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ABSTRACT
Introduction. Recent studies highlight the crucial regulatory roles of transposable
elements (TEs) on proximal gene expression in distinct biological contexts such as
disease and development. However, computational tools extracting potential TE –
proximal gene expression associations from RNA-sequencing data are still missing.
Implementation. Herein, we developed a novel R package, using a linear regression
model, for studying the potential influence of TE species on proximal gene expression
from a given RNA-sequencing data set. Our R package, namely TEffectR, makes use of
publicly available RepeatMasker TE and Ensembl gene annotations as well as several
functions of other R-packages. It calculates total read counts of TEs from sorted and
indexed genome aligned BAM files provided by the user, and determines statistically
significant relations between TE expression and the transcription of nearby genes under
diverse biological conditions.
Availability. TEffectR is freely available at https://github.com/karakulahg/TEffectR
along with a handy tutorial as exemplified by the analysis of RNA-sequencing data
including normal and tumour tissue specimens obtained from breast cancer patients.

Subjects Bioinformatics, Genomics
Keywords Transposable elements, Gene regulation, Gene expression, Regression, Linear model,
R package

INTRODUCTION
Transposable elements (TEs) are DNA sequences that are able to translocate themselves
along a host genome (Biemont & Vieira, 2006). They were discovered by Barbara
McClintock in the 1950s in maize and defined for the first time as controlling elements
on the action of nearby genes (McClintock, 1956). TEs constitute a considerable portion of
most eukaryotic genomes (Kazazian Jr, 2004; Kelly & Leitch, 2011; Lander et al., 2001) and
are divided into two main classes according to their transposition mechanism (Wicker et
al., 2007). Class I elements (also known as retrotransposons) use RNA intermediates and
a reverse transcriptase whereas Class II elements (also known as DNA transposons) act
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throughDNA intermediates for their translocation (Wicker et al., 2007). Thesemechanisms
are also called as ‘‘copy-and-paste’’ and ‘‘cut-and-paste’’ transpositions, respectively. In
addition to acting as key players in genome size expansion and evolution (Kazazian
Jr, 2004), previous studies highlighted the critical roles of TEs in distinct biological
contexts, such as cancer (Hancks & Kazazian Jr, 2016; Johanning et al., 2017; Lee et al.,
2012), embryonic development (Yandim & Karakulah, 2019b), senescence and aging (De
Cecco et al., 2019), and stress response (Rech et al., 2019).

In parallel to the advent of next generation sequencing technologies, considerable
attention has been paid to elucidate the regulatory activities of TEs on gene expression on
a genome-wide scale. TEs are now recognized as the natural source of diverse regulatory
sequences (Trizzino et al., 2017) including the promoters (Jordan et al., 2003), transcription
factor binding sites (Bourque et al., 2008; Karakulah, 2018), enhancers (Chuong et al.,
2013), and silencers (Bire et al., 2016) in the host genome. For example, MER39, a human
long terminal repeat (LTR), acts as an endometrium-specific promoter and plays an
essential role for the expression of the prolactin gene during pregnancy (Emera et al.,
2012). Similarly, an MT-C retrotransposon-derived promoter is required to produce
the oocyte-specific isoform of the Dicer gene in mice and its absence leads to female
infertility (Flemr et al., 2013). It has also been reported in a comprehensive computational
study that the majority of primate-specific regulatory sequences are originated from TEs
(Jacques, Jeyakani & Bourque, 2013). In line with this, the influence of TEs on proximal
gene expression was documented both in rat (Dong et al., 2017) and maize (Makarevitch et
al., 2015). Furthermore, housekeeping genes were distinguished by their distinct repetitive
DNA sequence environment (Eller et al., 2007). When it comes to understanding the links
between TEs and proximal genes, it is postulated that TE intermediates (DNA or RNA)
may interfere with the transcription of adjacent genes either directly or through recruited
factors, and that an activated or repressed TE has the potential to modulate the chromatin
environment of such genes and thereby influence their expression states (Elbarbary, Lucas
& Maquat, 2016; Huda et al., 2009).

Despite the above-mentioned efforts on dissecting the influence of TEs on the expressions
of proximal genes, a systematic and statistically valid approach is still missing, particularly
due to the fact that TEs have many copies in the genome. In other words, it is challenging to
link a particular TE in a specific location to a particular gene of interest. Still, a notable effort
has been devoted to developing computational methods on the matter. Among these, two
online tools, PlanTEnrichment (Karakulah & Suner, 2017) and GREAM (Chandrashekar,
Dey & Acharya, 2015), allow their users to determine overrepresented TEs that are located
adjacently of a given list of genes in plants andmammals, respectively. RTFAdb (Karakulah,
2018), using transcription factor binding profiles of the Encyclopedia of DNA Elements
(ENCODE) project (The ENCODE Project Consortium’, 2012), can be utilized for exploring
the regulatory roles of TEs. TETools (Lerat et al., 2017) and RepEnrich (Criscione et al.,
2014) are popular computational tools to study differential expression of TEs under
different biological conditions. Additionally, RepEnrich can help to provide insights into
the transcriptional regulation of TEs by linking chromatin immunoprecipitation followed
by sequencing (ChIP-seq) and expression profiling data sets. However, these tools do not
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allow one to directly link the expression of location specific TEs to a given proximal gene.
Hence, we developed a novel R (https://www.r-project.org) package, using linear regression
model (LM), for dissecting significant associations between TEs and proximal genes in a
given RNA-sequencing (RNA-seq) data set. Our R package, namely TEffectR, makes use
of publicly available RepeatMasker TE (http://www.repeatmasker.org) and Ensembl gene
annotations (https://www.ensembl.org/index.html) and calculate total read counts of TEs
from sorted and indexed genome aligned BAM files. Then, it predicts the influence of TE
expression on the transcription of proximal genes under diverse biological conditions. In
order to demonstrate the utility of TEffectR, we examined a publicly available RNA-seq
data set collected from breast cancer patients. A detailed background of LM is also given
in the following section.

MATERIALS AND METHODS
Modeling gene expression with linear regression model
RNA-seq method yields count-type data rather than continuous measures of gene
expression. Hence, generalized linear models (GLM) are used for modeling and statistical
analysis of RNA-seq data sets, which are assumed to follow Poisson distribution or negative
binomial distribution. In order to test differential gene expression, a number of analytical
methods, including edgeR (Robinson, McCarthy & Smyth, 2010), and DESeq2 (Oshlack,
Robinson & Young, 2010) use GLM where expression level of each gene is modeled as
response variable while biological conditions (e.g., control vs experimental groups) are
considered as explanatory variables or predictors. However, after the transformation of
RNA-seq count data to log2-counts per million (logCPM) with Limma’s voom (Law et al.,
2014) function, gene expression profiles can be ready for linear modelling.

LM has been used so far for modeling the regulatory effects of genetic and epigenetic
factors on gene expression (Gerstung et al., 2015; Li, Liang & Zhang, 2014). For example,
Li et al. developed RACER (Li, Liang & Zhang, 2014), using regression analysis approach,
for exploring potential links between gene expression levels and a number of predictors,
including DNA methylation level, copy number variation, transcription factor occupancy
and microRNA expression level. Using a similar approach, TEffectR considers given
biological conditions or covariates and TE expression levels as predictors to explain
significant differences in gene abundances on a gene-by-gene basis. TEffectR assumes that
each TE has a potential to influence the expression of a proximal gene. Accordingly, the
expression level of a given gene can be modelled as follows:

Gene expressioni=β0+β1TE1i+···+βnTEni+βmCovaritesmi+εi,εi∼N (0,σ 2)

• where i denotes the genes, and Geneexpressioni represents the normalized log2(CPM)
value of the ith gene.
• TEni stands for the normalized log2(CPM) expression value of n th TE which is located
within the upstream of the ith gene.
• Covaritesmi indicates covariate effects in the model, such as tissue type, age, gender, etc.
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Implementation of the TEffectR package
The TEffectR package was written in R language (v.3.5.3) and it uses the functions of
diverse computational tools. To extract gene annotation data from Ensembl database
and manipulation of RepeatMasker annotation files, TEffectR respectively utilizes
biomaRt (Durinck et al., 2009) and biomartr (Drost & Paszkowski, 2017) packages.
The GenomicRanges (Lawrence et al., 2013) tool is used to identify TE sequences
that are located in the neighborhood of the gene list provided by users. For data
and string manipulation steps of the TEffectR workflow, we made use of dplyr
(https://dplyr.tidyverse.org/), rlist (https://renkun-ken.github.io/rlist/) and stringr
(https://stringr.tidyverse.org/) packages. BEDtools (Quinlan, 2014) and Rsamtools
(https://bioconductor.org/packages/release/bioc/html/Rsamtools.html) were employed
for the quantification of TE-derived sequencing reads in a given list of indexed and genome
aligned BAM files. Two popular differential gene expression analysis packages for RNA-seq
data sets, edgeR and limma, were used for filtering, normalization and transformation of
expression values of both genes and TEs. Statistical significance of each LM and covariate
effect in the corresponding regression model were calculated with lm(), which is a built-in
function of R.

Data collection and processing for case study
In order to demonstrate the usage of TEffectR package, we made use of a publicly available
whole transcriptome sequencing dataset including normal and tumour tissue specimens
obtained from 22 ER+/HER2- breast cancer patients (GEO Accession ID: GSE103001)
(Wenric et al., 2017). These transcriptome libraries were particularly included as they
were prepared without poly(A) selection method and thereby allowing the measurement
of TE expression uniformly (Solovyov et al., 2018). We downloaded sequencing reads in
FASTQ file format from Sequence Read Archive (Leinonen et al., 2011) (SRA Accession
ID: SRP116023) using SRA Tool Kit v.2.9.0 with ‘‘fastq-dump –gzip –skip-technical –
readids –dumpbase –clip –split-3’’ command. Next, sequencing reads were aligned to the
human reference genome GRCh38 (Ensembl version 78) using the splice-aware aligner
HISAT2 v2.1.0 (Kim, Langmead & Salzberg, 2015) with ‘‘hisat2 -p -dta -x {input.index}
-1 {input_1.fq} -2 {input_2.fq} -S {out.sam}’’ parameters. Stringtie v1.3.5 (Pertea et al.,
2015) were used with ‘‘stringtie -e -B -p -G {input.gtf} -A {output.tab} -o {output.gtf} -l
{input.label}{input.bam}’’ parameters for expression quantification at the gene level. We
considered only the uniquely mapped reads overlapping TE regions for the expression
quantification of TEs. Multi-mapped reads could cause ambiguity when analysing the local
effects of TEs on proximal genes as the repeats have many copies on the genome (Goerner-
Potvin & Bourque, 2018; Treangen & Salzberg, 2011). To remove multi- and unmapped
reads from BAM files, ‘‘samtools view -bq 60 -o {out.bam}{input.bam}’’ command was
used. If the user would like to include the multi-mapped reads, they can skip this last
command.
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RESULTS
Overview of the TEffectR package pipeline
The TEffectR package includes a set of functions (Fig. 1) that allows the identification
of significant associations between TEs and nearby genes for any species whose repeat
annotation is publicly available at the RepeatMasker website (http://www.repeatmasker.
org/genomicDatasets/RMGenomicDatasets.html). Currently, the complete annotation
for over 60 species (from primates to nematodes) can be downloaded from this main
repository and can be analyzed with our R package. The TEffectR package works initially
by manipulating the repeat annotation file and make it ready for downstream analysis. In
the following step, our tool takes a raw count matrix of RNA-seq dataset from the user
where the first column includes the gene symbols or Ensembl IDs and the other columns
contain count values of genes across samples. Then, TEffectR retrieves genomic position
of each gene in the respective genome using the given count matrix. Afterwards, based on
the user-defined parameters, TEffectR determines all TE species that are located within the
upstream regions of each gene individually.

The TEffectR package contains a handy function for obtaining sequencing read counts,
which are aligned to each TE region from a given list of sorted and indexed BAM files.
Additionally, it can calculate the total read counts of each TE associated with a certain
gene. In the following step, TEffectR merges all read count values of both genes and TEs
into a single count matrix. This count matrix is then filtered, normalized with Trimmed
Mean of M-values (TMM) method and transformed for linear modeling using voom()
function of the limma package. In the final step, TEffectR fits a linear regression model
with customized designmatrix for each gene, and it calculates adjusted R-square values and
significance of the model, and estimates the model parameters. The users can output the
results of all calculations in tab separated values (tsv) file format to assess the contribution
of each covariate (e.g., individual repeats) to the model.

Descriptions of the functions in the TEffectR package
The TEffectR package provides six unique functions for predicting the potential influence
of TEs on the transcriptional activity of proximal genes in the respective genome:
TEffectR::rm_format: This function takes RepeatMasker annotation file as input and
extracts the genomic location of each TE along with repeat class and family information.
The output of rm_format() function is used while searching TEs that are located in the
upstream region of the genes of interest.
TEffectR::get_intervals: This function is used to retrieve the genomic locations of all genes
in a given read count matrix by the user. Row names of the expression matrix must be
one of the following: (i) official gene symbol, (ii) Ensembl gene or (iii) transcript ID. The
output of this function is utilized while determining distance between genes and TEs.
TEffectR::get_overlaps: Takes the genomic intervals of genes and TEs as input. Besides,
the user also requires to provide three additional parameters: (i) the maximum distance
allowed between the start sites of genes and TEs, (ii) whether genes and TEs must be located
in same strand and (iii) TE family or subfamily name (e.g., SINE, LINE). This function
helps to detect TEs that are localized upstream of the genes of interest. The ‘‘distance’’
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1. Download and parse
RepeatMasker annotation

rm_format() function

2. Retrieve gene annotation 
from Ensembl database

get_intervals() function

3. Identify TEs overlapping
within the upstream of 

given genes
get_overlaps() function

4. Quantify TE expression
count_repeats() function

input BAM Files
(provided by the user)

Raw gene counts
(provided by the user)

5. Summarize TE expression
summarize_repeat_counts()

function

6. Preprocess, transform and
apply linear modelling

apply_lm() function

Significant
associations

Figure 1 The workflow of TEffectR package. The package contains six core functions for the identifica-
tion of the potential links between TEs and nearby genes at genome-wide scale. TEffectR requires two in-
puts provided by the user: (i) a raw gene count matrix and (ii) genomic alignments of sequencing reads in
BAM file format.

Full-size DOI: 10.7717/peerj.8192/fig-1

parameter of this function could be determined by the user based on the interest of the TE
localization. The user can either give a positive value, which would take the TEs localized
in the upstream region of the gene; or a negative value that would correspond to the
downstream of the gene. Moreover, the absolute distance is not limited; however, we used
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the value of ‘‘5000’’ to test our R package with the TEs located within the 5kb upstream
regions of the genes, as previous studies confirmed that TEs located within 5kb upstream of
genes provide binding sites for transcription factors and provide a possible link to nearby
gene expression (Bourque et al., 2008; Nikitin et al., 2018). However, if the user aims to
study long-range effects, then the distance could be set to a higher value.
TEffectR::count_repeats: This function returns a raw count matrix of the total number of
reads originated from TE sequences. Only the reads exhibiting 100% overlap with given
TE regions are considered and the user needs to specify individual path of each BAM file
as input.
TEffectR:: summarize_repeat_counts: Takes the output of count_repeats() function as
input. It is used to calculate the total number of sequencing reads derived from each TE
that is located upstream of a certain gene.
TEffectR::apply_lm: This core function applies filtering (≥10 reads), TMM normalization,
voom transformation and LM to the given raw count expression values, respectively. It
takes four arguments: (i) raw gene counts, (ii) raw TE counts, (iii) a data frame containing
user-defined covariates (e.g., tissue type, disease state), and (iv) the output of get_overlaps()
function. When covariates are determined, one may include all the biological factors to
see if they could explain the expression of the gene in conjunction with TE expression.
However, one may as well only use the TE expression as the single predictor without the
inclusion of further covariates.

The apply_lm() function returns three outputs: (i) a tsv file containing the p-value of
each model, significance level of covariates and associated adjusted R squared values. The
generated tab delimited file contains the list for the LM results of all genes that have at least
one TE within the region of interest as given by this function. (ii) another tsv file containing
log2(CPM) values of genes and TEs included in LM, and (iii) a group of diagnostic plots
for each significant model (p< 0.05).

A case example of TEffectR analysis using the RNA-seq data obtained
from healthy and tumor tissues of ER+/HER2- breast cancer patients
Breast cancer pathogenesis was associated with genomic instability (Kwei et al., 2010),
which often presents itself with the aberrant expression of TEs (Aguilera & Garcia-Muse,
2013; Burns, 2017). TEs including LINE, SINE and LTR elements were already shown to be
dysregulated in this disease (Yandım & Karakülah, 2019a; Bakshi et al., 2016; Bratthauer,
Cardiff & Fanning, 1994; Johanning et al., 2017); with little or no information on the
subtypes of these repeats. Also, there is a paucity of information on the impact of such
dysregulatory events on the expressions of genes. To demonstrate the usage of the TEffectR
package on a real case example, we ran the TEffectR package on the transcriptome RNA-seq
data set of ER+/HER2- breast cancer patients. Table 1 summarizes a group of significant
genes involved in breast cancer pathogenesis, diagnosis and prognosis (Abdel-Fatah et
al., 2014; Chung et al., 2015; Dunning et al., 2016; Forero et al., 2016; Hammerich-Hille et
al., 2010; Heinrich et al., 2010; Heo et al., 2013; Kasper et al., 2005; Kwok et al., 2015; Li
et al., 2014; Storm et al., 1995; Tang et al., 2018; Tishchenko et al., 2016; Wei et al., 2011),
where TEffectR presented a linear regression model that shows the associations between
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Table 1 Examples of significant associations of LINE, SINE, LTR and DNA transposons with genes that were previously linked to breast cancer as TEffectR outputs
along with multiple covariates. Expression levels of TEs within the upstream 5 kb regions of the given genes and other covariates such as the tissue type (healthy vs. tu-
mor) or patient number were included in the linear regression model. The p-value of the model indicates the significance of the linear model. P-values for each covari-
ate indicate whether these factors have significant associations with the expression of the given gene. Adjusted r-square score indicates the precision of the model with sig-
nificant covariate associations in terms of predicting the expression of the gene. For example, an adjusted R square of 0.8422 indicates that the linear model could explain
84.22% of the gene’s expression.

Link to breast cancer Gene name TE name r squared Adjusted
r-squared

Model
p-value

Individual
p-values

Biomarkera KRT8 (CK8) L2c (LINE) 0.8532 0.8422 1.026E–16 L2c: 1.356E–13
Tissue type: 0.0332
Patient: 0.7974

Prognosisb SLC39A6 (LIV-1) L2b
(LINE)

0.7231 0.7023 3.100E–11 L2b: 7.536E–08
Tissue type: 0.0013
Patient: 0.1024

Molecular pathogenesisc SAFB L1MB7 (LINE) 0.5131 0.4766 2.107E–06 L1MB7: 1.114E–07
Tissue type: 0.6112
Patient: 0.1394

Susceptibilityd and prognosise CHEK2 AluJb, AluSx AluS
(SINE)

0.6362 0.5883 1.645E–07 AluJb: 0.0433
AluSx: 0.0426
AluSz: 0.0005
Tissue type: 0.0023
Patient: 0.0033

Susceptibilityf and prognosisg FEN1 MIR3
(SINE)

0.5545 0.5211 3.703E–07 MIR3: 2.572E–06
Tissue type: 0.0122
Patient: 0.3886

Molecular genetics and pathogenesish CENPL AluSx3, AluY
(SINE)

0.5489 0.5027 2.118E–06 AluSx3: 0.0007
AluY: 0.2000
Tissue type: 0.0066
Patient: 0.2467

Prognosisi MCM4 MLT1D
(LTR)

0.5733 0.5413 1.587E–07 MLT1D: 0.0012
Tissue type: 1.544E–06
Patient: 0.1674

Susceptibilityj RMND1 LTR5_Hs
(LTR)

0.4318 0.3892 4.279E–05 LTR5_Hs: 1.782E–05
Tissue type: 0.4280
Patient: 0.1193

Molecular pathogenesis and prognosisk CPNE3 MLT1H2
(LTR)

0.3910 0.3453 0.0002 MLT1H2: 0.0002
Tissue type: 0.0055
Patient: 0.9407

Biomarker and prognosisl HLA-DPB1 hAT-1_Mam
(DNA)

0.8318 0.8192 1.548E–15 hAT-1_Mam: 1.092E–14
Tissue type: 0.5467
Patient: 0.2850

(continued on next page)
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Table 1 (continued)

Link to breast cancer Gene name TE name r squared Adjusted
r-squared

Model
p-value

Individual
p-values

Molecular pathogenesism and biomarkern HSPB2 (HSP27) MER5B
(DNA)

0.7756 0.7587 4.791E–13 MER5B: 8.050E–07
Tissue type: 0.5756
Patient: 0.1733

Molecular pathogenesiso PARP9 MER5B
(DNA)

0.5929 0.5624 6.287E–08 MER5B: 1.141E–06
Tissue type: 0.0054
Patient: 0.5464

Notes.
aHeo et al. (2013).
bKasper et al. (2005).
cHammerich-Hille et al. (2010).
dNagel et al. (2012)
eLi et al. (2014); Li, Liang & Zhang (2014)
fChung et al. (2015).
gAbdel-Fatah et al. (2014).
hTishchenko et al. (2016).
iKwok et al. (2015).
jDunning et al. (2016).
kHeinrich et al. (2010).
lForero et al. (2016).

mWei et al. (2011).
nStorm et al. (1995).
oTang et al. (2018).
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the expressions of these genes and that of the uniquely mapped TE sequences located
within their upstream 5 kb flanking regions (Fig. 2). These genes were only given to
present a contextual example and were selected based on breast cancer literature from the
tab-delimited file that contains all genes with at least one TE in their upstream regions.
The LM could explain the effect of these TEs on the variation in gene expression along
with other covariates such as the type of tissue (i.e., healthy or tumor) or the individual
patients. For example, two of the dependent variables; the LINE element ‘‘L2b’’ and ‘‘Tissue
type’’ (p= 0.0013) could statistically significantly predict 70.30% of the expression of the
‘‘SLC39A6 (LIV-1)’’ gene whereas the covariate ‘‘patient’’ (p= 0.1024) could not explain
the variation in this particular gene’s expression in this statistically significant model
(p< 0.001). On the other hand, even though the expression of LTR5_Hs could predict
38.92% of ‘‘RMND1" expression statistically significantly (p< 0.001), neither the type of
tissue (healthy or tumor; p= 0.4280) nor the individual patient (p= 0.1193) could explain
the expression of this gene. From the perspective of a molecular biologist, these results may
imply that SLC39A6 gene could potentially be involved in the tumorigenesis of the breast
whereas this was not the case for RMND1, and the relevant repeat motif upstream of both
genes could be suitable for further experimental investigation in terms of its potential to
influence the expression of the proximal gene. These results may have implications on the
biological roles of TEs (e.g., L2b) on breast cancer-related gene expressions (e.g., SLC39A6)
and could indicate their potential roles in the carcinogenesis of the breast where the tissue
type (healthy vs. tumor) p-value of the LM result is less than a significant threshold (i.e.,
p< 0.05).

DISCUSSION
Repetitive DNA and its regulatory effects on chromatin environment and gene expression
have been recognized well since the early years that follow the discovery of chromatin
modifications (He et al., 2019; Huda et al., 2009;Martens et al., 2005). Dynamic expression
patterns of TEs during distinct stages of human embryonic development (Garcia-Perez,
Widmann & Adams, 2016; Grow et al., 2015; Yandim & Karakulah, 2019b), where the
whole genome is tightly regulated in a highly orchestrated manner, and the power of TEs
to modify gene expression patterns by various routes (Garcia-Perez, Widmann & Adams,
2016), highlight the importance of studying the links of TE expression with proximal
gene transcription. TEffectR does not only provide a linear regression model between the
expression of TEs and a gene in a given genomic location, but it also presents a platform to
make this information traverse through biological contexts such as cancer, treatment, age,
etc. The option of adding a desired number of covariates along with TEs that are present in
a desired distance interval from a given gene allows one to study the associations between
TEs and genes along with multiple factors. Substantial studies suggest that some human
gene promoters are derived from TEs (Cohen, Lock & Mager, 2009) and that some TEs
could act as distal enhancers (Kunarso et al., 2010). Still, it should be noted that significant
associations documented via TEffectR do not necessarily mean that a given TE indeed has
an influential effect on the transcription of the proximal gene. Conversely, transcriptional
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Figure 2 Scatter plots that demonstrate the correlations of normalized read counts of genes given in Table 1 with the normalized read counts of
TEs present in their upstream 5-kb regions. (CPM: counts per million).

Full-size DOI: 10.7717/peerj.8192/fig-2

activation of a given gene could also influence the expression of the nearby TE, and the
TE might not have an effect on gene expression at all. This is why functional experiments
should always be performed to clearly answer crucial biological questions regarding this
matter, where TEffectR acts as a useful guideline to point out significant associations.

CONCLUSION
The highly complex interactions among the regulatory networks of the genome are at
the center of attention of many areas of molecular biology, developmental biology and
epigenetics. Here, we present TEffectR, an R package, which elaborately dissects the
associations between the expressions of genes and the transposable elements nearby them
in a unified linear regression model. The inclusion of a desired number of factors as
covariates allows a biologist to study such associations in a broader context.

Karakülah et al. (2019), PeerJ, DOI 10.7717/peerj.8192 11/20

https://peerj.com
https://doi.org/10.7717/peerj.8192/fig-2
http://dx.doi.org/10.7717/peerj.8192


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
Gökhan Karakülah and Aslı Suner are Academic Editors for PeerJ.

Author Contributions
• GökhanKarakülah conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, authored or reviewed drafts of the paper, approved the final draft.
• Nazmiye Arslan conceived and designed the experiments, performed the experiments,
contributed reagents/materials/analysis tools, authored or reviewed drafts of the paper,
approved the final draft.
• Cihangir Yandım conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, approved the final draft.
• Aslı Suner conceived and designed the experiments, analyzed the data, contributed
reagents/materials/analysis tools, prepared figures and/or tables, authored or reviewed
drafts of the paper, approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The analysis pipeline is available at https://github.com/karakulahg/TEffectR.

REFERENCES
Abdel-Fatah TM, Russell R, Albarakati N, Maloney DJ, Dorjsuren D, Rueda OM,Mose-

ley P, Mohan V, Sun H, Abbotts R, Mukherjee A, Agarwal D, Illuzzi JL, Jadhav A,
Simeonov A, Ball G, Chan S, Caldas C, Ellis IO,Wilson 3rd DM,Madhusudan S.
2014. Genomic and protein expression analysis reveals flap endonuclease 1 (FEN1)
as a key biomarker in breast and ovarian cancer.Molecular Oncology 8:1326–1338
DOI 10.1016/j.molonc.2014.04.009.

Aguilera A, Garcia-Muse T. 2013. Causes of genome instability. Annual Review of
Genetics 47:1–32 DOI 10.1146/annurev-genet-111212-133232.

Bakshi A, Herke SW, Batzer MA, Kim J. 2016. DNA methylation variation of human-
specific Alu repeats. Epigenetics 11:163–173 DOI 10.1080/15592294.2015.1130518.

Biemont C, Vieira C. 2006. Genetics: junk DNA as an evolutionary force. Nature
443:521–524 DOI 10.1038/443521a.

Bire S, Casteret S, Piegu B, Beauclair L, Moire N, Arensbuger P, Bigot Y. 2016.Mariner
transposons contain a silencer: possible role of the polycomb repressive complex 2.
PLOS Genetics 12:e1005902 DOI 10.1371/journal.pgen.1005902.

Karakülah et al. (2019), PeerJ, DOI 10.7717/peerj.8192 12/20

https://peerj.com
https://github.com/karakulahg/TEffectR
http://dx.doi.org/10.1016/j.molonc.2014.04.009
http://dx.doi.org/10.1146/annurev-genet-111212-133232
http://dx.doi.org/10.1080/15592294.2015.1130518
http://dx.doi.org/10.1038/443521a
http://dx.doi.org/10.1371/journal.pgen.1005902
http://dx.doi.org/10.7717/peerj.8192


Bourque G, Leong B, Vega VB, Chen X, Lee YL, Srinivasan KG, Chew JL, Ruan Y,
Wei CL, Ng HH, Liu ET. 2008. Evolution of the mammalian transcription factor
binding repertoire via transposable elements. Genome Research 18:1752–1762
DOI 10.1101/gr.080663.108.

Bratthauer GL, Cardiff RD, Fanning TG. 1994. Expression of LINE-1 retrotransposons
in human breast cancer. Cancer 73:2333–2336
DOI 10.1002/1097-0142(19940501)73:9<2333::aid-cncr2820730915>3.0.co;2-4.

Burns KH. 2017. Transposable elements in cancer. Nature Reviews Cancer 17:415–424
DOI 10.1038/nrc.2017.35.

Chandrashekar DS, Dey P, Acharya KK. 2015. GREAM: a web server to short-list
potentially important genomic repeat elements based on over-/under-representation
in specific chromosomal locations, such as the gene neighborhoods, within or across
17 mammalian species. PLOS ONE 10:e0133647 DOI 10.1371/journal.pone.0133647.

Chung L, Onyango D, Guo Z, Jia P, Dai H, Liu S, ZhouM, LinW, Pang I, Li H, Yuan
YC, Huang Q, Zheng L, Lopes J, Nicolas A, ChaiW, Raz D, Reckamp KL, Shen B.
2015. The FEN1 E359K germline mutation disrupts the FEN1-WRN interaction and
FEN1 GEN activity, causing aneuploidy-associated cancers. Oncogene 34:902–911
DOI 10.1038/onc.2014.19.

Chuong EB, RumiMA, Soares MJ, Baker JC. 2013. Endogenous retroviruses function
as species-specific enhancer elements in the placenta. Nature Genetics 45:325–329
DOI 10.1038/ng.2553.

Cohen CJ, LockWM,Mager DL. 2009. Endogenous retroviral LTRs as promoters for hu-
man genes: a critical assessment. Gene 448:105–114 DOI 10.1016/j.gene.2009.06.020.

Criscione SW, Zhang Y, ThompsonW, Sedivy JM, Neretti N. 2014. Transcriptional
landscape of repetitive elements in normal and cancer human cells. BMC Genomics
15:583 DOI 10.1186/1471-2164-15-583.

De CeccoM, Ito T, Petrashen AP, Elias AE, Skvir NJ, Criscione SW, Caligiana A,
Brocculi G, Adney EM, Boeke JD, Le O, Beausejour C, Ambati J, Ambati K, Simon
M, Seluanov A, Gorbunova V, Slagboom PE, Helfand SL, Neretti N, Sedivy JM.
2019. L1 drives IFN in senescent cells and promotes age-associated inflammation.
Nature 566:73–78 DOI 10.1038/s41586-018-0784-9.

Dong Y, Huang Z, Kuang Q,Wen Z, Liu Z, Li Y, Yang Y, Li M. 2017. Expression
dynamics and relations with nearby genes of rat transposable elements across
11 organs, 4 developmental stages and both sexes. BMC Genomics 18:666
DOI 10.1186/s12864-017-4078-7.

Drost HG, Paszkowski J. 2017. Biomartr: genomic data retrieval with R. Bioinformatics
33:1216–1217 DOI 10.1093/bioinformatics/btw821.

Dunning AM,Michailidou K, Kuchenbaecker KB, Thompson D, French JD, Beesley
J, Healey CS, Kar S, Pooley KA, Lopez-Knowles E, Dicks E, Barrowdale D,
Sinnott-Armstrong NA, Sallari RC, Hillman KM, Kaufmann S, Sivakumaran
H, Moradi MarjanehM, Lee JS, Hills M, Jarosz M, Drury S, Canisius S, Bolla
MK, Dennis J, Wang Q, Hopper JL, SoutheyMC, Broeks A, Schmidt MK,
Lophatananon A, Muir K, BeckmannMW, Fasching PA, Dos-Santos-Silva I, Peto

Karakülah et al. (2019), PeerJ, DOI 10.7717/peerj.8192 13/20

https://peerj.com
http://dx.doi.org/10.1101/gr.080663.108
http://dx.doi.org/10.1002/1097-0142(19940501)73:9\lt 2333::aid-cncr2820730915\gt 3.0.co;2-4
http://dx.doi.org/10.1038/nrc.2017.35
http://dx.doi.org/10.1371/journal.pone.0133647
http://dx.doi.org/10.1038/onc.2014.19
http://dx.doi.org/10.1038/ng.2553
http://dx.doi.org/10.1016/j.gene.2009.06.020
http://dx.doi.org/10.1186/1471-2164-15-583
http://dx.doi.org/10.1038/s41586-018-0784-9
http://dx.doi.org/10.1186/s12864-017-4078-7
http://dx.doi.org/10.1093/bioinformatics/btw821
http://dx.doi.org/10.7717/peerj.8192


J, Sawyer EJ, Tomlinson I, Burwinkel B, Marme F, Guenel P, Truong T, Bojesen
SE, Flyger H, Gonzalez-Neira A, Perez JI, Anton-Culver H, Eunjung L, Arndt
V, Brenner H, Meindl A, Schmutzler RK, Brauch H, Hamann U, Aittomaki K,
Blomqvist C, Ito H, Matsuo K, Bogdanova N, Dork T, Lindblom A, Margolin
S, Kosma VM,Mannermaa A, Tseng CC,Wu AH, Lambrechts D,Wildiers H,
Chang-Claude J, Rudolph A, Peterlongo P, Radice P, Olson JE, Giles GG, Milne RL,
Haiman CA, Henderson BE, GoldbergMS, Teo SH, Yip CH, Nord S, Borresen-Dale
AL, Kristensen V, Long J, ZhengW, Pylkas K,Winqvist R, Andrulis IL, Knight JA,
Devilee P, Seynaeve C, Figueroa J, ShermanME, Czene K, Darabi H, Hollestelle A,
Van den Ouweland AM, Humphreys K, Gao YT, Shu XO, Cox A, Cross SS, BlotW,
Cai Q, Ghoussaini M, Perkins BJ, ShahM, Choi JY, Kang D, Lee SC, HartmanM,
KabischM, Torres D, Jakubowska A, Lubinski J, Brennan P, Sangrajrang S, Am-
brosone CB, Toland AE, Shen CY,Wu PE, Orr N, Swerdlow A, McGuffog L, Healey
S, Lee A, Kapuscinski M, John EM, Terry MB, Daly MB, Goldgar DE, Buys SS,
Janavicius R, Tihomirova L, Tung N, Dorfling CM, Van Rensburg EJ, Neuhausen
SL, Ejlertsen B, Hansen TV, Osorio A, Benitez J, Rando R,Weitzel JN, Bonanni
B, Peissel B, Manoukian S, Papi L, Ottini L, Konstantopoulou I, Apostolou P,
Garber J, RashidMU, Frost D, Embrace , Izatt L, Ellis S, Godwin AK, Arnold N,
Niederacher D, Rhiem K, Bogdanova-Markov N, Sagne C, Stoppa-Lyonnet D,
Damiola F, Collaborators GS, Sinilnikova OM,Mazoyer S, Isaacs C, Claes KB,
De Leeneer K, De la HoyaM, Caldes T, Nevanlinna H, Khan S, Mensenkamp AR,
Hebon , HooningMJ, RookusMA, Kwong A, Olah E, Diez O, Brunet J, PujanaMA,
Gronwald J, Huzarski T, Barkardottir RB, Laframboise R, Soucy P, MontagnaM,
Agata S, Teixeira MR, kConFab I, Park SK, Lindor N, Couch FJ, Tischkowitz M,
Foretova L, Vijai J, Offit K, Singer CF, Rappaport C, Phelan CM, GreeneMH,Mai
PL, Rennert G, Imyanitov EN, Hulick PJ, Phillips KA, Piedmonte M, Mulligan AM,
Glendon G, Bojesen A, ThomassenM, CaligoMA, Yoon SY, Friedman E, Laitman
Y, Borg A, VonWachenfeldt A, Ehrencrona H, Rantala J, Olopade OI, Ganz PA,
Nussbaum RL, Gayther SA, Nathanson KL, Domchek SM, Arun BK, Mitchell
G, Karlan BY, Lester J, Maskarinec G,Woolcott C, Scott C, Stone J, Apicella C,
Tamimi R, Luben R, Khaw KT, Helland A, Haakensen V, Dowsett M, Pharoah PD,
Simard J, Hall P, Garcia-Closas M, Vachon C, Chenevix-Trench G, Antoniou AC,
Easton DF, Edwards SL. 2016. Breast cancer risk variants at 6q25 display different
phenotype associations and regulate ESR1 RMND1 and CCDC170. Nature Genetics
48:374–386 DOI 10.1038/ng.3521.

Durinck S, Spellman PT, Birney E, HuberW. 2009.Mapping identifiers for the integra-
tion of genomic datasets with the R/Bioconductor package biomaRt. Nature Protocols
4:1184–1191 DOI 10.1038/nprot.2009.97.

Elbarbary RA, Lucas BA, Maquat LE. 2016. Retrotransposons as regulators of gene
expression. Science 351(6274):aac7247 DOI 10.1126/science.aac7247.

Eller CD, RegelsonM,Merriman B, Nelson S, Horvath S, Marahrens Y. 2007. Repetitive
sequence environment distinguishes housekeeping genes. Gene 390:153–165
DOI 10.1016/j.gene.2006.09.018.

Karakülah et al. (2019), PeerJ, DOI 10.7717/peerj.8192 14/20

https://peerj.com
http://dx.doi.org/10.1038/ng.3521
http://dx.doi.org/10.1038/nprot.2009.97
http://dx.doi.org/10.1126/science.aac7247
http://dx.doi.org/10.1016/j.gene.2006.09.018
http://dx.doi.org/10.7717/peerj.8192


Emera D, Casola C, Lynch VJ, Wildman DE, AgnewD,Wagner GP. 2012. Convergent
evolution of endometrial prolactin expression in primates, mice, and elephants
through the independent recruitment of transposable elements.Molecular Biology
and Evolution 29:239–247 DOI 10.1093/molbev/msr189.

FlemrM,Malik R, Franke V, Nejepinska J, Sedlacek R, Vlahovicek K, Svoboda P. 2013.
A retrotransposon-driven dicer isoform directs endogenous small interfering RNA
production in mouse oocytes. Cell 155:807–816 DOI 10.1016/j.cell.2013.10.001.

Forero A, Li Y, Chen D, GrizzleWE, Updike KL, Merz ND, Downs-Kelly E, Burwell TC,
Vaklavas C, BuchsbaumDJ, Myers RM, LoBuglio AF, Varley KE. 2016. Expression
of the MHC Class II pathway in triple-negative breast cancer tumor cells is associated
with a good prognosis and infiltrating lymphocytes. Cancer Immunology Research
4:390–399 DOI 10.1158/2326-6066.CIR-15-0243.

Garcia-Perez JL, Widmann TJ, Adams IR. 2016. The impact of transposable elements on
mammalian development. Development 143:4101–4114 DOI 10.1242/dev.132639.

GerstungM, Pellagatti A, Malcovati L, Giagounidis A, Porta MG, JaderstenM, Dolat-
shad H, Verma A, Cross NC, Vyas P, Killick S, Hellstrom-Lindberg E, Cazzola M,
Papaemmanuil E, Campbell PJ, Boultwood J. 2015. Combining gene mutation with
gene expression data improves outcome prediction in myelodysplastic syndromes.
Nature Communications 6:5901 DOI 10.1038/ncomms6901.

Goerner-Potvin P, Bourque G. 2018. Computational tools to unmask transposable
elements. Nature Reviews Genetics 19:688–704 DOI 10.1038/s41576-018-0050-x.

Grow EJ, Flynn RA, Chavez SL, Bayless NL,Wossidlo M,Wesche DJ, Martin L, Ware
CB, Blish CA, Chang HY, Pera RA,Wysocka J. 2015. Intrinsic retroviral reactivation
in human preimplantation embryos and pluripotent cells. Nature 522:221–225
DOI 10.1038/nature14308.

Hammerich-Hille S, Kaipparettu BA, Tsimelzon A, Creighton CJ, Jiang S, Polo JM,
Melnick A, Meyer R, Oesterreich S. 2010. SAFB1 mediates repression of immune
regulators and apoptotic genes in breast cancer cells. Journal of Biological Chemistry
285:3608–3616 DOI 10.1074/jbc.M109.066431.

Hancks DC, Kazazian Jr HH. 2016. Roles for retrotransposon insertions in human
disease.Mobile DNA 7:9 DOI 10.1186/s13100-016-0065-9.

He J, Fu X, ZhangM, He F, LiW, Abdul MM, Zhou J, Sun L, Chang C, Li Y, Liu
H,Wu K, Babarinde IA, Zhuang Q, Loh YH, Chen J, EstebanMA, Hutchins
AP. 2019. Transposable elements are regulated by context-specific patterns of
chromatin marks in mouse embryonic stem cells. Nature Communications 10:34
DOI 10.1038/s41467-018-08006-y.

Heinrich C, Keller C, Boulay A, Vecchi M, Bianchi M, Sack R, Lienhard S, Duss S,
Hofsteenge J, Hynes NE. 2010. Copine-III interacts with ErbB2 and promotes tumor
cell migration. Oncogene 29:1598–1610 DOI 10.1038/onc.2009.456.

Heo CK, Hwang HM, Ruem A, Yu DY, Lee JY, Yoo JS, Kim IG, Yoo HS, Oh S, Ko JH,
Cho EW. 2013. Identification of a mimotope for circulating anti-cytokeratin 8/18
antibody and its usage for the diagnosis of breast cancer. International Journal of
Oncology 42:65–74 DOI 10.3892/ijo.2012.1679.

Karakülah et al. (2019), PeerJ, DOI 10.7717/peerj.8192 15/20

https://peerj.com
http://dx.doi.org/10.1093/molbev/msr189
http://dx.doi.org/10.1016/j.cell.2013.10.001
http://dx.doi.org/10.1158/2326-6066.CIR-15-0243
http://dx.doi.org/10.1242/dev.132639
http://dx.doi.org/10.1038/ncomms6901
http://dx.doi.org/10.1038/s41576-018-0050-x
http://dx.doi.org/10.1038/nature14308
http://dx.doi.org/10.1074/jbc.M109.066431
http://dx.doi.org/10.1186/s13100-016-0065-9
http://dx.doi.org/10.1038/s41467-018-08006-y
http://dx.doi.org/10.1038/onc.2009.456
http://dx.doi.org/10.3892/ijo.2012.1679
http://dx.doi.org/10.7717/peerj.8192


Huda A, Marino-Ramirez L, Landsman D, Jordan IK. 2009. Repetitive DNA el-
ements, nucleosome binding and human gene expression. Gene 436:12–22
DOI 10.1016/j.gene.2009.01.013.

Jacques PE, Jeyakani J, Bourque G. 2013. The majority of primate-specific regulatory
sequences are derived from transposable elements. PLOS Genetics 9:e1003504
DOI 10.1371/journal.pgen.1003504.

Johanning GL, Malouf GG, Zheng X, Esteva FJ, Weinstein JN,Wang-Johanning
F, Su X. 2017. Expression of human endogenous retrovirus-K is strongly asso-
ciated with the basal-like breast cancer phenotype. Scientific Reports 7:41960
DOI 10.1038/srep41960.

Jordan IK, Rogozin IB, Glazko GV, Koonin EV. 2003. Origin of a substantial fraction
of human regulatory sequences from transposable elements. Trends in Genetics
19:68–72 DOI 10.1016/S0168-9525(02)00006-9.

Karakulah G. 2018. RTFAdb: a database of computationally predicted associations
between retrotransposons and transcription factors in the human and mouse
genomes. Genomics 110:257–262 DOI 10.1016/j.ygeno.2017.11.002.

Karakulah G, Suner A. 2017. PlanTEnrichment: a tool for enrichment analysis of trans-
posable elements in plants. Genomics 109:336–340 DOI 10.1016/j.ygeno.2017.05.008.

Kasper G,Weiser AA, Rump A, Sparbier K, Dahl E, Hartmann A,Wild P, Schwidetzky
U, Castanos-Velez E, Lehmann K. 2005. Expression levels of the putative zinc
transporter LIV-1 are associated with a better outcome of breast cancer patients.
International Journal of Cancer 117:961–973 DOI 10.1002/ijc.21235.

Kazazian Jr HH. 2004.Mobile elements: drivers of genome evolution. Science
303:1626–1632 DOI 10.1126/science.1089670.

Kelly LJ, Leitch IJ. 2011. Exploring giant plant genomes with next-generation sequencing
technology. Chromosome Research 19:939–953 DOI 10.1007/s10577-011-9246-z.

KimD, Langmead B, Salzberg SL. 2015.HISAT: a fast spliced aligner with low memory
requirements. Nature Methods 12:357–360 DOI 10.1038/nmeth.3317.

Kunarso G, Chia NY, Jeyakani J, Hwang C, Lu X, Chan YS, Ng HH, Bourque G.
2010. Transposable elements have rewired the core regulatory network of human
embryonic stem cells. Nature Genetics 42:631–634 DOI 10.1038/ng.600.

Kwei KA, Kung Y, Salari K, Holcomb IN, Pollack JR. 2010. Genomic instability in
breast cancer: pathogenesis and clinical implications.Molecular Oncology 4:255–266
DOI 10.1016/j.molonc.2010.04.001.

Kwok HF, Zhang SD, McCrudden CM, Yuen HF, Ting KP,Wen Q, Khoo US, Chan KY.
2015. Prognostic significance of minichromosome maintenance proteins in breast
cancer. American Journal of Cancer Research 5:52–71.

Lander ES, Linton LM, Birren B, NusbaumC, ZodyMC, Baldwin J, Devon K, Dewar K,
Doyle M, FitzHughW, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L,
Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda
C, MorrisW, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C,
Stange-Thomann Y, Stojanovic N, Subramanian A,Wyman D, Rogers J, Sulston J,
Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman

Karakülah et al. (2019), PeerJ, DOI 10.7717/peerj.8192 16/20

https://peerj.com
http://dx.doi.org/10.1016/j.gene.2009.01.013
http://dx.doi.org/10.1371/journal.pgen.1003504
http://dx.doi.org/10.1038/srep41960
http://dx.doi.org/10.1016/S0168-9525(02)00006-9
http://dx.doi.org/10.1016/j.ygeno.2017.11.002
http://dx.doi.org/10.1016/j.ygeno.2017.05.008
http://dx.doi.org/10.1002/ijc.21235
http://dx.doi.org/10.1126/science.1089670
http://dx.doi.org/10.1007/s10577-011-9246-z
http://dx.doi.org/10.1038/nmeth.3317
http://dx.doi.org/10.1038/ng.600
http://dx.doi.org/10.1016/j.molonc.2010.04.001
http://dx.doi.org/10.7717/peerj.8192


R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, GrafhamD, Gregory
S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews
L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R,
Sims S, Waterston RH,Wilson RK, Hillier LW,McPherson JD, Marra MA, Mardis
ER, Fulton LA, Chinwalla AT, Pepin KH, GishWR, Chissoe SL,Wendl MC, Dele-
haunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL,
Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P,Wenning
S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier
M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives
CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL,Weinstock
GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C,
Watanabe H, Totoki Y, Taylor T,Weissenbach J, Heilig R, SaurinW, Artiguenave
F, Brottier P, Bruls T, Pelletier E, Robert C,Wincker P, Smith DR, Doucette-
Stamm L, Rubenfield M,Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M,
Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L,
Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers
RM, Schmutz J, DicksonM, Grimwood J, Cox DR, OlsonMV, Kaul R, Raymond
C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, AthanasiouM, Schultz
R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombieWR,
De la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R,
Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge
CB, Cerutti L, Chen HC, Church D, ClampM, Copley RR, Doerks T, Eddy SR,
Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler
D, Hermjakob H, Hokamp K, JangW, Johnson LS, Jones TA, Kasif S, Kaspryzk
A, Kennedy S, KentWJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM,
McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler
G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-
Mieg J, Wagner L, Wallis J, Wheeler R,Williams A,Wolf YI, Wolfe KH, Yang
SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A,Wetterstrand KA,
Patrinos A, MorganMJ, De Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S,
Chen YJ, Szustakowki J, International Human Genome Sequencing Consortium.
2001. Initial sequencing and analysis of the human genome. Nature 409:860–921
DOI 10.1038/35057062.

Law CW, Chen Y, ShiW, Smyth GK. 2014. voom: precision weights unlock lin-
ear model analysis tools for RNA-seq read counts. Genome Biology 15:R29
DOI 10.1186/gb-2014-15-2-r29.

Lawrence M, HuberW, Pages H, Aboyoun P, CarlsonM, Gentleman R, MorganMT,
Carey VJ. 2013. Software for computing and annotating genomic ranges. PLOS
Computational Biology 9:e1003118 DOI 10.1371/journal.pcbi.1003118.

Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette 3rd LJ, Lohr JG, Har-
ris CC, Ding L,Wilson RK,Wheeler DA, Gibbs RA, Kucherlapati R, Lee C,
Kharchenko PV, Park PJ, Cancer Genome Atlas Research Network. 2012.

Karakülah et al. (2019), PeerJ, DOI 10.7717/peerj.8192 17/20

https://peerj.com
http://dx.doi.org/10.1038/35057062
http://dx.doi.org/10.1186/gb-2014-15-2-r29
http://dx.doi.org/10.1371/journal.pcbi.1003118
http://dx.doi.org/10.7717/peerj.8192


Landscape of somatic retrotransposition in human cancers. Science 337:967–971
DOI 10.1126/science.1222077.

Leinonen R, Sugawara H, ShumwayM, International Nucleotide Sequence
Database Collaboration. 2011. The sequence read archive. Nucleic Acids Research
39:D19–D21 DOI 10.1093/nar/gkq1019.

Lerat E, Fablet M, Modolo L, Lopez-Maestre H, Vieira C. 2017. TEtools facilitates
big data expression analysis of transposable elements and reveals an antagonism
between their activity and that of piRNA genes. Nucleic Acids Research 45:e17
DOI 10.1093/nar/gkw953.

Li C, Bai J, Hao X, Zhang S, Hu Y, Zhang X, YuanW, Hu L, Cheng T, Zetterberg A,
Lee MH, Zhang J. 2014.Multi-gene fluorescence in situ hybridization to detect
cell cycle gene copy number aberrations in young breast cancer patients. Cell Cycle
13:1299–1305 DOI 10.4161/cc.28201.

Li Y, LiangM, Zhang Z. 2014. Regression analysis of combined gene expression reg-
ulation in acute myeloid leukemia. PLOS Computational Biology 10:e1003908
DOI 10.1371/journal.pcbi.1003908.

Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross-Ibarra J, Springer NM.
2015. Transposable elements contribute to activation of maize genes in response to
abiotic stress. PLOS Genetics 11:e1004915 DOI 10.1371/journal.pgen.1004915.

Martens JH, O’Sullivan RJ, Braunschweig U, Opravil S, Radolf M, Steinlein P,
Jenuwein T. 2005. The profile of repeat-associated histone lysine methylation states
in the mouse epigenome. EMBO Journal 24:800–812 DOI 10.1038/sj.emboj.7600545.

McClintock B. 1956. Controlling elements and the gene. Cold Spring Harbor Symposia on
Quantitative Biology 21:197–216 DOI 10.1101/SQB.1956.021.01.017.

Nagel JH, Peeters JK, SmidM, Sieuwerts AM,Wasielewski M, DeWeerd V, Trapman-
Jansen AM, Van den Ouweland A, Brüggenwirth H, Van I JckenWF, Klijn JG,
Van der Spek PJ, Foekens JA, Martens JW, Schutte M, Meijers-Heijboer H.
2012. Gene expression profiling assigns CHEK2 1100delC breast cancers to the
luminal intrinsic subtypes. Breast Cancer Research and Treatment 132(2):439–448
DOI 10.1007/s10549-011-1588-x.

Nikitin D, Penzar D, Garazha A, SorokinM, Tkachev V, Borisov N, Poltorak A,
Prassolov V, Buzdin AA. 2018. Profiling of human molecular pathways affected by
retrotransposons at the level of regulation by transcription factor proteins. Frontiers
in Immunology 9:30 DOI 10.3389/fimmu.2018.00030.

Oshlack A, RobinsonMD, YoungMD. 2010. From RNA-seq reads to differential
expression results. Genome Biology 11:220 DOI 10.1186/gb-2010-11-12-220.

Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. 2015.
StringTie enables improved reconstruction of a transcriptome from RNA-seq reads.
Nat Biotechnol 33:290–295 DOI 10.1038/nbt.3122.

Quinlan AR. 2014. BEDTools: the Swiss-army tool for genome feature analysis. Current
Protocols in Bioinformatics 47:11–34 DOI 10.1002/0471250953.bi1112s47.

Rech GE, Bogaerts-MarquezM, BarronMG,MerencianoM, Villanueva-Canas JL,
Horvath V, Fiston-Lavier AS, Luyten I, Venkataram S, Quesneville H, Petrov

Karakülah et al. (2019), PeerJ, DOI 10.7717/peerj.8192 18/20

https://peerj.com
http://dx.doi.org/10.1126/science.1222077
http://dx.doi.org/10.1093/nar/gkq1019
http://dx.doi.org/10.1093/nar/gkw953
http://dx.doi.org/10.4161/cc.28201
http://dx.doi.org/10.1371/journal.pcbi.1003908
http://dx.doi.org/10.1371/journal.pgen.1004915
http://dx.doi.org/10.1038/sj.emboj.7600545
http://dx.doi.org/10.1101/SQB.1956.021.01.017
http://dx.doi.org/10.1007/s10549-011-1588-x
http://dx.doi.org/10.3389/fimmu.2018.00030
http://dx.doi.org/10.1186/gb-2010-11-12-220
http://dx.doi.org/10.1038/nbt.3122
http://dx.doi.org/10.1002/0471250953.bi1112s47
http://dx.doi.org/10.7717/peerj.8192


DA, Gonzalez J. 2019. Stress response, behavior, and development are shaped by
transposable element-induced mutations in Drosophila. PLOS Genetics 15:e1007900
DOI 10.1371/journal.pgen.1007900.

RobinsonMD,McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics
26:139–140 DOI 10.1093/bioinformatics/btp616.

Solovyov A, Vabret N, Arora KS, Snyder A, Funt SA, Bajorin DF, Rosenberg JE,
Bhardwaj N, Ting DT, Greenbaum BD. 2018. Global cancer transcriptome quan-
tifies repeat element polarization between immunotherapy responsive and T cell
suppressive classes. Cell Reports 23:512–521 DOI 10.1016/j.celrep.2018.03.042.

Storm FK, Gilchrist KW,Warner TF, Mahvi DM. 1995. Distribution of Hsp-27 and
HER-2/neu in in situ and invasive ductal breast carcinomas. Annals of Surgical
Oncology 2:43–48 DOI 10.1007/BF02303701.

Tang X, Zhang H, Long Y, Hua H, Jiang Y, Jing J. 2018. PARP9 is overexpressed
in human breast cancer and promotes cancer cell migration. Oncology Letters
16:4073–4077 DOI 10.3892/ol.2018.9124.

The ENCODE Project Consortium. 2012. An integrated encyclopedia of DNA elements
in the human genome. Nature 489:57–74 DOI 10.1038/nature11247.

Tishchenko I, Milioli HH, Riveros C, Moscato P. 2016. Extensive transcriptomic and
genomic analysis provides new insights about luminal breast cancers. PLOS ONE
11:e0158259 DOI 10.1371/journal.pone.0158259.

Treangen TJ, Salzberg SL. 2011. Repetitive DNA and next-generation sequencing:
computational challenges and solutions. Nature Reviews Genetics 13:36–46
DOI 10.1038/nrg3117.

TrizzinoM, Park Y, Holsbach-BeltrameM, Aracena K, Mika K, CaliskanM,
Perry GH, Lynch VJ, Brown CD. 2017. Transposable elements are the primary
source of novelty in primate gene regulation. Genome Research 27:1623–1633
DOI 10.1101/gr.218149.116.

Wei L, Liu TT,Wang HH, Hong HM, Yu AL, Feng HP, ChangWW. 2011.Hsp27
participates in the maintenance of breast cancer stem cells through regulation of
epithelial-mesenchymal transition and nuclear factor-kappaB. Breast Cancer Research
13:R101 DOI 10.1186/bcr3042.

Wenric S, ElGuendi S, Caberg JH, BezzaouW, Fasquelle C, Charloteaux B, Karim L,
Hennuy B, Freres P, Collignon J, BoukerrouchaM, Schroeder H, Olivier F, Jossa
V, Jerusalem G, Josse C, Bours V. 2017. Transcriptome-wide analysis of natural
antisense transcripts shows their potential role in breast cancer. Scientific Reports
7:17452 DOI 10.1038/s41598-017-17811-2.

Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy
P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH. 2007. A unified
classification system for eukaryotic transposable elements. Nature Reviews Genetics
8:973–982 DOI 10.1038/nrg2165.

Karakülah et al. (2019), PeerJ, DOI 10.7717/peerj.8192 19/20

https://peerj.com
http://dx.doi.org/10.1371/journal.pgen.1007900
http://dx.doi.org/10.1093/bioinformatics/btp616
http://dx.doi.org/10.1016/j.celrep.2018.03.042
http://dx.doi.org/10.1007/BF02303701
http://dx.doi.org/10.3892/ol.2018.9124
http://dx.doi.org/10.1038/nature11247
http://dx.doi.org/10.1371/journal.pone.0158259
http://dx.doi.org/10.1038/nrg3117
http://dx.doi.org/10.1101/gr.218149.116
http://dx.doi.org/10.1186/bcr3042
http://dx.doi.org/10.1038/s41598-017-17811-2
http://dx.doi.org/10.1038/nrg2165
http://dx.doi.org/10.7717/peerj.8192


Yandım C, Karakülah G. 2019a. Dysregulated expression of repetitive DNA in
ER+/HER2- breast cancer. Cancer Genetics 239:36–45
DOI 10.1016/j.cancergen.2019.09.002.

Yandim C, Karakulah G. 2019b. Expression dynamics of repetitive DNA in early human
embryonic development. BMC Genomics 20:439 DOI 10.1186/s12864-019-5803-1.

Karakülah et al. (2019), PeerJ, DOI 10.7717/peerj.8192 20/20

https://peerj.com
http://dx.doi.org/10.1016/j.cancergen.2019.09.002
http://dx.doi.org/10.1186/s12864-019-5803-1
http://dx.doi.org/10.7717/peerj.8192

