walking 
endurance and gait kinematics at hip level, while no changes 
were observed for more distal districts [39].

One of the strengths of the present work is that we exploited 
the GRAIL technology to quantitatively analyze the variability 
of the locomotion, which is a crucial aspect of ataxic patients. 
�eir high gait irregularity prevents from obtaining reliable 
results by using standard gait analysis, during which the user 
usually selects one or few steps that should represent the gait 
pattern of a single patient. Due to the specificity of ataxia, it is 
mandatory to use a multistep approach to quantify ataxic loco-
motion. Our results, based on the multistep gait analysis avail-
able through GRAIL, give encouraging evidence of reduction 
of step variability, toward the pattern of healthy individuals.

A limit of this work is that, although GMFCS has been 
used in the past for the description of patients with ABI [25], 
we are not aware of any systematic validation in children with 
this pathology. Furthermore, the increased effectiveness of a 
combined IVR treadmill training plus physiotherapy with 
respect to traditional approaches has to be deepened in the 
future by means of randomized controlled trials. �e gener-
alizability of the results of the present work is currently limited 
by the little sample size, the heterogeneity of patients in terms 
of age, and the absence of a control group.

However, it is noteworthy that the population analyzed 
had a median (interquartile) distance from trauma of 4.7 
(6.7) years. As studied by Kuper and colleagues, the sponta-
neous recovery of balance ability in children a�er cerebellar 
tumor resection is relevant over the first three months 
post-surgery and continues over the first year post surgery 
[40]. �e recovery of the remaining motor ability shown in 
the present work may thus be ascribed to the rehabilitation 
treatment.

5. Conclusion

To conclude, the present study shows the first evidence of the 
effectiveness of immersive virtual reality treadmill training 
together with standard physiotherapy on ataxic adolescents. 
�e intervention proposed was customized on patients’ need; 
it was ecological and highly motivating. Forty sessions of such 
training produced significant improvements in locomotion 
pattern, balance, and reduction of gait variability, towards 
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