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Purpose: Local specific absorption rate (SAR) cannot be measured and is usually 
evaluated by offline numerical simulations using generic body models that of course 
will differ from the patient’s anatomy. An additional safety margin is needed to  
include this intersubject variability. In this work, we present a deep learning–based 
method for image‐based subject‐specific local SAR assessment. We propose to train 
a convolutional neural network to learn a “surrogate SAR model” to map the relation 
between subject‐specific B+

1
 maps and the corresponding local SAR.

Method: Our database of 23 subject‐specific models with an 8–transmit channel 
body array for prostate imaging at 7 T was used to build 5750 training samples. 
These synthetic complex B+

1
 maps and local SAR distributions were used to train a 

conditional generative adversarial network. Extra penalization for local SAR under-
estimation errors was included in the loss function. In silico and in vivo validation 
were performed.
Results: In silico cross‐validation shows a good qualitative and quantitative match 
between predicted and ground‐truth local SAR distributions. The peak local SAR 
estimation error distribution shows a mean overestimation error of 15% with 13% 
probability of underestimation. The higher accuracy of the proposed method allows 
the use of less conservative safety factors compared with standard procedures. In 
vivo validation shows that the method is applicable with realistic measurement data 
with impressively good qualitative and quantitative agreement to simulations.
Conclusion: The proposed deep learning method allows online image‐based subject‐
specific local SAR assessment. It greatly reduces the uncertainty in current state‐of‐
the‐art SAR assessment methods, reducing the time in the examination protocol by 
almost 25%.
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1  |   INTRODUCTION

Compared with clinical systems at lower field strengths, 
superior SNR can be achieved with ultrahigh‐field MRI.1-6 
However, with higher magnetic field strengths, the wave-
length of the RF field becomes shorter, resulting in increased 
signal inhomogeneity in the acquired images and higher, 
more inhomogeneous power deposition in the tissues.7

To achieve a greater signal homogeneity in a region of in-
terest, parallel transmission with optimizable drive has been 
developed.8-13

One of the most critical aspects that limits the application 
of these approaches is that they also produce a large variability 
of the electric fields (E‐fields) in the human body, and thereby 
the absorbed power in the tissue. This makes the local specific 
absorption rate (SAR) spatially and temporally variable with 
“hot spots” in various locations that are hard to predict.14,15

During an examination, local SAR cannot be measured 
and is usually evaluated by numerical simulations.7,14,15 At 
this moment, it is not yet possible to perform online simula-
tions using a subject‐specific body model. Magnetic resonance 
integral equation (MARIE)16 software can perform online 
simulations using a subject‐specific body model in a few min-
utes (about 5‐10 minutes). However, this is still a rather long 
online preparation time. Moreover, additional time to build the 
patient model and calculate the local SAR distribution aver-
aged over a small sample volume is required. Therefore, the 
conventional, most common approach consists of perform-
ing offline electromagnetic simulations using generic body 
models.7,17,18 These simulations use numerical methods to 
solve the Maxwell’s equations to determine the E‐field inside 
the model. Subsequently, the simulated E‐field and the tissue 
properties of the body model are used to evaluate the local SAR 
distribution, which is processed into Q‐matrices19,20 and vir-
tual observation points.21 Assuming that the investigated mod-
els are representative for the current subject, online local SAR 
assessment based on the actual drive scheme is performed. 
However, this approach does not take into account the intersub-
ject variability.14,22,23 Therefore, because these models often do 
not well represent the features of the body under examination, 
this results in an inaccurate local SAR evaluation.22 Therefore, 
to compensate for the mismatch between simulated and real 
scenarios, conservative safety factors are necessary.22-24

A rigorous evaluation of subject‐specific local SAR would 
require the knowledge of the E‐field distribution within the 
subject’s body and its tissue properties (electrical conduc-
tivity and mass density), all averaged over a small sample 

volume 10 g of tissue.25 Unfortunately, this information is not 
accessible during an MRI examination. An alternative to the 
conventional approach could be to use accessible MRI data to 
indirectly determine local SAR values.

The possibility of determining local SAR using B+
1
 map-

ping has been demonstrated.26 Indeed, electric and magnetic 
fields are related by the Maxwell’s equations, and quantitative 
imaging of dielectric properties of tissue can be theoretically 
obtained from complex B+

1
 maps using electric properties 

tomography.27,28

Undoubtedly, the complex B+
1
 maps still must contain 

relevant information. However, models derived from electro-
magnetic theory relating B+

1
 and SAR are not straightforward. 

All attempts so far have made by simplifying assumptions, 
such as assuming a negligible z‐component of the magnetic 
B1 field,26 which severely limits the applicability.

In this work we aim to introduce a data‐driven approach 
in which a convolutional neural network (CNN) is trained to 
learn a mapping from a complex B+

1
 field to a local SAR dis-

tribution without making assumptions on homogeneity of the 
medium or z‐components of the B1 field.

Convolutional neural networks have shown to be very 
powerful tools that are able to extrapolate and learn “surro-
gate models” to map complex relations in multidimensional 
data.29-31 Recently, methods based on deep learning tech-
niques were presented for biomedical applications,32-34 and 
generative adversarial networks35 have achieved impressive 
results for the solution of image‐to‐image translation prob-
lems.36-39 In this work, we present a deep learning–based 
method for image‐based subject‐specific local SAR assess-
ment.40 In this data‐driven approach, a generative adversarial 
network is trained to learn a “surrogate SAR model,” to map 
the relation between subject‐specific B+

1
 maps and the corre-

sponding local SAR from a large number of simulated B+
1
 and 

SAR distribution of various human pelvis models.
This method requires neither specific additional hard-

ware, nor the execution of complex online calibration proce-
dures. All required information is inherently included in the 
complex B+

1
 maps.

The proposed method is applied to 7T prostate imaging 
using a multitransmit array of 8 fractionated dipole anten-
nas.6,22,41 The results demonstrate that CNNs can properly 
learn the relations between complex B+

1
 maps in nonhomo-

geneous media and the corresponding local SAR distri-
butions. In particular, we show that the proposed method 
allows online image‐based subject‐specific local SAR 
assessment, which greatly diminishes the uncertainty in 
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current state‐of‐the‐art SAR assessment procedures, allow-
ing considerable time savings.

2  |   METHODS

To learn a surrogate SAR model, the proposed CNN was 
trained with simulated B+

1
 and local SAR distributions for 

23 custom‐made pelvis models.22 The complex B+
1
 maps 

serve as input, and the corresponding 10‐g averaged local 
SAR (SAR10g) distributions serve as the ground‐truth 
output.

The performance of the proposed deep learning method 
was evaluated by in silico and in vivo validation and com-
pared with the conventional method (use of a generic body 
model).

2.1  |  Synthetic data generation
Because local SAR cannot be measured directly, it is usually 
evaluated by simulations. The finite‐difference time‐domain 
method is used widely for solving the Maxwell’s equations 
to determine the electromagnetic fields inside the patient, 
in whom subsequent postprocessing is performed to calcu-
late the local SAR distribution.15 To build the data samples, 
we have used our database of 23 subject‐specific models22 
with an 8–transmit channel body array for 7T prostate imag-
ing6,41,42 (Figure 1A). The data of the volunteers included in 
our database are reported in Supporting Information Table S1.  
For each model and every array channel, E‐field and B+

1
‐ 

field distributions were determined using the finite‐differ-
ence time‐domain simulations (Sim4Life; ZMT, Zürich, 
Switzerland). A total of 250 different B+

1
 and SAR10g distri-

butions were calculated for each model using 250 different 
drive vectors, all with uniform amplitude (8 × 1 W input 
power) and random phase settings (uniformly distributed in 
the interval [–π, π]).

For each model m (out of 23 models), and each drive set-
ting s (out of 250 different drive vectors), the simulated B+

1
 

maps of each channel n and the 10‐g averaged Q‐matrices 
(Q10g)

19,20 were processed to produce random B+
1
 maps and 

corresponding SAR10g distributions, as follows:

and

where r defines the spatial location, and Nch. is the number 
of transmit channels (Nch. = 8).

To transform the simulation data into B+
1
 maps similar 

to those that can be realistically acquired, the relative trans-
mit B+

1
 phase distributions were obtained with respect to the 

first channel, and Gaussian noise  (�,�2) comparable to the 
noise observed in the measured complex B+

1
 maps) was added 

to the real and imaginary part of the B+
1
 maps. Furthermore, 

the dual‐refocusing echo acquisition mode (DREAM)43 B+
1
‐ 

mapping method has a limited dynamic range and presents 
only a good accuracy for B+

1
 values between 25% and 175% 

(stimulated echo acquisition mode [STEAM] flip angles 
from 10° to 70° for a nominal flip angle of 40°). Therefore, 
the B+

1
‐map regions outside the range (0.25 to 1.75 μT with a 

nominal B+
1
 of 1 μT) were removed, to prevent regions with 

inaccurate B+
1
 values ​​from producing errors in local SAR pre-

dictions (Figure 1B).

2.1.1  |  Data sample
Because 10 g of tissue corresponds to a cube of about 2.2‐cm 
dimension, the input of each data sample consists of a volume 
of 5 adjacent, complex transverse B+

1
 maps with 0.5‐cm slice 

thickness and the corresponding ground‐truth SAR10g  dis-
tribution for the center slice (Figure 1B). Each complex B+

1
 

map was used to produce 2 images with real and imaginary 
parts of the B+

1
 maps and 1 image with the binary body mask 

(1: tissue, 0: air).

•	 Input (3 × 5 transverse images all centered around the cen-
ter slice of the volume):
◦	 5 images with real part of the complex B+

1
 maps;

◦	 5 images with imaginary part of the complex B+
1
 maps; 

and
◦	 5 images with body mask.

•	 Ground‐truth output (1 transverse image):
◦	 One image with SAR10g distribution for the center slice 

of the volume.

2.1.2  |  Synthetic training set
The simulated results were processed as described to produce 
23 × 250 = 5750 unique training samples. For the studied on‐
body antenna setup, the location of the maximum SAR level is 
located exclusively in the center slice, where the antenna feed 
points and the target region (prostate) are located. Therefore, 
the training has focused only on predicting the local SAR dis-
tribution for the center slice. However, this central slice train-
ing turned out to be applicable to off‐center slices as well, as 
the subsequent synthetic validation study will show.

2.1.3  |  Synthetic validation set
For the considered array setup (8 fractionated dipoles around 
the pelvis, each aligned along the z‐direction),6,41 the relation 

(1)B+
1
(r)Simulated

m,s
=

Nch.∑
n=1

B+
1
(r, n)m s (n)

(2)

SAR10g (r)
Ground−Truth
m,s

=

Nch.∑
n1=1

Nch.∑
n2=1

s
(
n1

)∗
Q10g

(
r, n1, n2

)
m

s
(
n2

)
,
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between complex B+
1
 maps and SAR10g should be similar for 

all slices, where most of the power is absorbed. Then, the 
SAR prediction can be extended to more than just the central 
slice, even although the training was performed only for the 
central slice.

To validate the SAR10g assessment over the entire region 
where the power is absorbed, for each model and for each drive 
vector, an additional 40 data samples (thickness = 2.5 cm)  
0.5‐cm distance from one another were produced and used 
for validation only. As a result, we tested the SAR prediction 
performance for a 20‐cm region in the longitudinal direction 
around the prostate.

2.2  |  Network architecture
Based on the results of our preliminary study,40 a conditional 
generative adversarial network (cGAN)37 was used in this 
work.

2.2.1  |  Conditional generative 
adversarial networks
This network architecture houses 2 CNNs, the generator, 
and the discriminator. Similar to Isola et al,37 the genera-
tor is a U‐Net29 and the discriminator is a convolutional 
PatchGAN classifier. Several implementations of this 

F I G U R E  1   A, Twenty‐three body models (muscle, fat, skin, and cortical bone) are present in the database and the body array setup for 
prostate imaging at 7 T. B, Each of the 23 × 250 training samples consists of an input block of 5 complex B+

1
 maps and 1 ground‐truth 10‐g 

averaged local SAR (SAR10g) distribution. Regions of low B+

1
 (<0.25 µT) are excluded, as they provide inaccurate data in measured B+

1
 maps
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network are available at this moment (https​://phill​ipi.
github.io/pix2pix). The only difference in our network 
lies in the number of channels of the first and last layers. 
Because the input consists of the real and imaginary part of 
5 complex B+

1
 maps and 5 body masks, the number of chan-

nels in the first layer is 15 instead of 3. However, there is 
only 1 channel in the output layer, as the output consists of 
1 single 2D SAR10g distribution.

2.2.2  |  Loss function
During the training, discriminator D and generator G com-
pete with each other in a min‐max optimization game. The 
discriminator is trained to distinguish true SAR distributions 
from generated SAR distributions by generator images. The 
generator is trained to maximize the error rate of the discrimi-
nator. The standard loss function for cGAN is formulated as 
follows17:

where x represents the input data from the training set, y 
is the corresponding ground truth, and z is a noise vector 
drawn from the probability distribution pz (typically added 
to try to capture the full entropy of the modeled conditional 
distribution).35,37

For the proposed application, the generator was trained to 
produce the target output SAR10g distribution from the input 
B+

1
 maps, and the discriminator was trained to discriminate 

the generated SAR10g distribution from the ground‐truth 
SAR10g distribution.

However, in the scope of SAR10g assessment, regions with 
high SAR10g require higher accuracy and, in particular a peak 
local SAR (pSAR10g) underestimation error should be avoided 
or at least limited as much as possible. Therefore, 2 additional 
terms were added to the loss function that should produce a 
slight overestimation, thereby reducing the pSAR10g underes-
timation error as follows:

where WL1 is the weighted L1‐norm of the difference be-
tween the ground‐truth SAR10g distribution and the genera-
tor output, with weights w proportional to the ground truth 
(w∝

√
y) as follows:

where Peak is the loss term to penalize the pSAR10g underes-
timation error (Equation 6),

and �WL1 =1000 and �Peak =0.1 are the corresponding weights 
of the additional loss terms.

2.3  |  In silico validation

2.3.1  |  Leave‐one‐out cross‐validation
The attainable performance of the proposed method was 
evaluated by performing a leave‐one‐out cross‐validation. 
This means that, 23 separate times, the cGAN network 
was  trained on all of the data samples from all mod-
els except for 1  model (22 × 250 = 5500 data samples).  
The data samples from this remaining model were used for 
validation.

To validate the SAR10g assessment over the entire region 
where the power is absorbed, and not just in the central pros-
tate plane, the proposed method was applied to predict the 
SAR10g distributions in body volumes that extend 20 cm in 
the caudal–cranial direction.

2.3.2  |  Safety factor and 
performance evaluation
The results of all 23 validations were combined and the nor-
malized RMS error of the predicted SAR10g distributions and 
pSAR10g estimation errors were evaluated.

The statistics of the pSAR10g estimation error (mean over-
estimation and probability of underestimation) were used to 
assess the performance of the proposed approach and to quan-
tify its benefit compared with the conventional approach (i.e., 
using just the generic model “Duke” of the Virtual Family44 
with 77 tissues [version 3.0: voxel resolution 0.5 mm × 0.5 
mm × 0.5 mm]).

Because in our previous study22 no relationship was found 
between measurable body features (body mass index [BMI], 
weight, height or body cross‐sectional area) and peak local 
SAR with shimmed phase setting to select the appropriate 
model, a single model was used as a “gold standard” conven-
tional approach.

To avoid pSAR10g underestimation errors in the conven-
tional approach due to intersubject uncertainty, a safety factor 
is usually applied to the predicted pSAR10g values. The safety 
factor is used to increase the predicted pSAR10g level to such 
an extent that underestimation will not occur. Values of 1.4 to 2 
have been suggested in literature.22-24 Here, based on the large 
data sets we have available, we define the safety factor as

(3)
cGAN (G, D) = �x,y∼pdata(x,y)

[
log D (x, y)

]
+�x∼pdata(x),z∼pz(z)

[
log (1−D (x, G (x, z)))

]

(4)
G∗ = arg min

G
max

D
cGAN (G,D)+�WL1WL1 (G)+�PeakPeak (G)

(5)WL1 (G)=�x,y∼pdata(x),z∼pz(z)

�‖w (y−G (x, z))‖1

�

(6)
Peak (G)=�x,y∼pdata(x),z∼pz(z)

[
ReLU (max (y)−max (G (x, z)))

]

(7)SF=max
m,s

(
pSARGround−Truth

10gm,s

pSARPredicted
10gm,s

)
.

https://phillipi.github.io/pix2pix
https://phillipi.github.io/pix2pix
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This rules out the possibility of underestimation for all of 
our investigated cases.

However, the chosen definition could unbalance the com-
parison based on outliers in the predicted pSAR10g values 
with the 2 methods. Therefore, we have also evaluated a more 
appropriate approach to define the safety factor that is less 
sensitive to outliers, the so‐called upper outer fence.45 For 
each investigated model m and drive setting s, the safety fac-
tor was evaluated (SFm,s =pSARGround−Truth

10gm,s
∕pSARPredicted

10gm,s
) 

and, using the usual upper outer fence definition over all of 
these safety factors, the safety factor SFUOF was defined as 
follows:

where SFUQ is the safety factor upper quartile and SFIQR is the 
safety factor interquartile range.

In a previous study,22 a 99.9% certain upper bound for the 
pSAR10g level was presented and used to define a generic safe 
power limit. Therefore, the performance of the proposed ap-
proach was also compared with the performance obtained by 
applying this generic safety limit.

2.4  |  In vivo MRI validation
Four healthy volunteers who were not included in our da-
tabase (BMI: 21/23/24/27 kg/m2, Supporting Information 
Table S1) were scanned at 7 T (Achieva; Philips Healthcare, 
Best, Netherlands) using an 8‐channel transmit/receive frac-
tionated dipole array combined with 16 receive loops for 
prostate imaging.6,41,42 Written informed consent was ob-
tained according to local institutional review board regula-
tions. For each volunteer, the following sequences were 
performed (FOV = 430 × 430 × 100 mm, voxel size = 2.8 × 
2.8 × 5.0 mm):

•	 B+
1
 map: DREAM B1 mapping (TR/TE = 4.0/0.8 ms, 

STEAM flip angle = 40°);
•	 GRE dynamic: 3D incoherent gradient echo (RF spoiled) 

with subsequently each transmit channel active alone 
(TR/TE = 5.00/1.95 ms, flip angle = 1°); and

•	 DIXON: Multislice gradient echo (TR/TE = 10.00/2.70 ms,  
voxel size = 1.3 × 1.3 × 5.0 mm).

For each volunteer, 2 validation tests were performed:  
1 by acquiring the B+

1
 maps with the default phase‐shim-

ming set (phase‐shimming set saved in the calibration file, 
the same for all volunteers) and another by acquiring the 
B+

1
 maps with prostate shimmed phase settings (tailored for 

each volunteer).
For the in vivo validation, 2 independent pipelines were 

implemented. One exploits the trained network to predict 

SAR10g distributions based on measured complex B+
1
 maps. 

The other pipeline produces a subject‐specific model similar 
to Meliadò et al.22 It subsequently obtains offline simulated 
SAR10g distributions. These simulated SAR10g distributions 
will be used to validate the proposed deep learning–based 
method for SAR10g assessment.

2.4.1  |  Predicted SAR distribution
To obtain the transmit phase maps relative to the first chan-
nel, the dynamic GRE images were combined as follows 
(Equation 9):

where |||GREdyn (r, n)
||| and �

(
GREdyn (r, n)

)
 are the magni-

tude and phase images acquired with the channel n active 
alone. This ensures that the relative phase of each channel 
with respect to channel 1 is used. Subsequently, the ac-
quired magnitude B+

1
 maps and the relative transmit phase 

maps were combined to obtain the complex B+
1
 maps as 

follows:

The obtained complex B+
1
 maps were used to produce the 

input data for the trained generator to infer the SAR10g distri-
butions (Figure 2A) as follows:

2.4.2  |  Simulated SAR distribution
Following the pipeline presented in our previous study,22 the 
DIXON images were used to build subject‐specific 3‐tissue 
models (fat/muscle/skin)14,15 of the volunteers, and electro-
magnetic simulations (Sim4Life; ZMT, Zürich, Switzerland) 
were performed.

For in vivo validation, it is not possible to have the ground‐
truth SAR10g distributions. The inevitable differences between 
simulated and real scenarios, such as the small differences in 
the antenna positions, the reflected/lost power and the imperfect 
calibration, can make the simulated SAR10g distributions sig-
nificantly different from the actual SAR10g distributions in the 
volunteers. However, at least the effects of the reflected/scat-
tered and dissipated power and the imperfect calibration could 
be incorporated in the simulated SAR10g distribution by appro-
priately changing the amplitude and phase of the drive vector. 
The simulated SAR10g distribution was therefore tailored to be 

(8)SFUOF =SFUQ+
(
3×SFIQR

)

(9)

� (r)= arg

⎛⎜⎜⎜⎝

∑Nch.

n=1

����GREdyn (r, n)
��� exp

�
i∗�

�
GREdyn (r, n)

���

exp
�
i∗�

�
GREdyn (r, 1)

��
⎞⎟⎟⎟⎠

,

(10)B+
1
(r)Measured = ||B+

1
(r)||∗ exp (i∗� (r)) .

(11)SARPredicted
10g

=G
(
B+

1
(r)Measured

)
.
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most similar to the actual SAR10g distribution by adjusting the 
simulated phase and amplitude settings such that agreement  
between simulated and measured B+

1
 maps was achieved. More 

specifically, for each validation test, the drive vector v to min-
imize the L2‐norm between the simulated and measured com-
plex B+

1
 maps was evaluated numerically and used to calculate 

the reference SAR10g distribution (Figure 2B) as follows:

3  |   RESULTS

The proposed cGAN was implemented in TensorFlow46 and 
trained for 25 epochs (batch size 1) in about 4 hours on a 
GPU (Nvidia Tesla P100‐PCIe 16 GB, Santa Clara, CA).

After training, forward network evaluation takes a few 
milliseconds to predict a SAR10g distribution.

3.1  |  In silico cross‐validation
Figure 3 shows the transverse maximum intensity projec-
tion (MIP) over 41 slices of the ground truth, predicted, and 
error SAR10g distributions with optimized phase settings for 
prostate imaging for (A) the model with the highest prostate‐
shimmed pSAR10g value (M01); (B) the model with the low-
est prostate‐shimmed pSAR10g value (M15); (C) the model 
with highest BMI (28 kg/m2; M08); and (D) the model with 
lowest BMI (21.6 kg/m2; M22). The pSAR10g values and the 
normalized RMS error are reported at the top of the images. 
The transverse MIP of the predicted SAR10g distributions 
using the generic model Duke44 (BMI 22.4 kg/m2) and the 

corresponding error SAR10g distributions are also reported 
(conventional method).

The transverse MIP of the ground‐truth, predicted, and 
error SAR10g distributions for the worst pSAR10g estimation 
results are reported in Figure 4. Considering the proposed 
deep learning method, the worst pSAR10g overestimation 
error is 171% (predicted pSAR10g = 3.45 W/kg; ground‐
truth pSAR10g = 1.27 W/kg), and it occurs for model M15 
(BMI 27.4 kg/m2). The worst pSAR10g underestimation 
error is 28% (predicted pSAR10g = 1.62 W/kg; ground‐truth 
pSAR10g = 2.23 W/kg), and it occurs for model M18 (BMI 
25.5 kg/m2) (Figure 4A). In contrast, using the Duke model, 
the worst pSAR10g overestimation error is 184% (M15) and 
the worst pSAR10g underestimation error is 59% (M09; 
BMI 22.5 kg/m2) (Figure 4B).

A much larger image series is provided in Supporting 
Information Figures S1, S2, S3, and S4, where for each sub-
ject‐specific model the transverse MIP of the ground truth 
and predicted SAR10g distributions with phase settings for 
prostate imaging and for the worst pSAR10g estimation re-
sults are reported.

For the shown cases, the normalized RMS error is be-
tween 0.03 and 0.04. The normalized RMS error boxplot for 
each model over all considered cases is shown in Supporting 
Information Figure S5.

3.2  |  Safety factor and 
performance evaluation
To draw sufficiently statistical powered conclusions on the 
comparison of the methods (deep learning and conventional), 
the histograms of the pSAR10g estimation error over all data 
samples are reported in Figure 5. The deep learning–based 

(12)

SAR10g (r)
Simulated =

Nch.∑
n1=1

Nch.∑
n2=1

v
(
n1

)∗
Q10g

(
r, n1, n2

)
v
(
n2

)
.

F I G U R E  2   A, Pipelines to assess local SAR distribution by the trained conditional generative adversarial network network (proposed 
method). B, Subject‐specific model generation (muscle, fat, and skin) and offline electromagnetic field simulation (used for validation of the 
proposed method). Abbreviations: FDTD, finite difference time domain; FFE, fast field echo
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pSAR10g estimation error distribution shows a mean overesti-
mation error of 15% with 13% probability of underestimation 
(Figure 5A). In contrast, using the conventional method (i.e., 
using the virtual observation points created with the generic 
model Duke), the mean overestimation error is 18% and the 
probability of underestimation is 24% (Figure 5B).

Considering the largest pSAR10g underestimation error, 
the required safety factor with the proposed method is 1.38. In 
contrast, with the conventional method it is 2.43. The resulting 

safety factor for the conventional method is disproportion-
ately large and follows from a couple of outliers. Therefore, 
the upper‐outer‐fence method has been used instead to arrive 
at more appropriate safety factors. In Figure 6A,B, the safety 
factor boxplots for the proposed deep learning–based method 
and conventional method are reported. Considering the upper 
outer fences, the defined safety factors are 1.36 for the pro-
posed deep learning–based method and 1.72 for the conven-
tional method.

F I G U R E  4   A, Transverse MIP of the ground‐truth, predicted, and error SAR10g distributions for the worst pSAR10g estimation results using 
the deep learning method. B, Transverse MIP of the ground‐truth, predicted, and error SAR10g distributions for the worst pSAR10g estimation results 
using the generic model Duke (conventional method)

F I G U R E  3   Transverse maximum intensity projection (MIP) of the ground‐truth SAR10g distributions, the predicted SAR10g distributions, and 
error SAR10g distributions using the deep learning method and the predicted SAR10g distributions and error SAR10g distributions using the generic 
model Duke (conventional method). All results are with transmit phases optimized for prostate imaging. A, Model with the highest prostate‐
shimmed peak local SAR (pSAR10g) value. B, Model with the lowest prostate‐shimmed pSAR10g value. C, Largest model with body mass index 
(BMI) 28 kg/m2. D, Thinnest model with BMI 21.6 kg/m2. Abbreviation: NRMSE, normalized RMS error
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The histogram of the pSAR10g estimation error obtained 
by applying the safety factor 1.36 to the predicted pSAR10g 
values with the deep learning method is shown in Figure 6C, 
whereas Figure 6D presents the histogram of the pSAR10g 

estimation error obtained by applying the safety factor 1.72 to 
the predicted pSAR10g values with the conventional method. 
Using the safety factors defined previously, the probability of 
underestimation is lower than 0.1% (0.07%) for both methods. 

F I G U R E  5   A, Histogram of the 
pSAR10g estimation error of the proposed 
deep learning method. B, Histogram 
of the pSAR10g estimation error of the 
conventional method (i.e., using the virtual 
observation points created with the generic 
model Duke)

F I G U R E  6   A, Boxplot of the safety factors (SFs) for the proposed deep learning method. B, Boxplot of the safety factors for the 
conventional method. C, Histogram of the pSAR10g estimation error of the proposed deep learning method with safety factor 1.36. D, Histogram of 
the pSAR10g estimation error of the conventional method with safety factor 1.72
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The mean pSAR10g overestimation errors are 56% for the 
deep learning and 103% for the conventional method. This 
implies that the SAR‐limited MR sequences take 1.56 and 
2.03 times, respectively, as much time as necessary. Thus, the 
proposed deep learning method allows on average a reduction 
of the scan time by 23% for SAR‐limited sequences. Note that 
T2‐weighted imaging is the clinical work horse for prostate 
imaging, and these sequences are typically SAR‐limited.

In our previous study,22 3.8 W/kg was considered a 99.9% 
certain upper bound for the pSAR10g values with 8 × 1 W 
input power and arbitrary phase settings. Using this recently 
defined safe upper bound, the mean pSAR10g overestimation 
error is 95% with 0.05% probability of pSAR10g underestima-
tion (Figure 7).

3.3  |  In vivo MRI validation
Figure 8 shows the measured and the simulated complex 
B+

1
 maps, and the predicted and simulated SAR10g distribu-

tions for each volunteer with default phase shimming set.  
In Figure 9 the simulated complex B+

1
 maps and the predicted 

and simulated SAR10g distributions with phase shimming set 
for prostate imaging are reported. All in vivo validation tests 
show a good qualitative and quantitative match between the 
predicted and simulated SAR10g distributions (error distribu-
tions are also reported in Supporting Information Figure S6). 
In agreement with in silico validation, before applying the 
safety factor, moderate pSAR10g overestimation errors are 
observed (between 2% and 21%). As only 4 subjects are in-
cluded, only 1 pSAR10g underestimation error occurs (2%).

4  |   DISCUSSION

A new deep learning approach for subject‐specific local SAR 
assessment was presented. It consists of a data‐driven ap-
proach in which a CNN is trained to learn a “surrogate SAR 
model” to map the relation between quickly accessible MRI 
images (complex B+

1
 maps) and the corresponding local SAR 

distribution. The required time for the local SAR prediction 

with the proposed deep learning method is a few millisec-
onds, underlining its online local SAR assessment capability. 
The approach was used for SAR10g assessment of prostate 
imaging at 7 T with our 8‐channel fractionated dipole array, 
and its performance was evaluated by in silico and in vivo 
validation, showing a great reduction of the uncertainty com-
pared with commonly used methods.

4.1  |  In silico validation and 
performance evaluation
In all examined cases, a very good match between the 
ground‐truth SAR10g distributions and the predicted SAR10g 
distributions were observed. The spatial SAR distribution, in-
cluding most local SAR peaks, is always very well predicted 
for all models. Although the chosen loss function probably 
produces deliberate overestimation, the patterns of the pre-
dicted SAR10g distributions always match to the correspond-
ing ground‐truth SAR10g distributions, in particular the hot 
spots close to the body array surface, where the near‐field 
effects occur. This shows that the suitability of measured 
B+

1
 alone to account for the E‐field for the considered array 

setup, and that CNNs can properly learn the physical relation 
between complex B+

1
 maps and SAR10g in nonhomogeneous 

media. Thus, the proposed deep learning method can provide 
a way forward to include intersubject variation in local SAR 
assessment.

The proposed method is also able to predict quite well the 
peak SAR10g values. As desired, the loss function minimiza-
tion produces a little overestimation of the pSAR10g values 
(mean pSAR10g overestimation error of 15%). Nevertheless, 
some pSAR10g underestimation errors still occur, and in some 
cases the pSAR10g overestimation errors are greater than the 
acceptable threshold. Most of these pSAR10g errors are due 
to SAR10g peaks in very small regions near the body surface 
(Figure 4A).

All of these issues might be solved by using more train-
ing samples and/or a different network architecture and/or by 
minimizing a different loss function. Therefore, the optimiza-
tion of the network and the cost function will be the subject of 

F I G U R E  7   Histogram of the pSAR10g 
estimation error considering the 99.9% 
certain upper bound for the pSAR10g level 
(3.8 W/kg)
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future work. Nevertheless, the presented results significantly 
exceed the performance of state‐of‐the‐art methods, allowing 
online subject‐specific SAR10g prediction.

It is noteworthy that some models (e.g., M03, M08, 
M20) present anatomical features that are unique within 
our database, so they were not covered by the training sets 

F I G U R E  8   Measured and simulated flip angle maps, measured and simulated relative transmit phase maps, and predicted and simulated 
SAR10g distributions for each volunteer with default phase settings
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during the in silico cross‐validation. However, the predic-
tion results for these models are comparable to the results 
for the well‐represented models. This could be explained if 

the mapping from B+
1
 to SAR10g requires only local infor-

mation (i.e., the SAR10g at each location that is found by 
local  B+

1
 information in the direct‐proximity patient size 

F I G U R E  9   Measured and simulated flip angle maps, measured and simulated relative transmit phase maps, and predicted and simulated 
SAR10g distributions for each volunteer with prostate‐shimmed phase‐shimming settings
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and shape are not needed for this calculation). However, 
based on the current data, this hypothesis cannot be veri-
fied. Potentially, patch‐based networks that work by defini-
tion on the proximal information inside the patch centered 
on the location of interest might generalize even better. 
However, this should be researched further, and the ap-
plicability of the presented method for extremely differ-
ent body anatomies (e.g., obese, anorexic) cannot yet be 
assured.

Note that as for many existing SAR assessment methods, 
it is assumed that no changes occur after the local SAR distri-
bution has been determined.

The proposed deep learning method in conjunction with 
the defined safety factor achieves a mean pSAR10g overesti-
mation error of 56% with a probability of pSAR10g underes-
timation lower than 0.1%. If a safety factor is applied to the 
predicted pSAR10g with the conventional method, the result-
ing mean pSAR10g overestimation error is 103%, with a sim-
ilar probability of underestimation. Applying the safe power 
limit based on the 99.9% certain upper bound for the pSAR10g 
level, the mean pSAR10g overestimation error is 95%, with 
a probability of pSAR10g underestimation lower than 0.1%. 
These results again confirm the large gain in SAR assess-
ment accuracy with the presented method. Furthermore, we 
believe, as demonstrated by Figure 3, that a fundamental ad-
vantage of the deep learning method is that it predicts much 
more reliably the locations of SAR peaks compared with the 
conventional method that uses a generic model.

In this study, we have compared our deep learning–based 
SAR assessment method with a SAR prediction method using 
1 generic model. Although simulations on 1 model have been 
used previously as a safety analysis,17,18,41 currently it is more 
common to use at least multiple models and predict peak local 
SAR by the maximum SAR over all models. The advantage 
of this method is that it will likely reduce the probability of 
an underestimation error; however, it will increase the mean 
overestimation error and therefore not likely reduce the scan 
time. On the other hand, the estimation error might be reduced 
by making use of a large database of models and have a means 
to select the most representative “local SAR model” for the 
patient being scanned. However, a preliminary study using 
these same 23 models has shown only very limited gains by 
applying such a method.22 The presented deep learning–based 
method does not rely on similarities between models and the 
patient. The expectation is that the model has truly learned 
the relation between the B+

1
 distribution and the local SAR 

level, based on the true patient anatomy of the patient being 
scanned. The library of models just acts as training data.

4.2  |  In vivo local SAR assessment
For the in vivo validation, offline simulated SAR10g distri-
butions based on subject‐specific models were used as the 

ground truth. We tailored the simulated SAR10g distribu-
tions by driving the simulated transmit array with the drive 
vectors that minimized the L2‐norm between the simulated 
and measured complex B+

1
 maps. In this way, the differences 

due to the reflected/lost power and calibration imperfections 
should be compensated. However, the differences due to the 
inevitable small deviations in the simulated and real scenario 
cannot be compensated by the drive vectors. Therefore, even 
driving the transmit array with optimized drive vectors, the 
obtained simulated complex B+

1
 maps and SAR10g distribu-

tions may be different from the measured complex B+
1
 maps 

and the actual SAR10g distributions in the volunteers.
Nevertheless, all in vivo validation tests show a good 

qualitative and quantitative match between predicted and 
simulated SAR10g distributions. In agreement with in silico 
validation, moderate pSAR10g overestimation errors are ob-
served (between 2% and 21%). Only 1 pSAR10g underestima-
tion error occurs (2%). Note that the indicated pSAR10g levels 
have been obtained using a generic power limit of 2.6 W per 
channel that was derived from a previous statistical study.22 
Using the safety factor of 1.36 as derived from the in sil-
ico cross‐validation for the deep learning–based method, the 
resulting predicted pSAR10g values vary between 3.5 W/kg 
(V04) and 7.2 W/kg (V01), which is still below the thresh-
old of 10 W/kg. If the more accurate subject‐specific SAR10g 
assessment is used to increase the power limit, the resulting 
limits can be increased from 3.6 W (V01) to 7.5 W (V04) 
average power per channel. These are 39% to 187% higher 
than the original power restriction of 2.6 W, which illustrates 
the benefit of the deep learning–based method for SAR10g 
assessment presented in this paper.

The simulation‐based methods assume theoretical val-
ues of the dielectric properties of the tissues. However, the 
proposed method could potentially address differences in a 
given tissue’s reported dielectric values, as these differences 
would also determine differences in the measured complex 
B+

1
 maps.

4.3  |  Advantages and limitations
The predicted SAR10g using the proposed image‐based 
method inherently includes all relevant and exam‐specific in-
formation, such as the patient anatomy, antenna position, and 
reflected/lost power and calibration imperfections. It does 
not require knowledge of the drive scheme.

All information arises from the complex B+
1
 maps, 

including only the readily accessible relative B+
1
 phase. This 

data‐driven approach exploits a priori information about the 
setup (which is included in the trained algorithm parame-
ters), thus leading to a unique mapping between B+

1
 maps and 

SAR10g.
Unlike the conventional method (or any simulation‐based 

method), which is very sensitive to antenna (mis‐)positioning, 
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the proposed image‐based method is robust to antenna posi-
tion variations that could occur during the manual position-
ing (as long as they are also included in the training set).

Furthermore, the predicted SAR10g values ​​can easily be 
scaled to the actual SAR10g values for sequences with similar 
RF waveforms and static RF shim settings. The only required 
information are the requested B+

1
 in microtesla and the duty 

cycle of the considered MRI sequences.
The proposed method predicts very well the spatial SAR 

distribution for all models in a few milliseconds. It includes 
intersubject variation, performs better than the commonly 
used method, and most likely can be applied to other coils 
and body regions at any field strength. However, to properly 
learn the intended surrogate SAR model, a specific training 
set is required. The relation between complex B+

1
 maps and 

SAR10g distribution is mapped only for the specific coil, 
body region, and field strength in the training set. It would 
be interesting to investigate whether such a data‐driven ap-
proach could also work for 1.5T and 3T volume transmit 
coils, although there will be variation in human body posture 
and its geometrical relation to the coil. In addition, the SAR 
hot spots are typically not confined to the imaging region. 
Quite large B+

1
 mapping scans may be required. The arms 

(when alongside the body) may not be measurable if they 
are too far off center. The absence of B+

1
 information from 

the arms (if these are outside the imaging region) will pose 
an additional challenge. Nevertheless, this application area 
is still worthwhile to investigate and calls for further explor-
atory investigations.

It is worth noting that only the x and y components of 
the B1 field are observable. For the considered array setup 
(8 fractionated dipoles around the pelvis), the z‐component 
of the B1 field is much less intense than the other compo-
nents; thus, the SAR prediction can be extended over the 
entire region where the power is absorbed even though the 
training was performed only for the central slice (Supporting 
Information Figure S7).

For other coil arrays, the z‐component may not necessar-
ily be negligible as well. Therefore, the SAR10g attributable 
to this component will not be negligible either. However, 
in this case, the relation between the z‐component and the 
other components and its contribution to the SAR10g is also 
enclosed in the training set. Note that through Gauss’s law, 
the z‐component is related to the transverse component, so 
it should be a consistent relation among all of these compo-
nents. It might be possible that the deep learning method will 
be able to learn this relation as well for the specific coil array. 
However, for such a coil array the training will need to be 
performed with a larger volume of simulated data (extending 
further in the +/‐ z‐direction) to include the regions where the 
z‐component of the B1 field is not negligible.

To calculate the SAR10g, the only required information 
that is nonderivable from complex B+

1
 maps is the tissue mass 

density, which has a minor influence on SAR10g level in the 
pelvis, where density variability is limited.

In regions with greater variability in density of tissue, 
such as in bone and lungs, additional tissue information types 
to include in the CNN input could become desirable. This 
could, for instance, consist of separate treating of thin cor-
tical bones with respect to spongy bone. This would also re-
quire the recognition of these tissue types by the network. 
However, this should be possible as similar networks are used 
to predict synthetic CT based on MR images as input, such 
as Dixon gradient‐echo images.38 Whether this is possible for 
other body parts (such as the head) with many more struc-
tures, needs further investigation.

The proposed deep learning–based method could also 
be used to assess the SAR10g when sophisticated RF pulse 
design strategies are implemented.10,19 In these cases, the 
complex B+

1
 maps for each channel have to be acquired and 

combined using software to produce the shimmed complex 
B+

1
 maps for each time step. Then, the SAR10g distribution for 

each time step can be predicted and integrated over time to 
assess the SAR10g for the whole designed pulse (Supporting 
Information Figure S8).

It is also worth noting that sophisticated RF pulse design 
strategies also require amplitude modulation of each chan-
nel and not only phase modulation. As shown in Supporting 
Information Figure S8C, for an example, spiral nonselective 
RF pulses designed for the model M01 (time step: 0.575 ms; 
ΔB0 (r)=0�T), the proposed deep learning–based method 
could allow local SAR assessment with amplitude modula-
tion, even though the training was done only with phase mod-
ulation of each RF channel.

Finally, it would be worthwhile, given the current discus-
sion, to use a thermal dose concept in RF safety monitoring 
to investigate whether this data‐driven approach can also be 
extended to predict local temperature rise or even absolute 
tissue temperature based on complex B+

1
 maps combined with 

surrogate thermal information of the anatomy (e.g., Dixon 
water/fat maps).

5  |   CONCLUSIONS

In this work, a deep learning–based method for subject‐ 
specific local SAR assessment was presented. This method 
consists of training a CNN to learn a surrogate SAR model, 
to map the relation between subject‐specific complex B+

1
 

maps and the corresponding local SAR. After training, the 
network takes a few milliseconds to predict the realistic and 
accurate local SAR distribution, providing a solution to the 
long‐standing challenge of estimating subject‐specific local 
SAR distributions.

The use of complex B+
1
 maps was proposed because these 

distributions can be acquired easily, and enclosed within them 
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lies almost all required information for local SAR assessment. 
The proposed method does not require accurate calibration 
procedures or reflected/lost power monitoring. It does not 
even require knowledge of the drive scheme or the accurate 
position of the transmit array on the patient. All relevant in-
formation is inherently included in the complex B+

1
 maps.

In silico and in vivo validation was performed. A good 
qualitative and quantitative match between predicted and 
ground‐truth local SAR distributions was observed. A more 
narrow distribution of the peak local SAR estimation error, 
with a moderate mean overestimation and lower probability 
of underestimation, was achieved.

To avoid underestimation, multiplying the predicated 
peak local SAR by a safety margin is necessary. The pro-
posed deep learning–based method in conjunction with the 
safety factor achieves an acceptable mean overestimation 
error of 56% with a probability of underestimation lower 
than 0.1%. This result could save almost 25% of the time in 
the examination protocol compared with the commonly used 
approach (i.e., using a generic model) or compared with our 
recently published result.22
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FIGURE S1 Transverse MIP of the ground‐truth SAR10g 
distributions, the predicted SAR10g distributions, and error 
SAR10g distributions using the deep learning method and the 
predicted SAR10g distributions and error SAR10g distributions 
using the conventional method (generic model Duke) for the 
models M01‐M12. All results are with transmit phases op-
timized for prostate imaging. The Duke model was manu-
ally rigidly registered to the models by aligning their prostate 
centers
FIGURE S2 Transverse MIP of the ground‐truth SAR10g 
distributions, the predicted SAR10g distributions and error 
SAR10g distributions using the deep learning method and the 
predicted SAR10g distributions, and error SAR10g distribu-
tions using the conventional method (generic model Duke) 
for the models M13‐M23. All results are with transmit phases 
optimized for prostate imaging. The Duke model was manu-
ally rigidly registered to the models by aligning their prostate 
centers
FIGURE S3 Transverse MIP of the ground‐truth, predicted, 
and error SAR10g distributions for the worst pSAR10g over-
estimation results for each model using the deep learning 
method
FIGURE S4 Transverse MIP of the ground‐truth, predicted, 
and error SAR10g distributions for the worst pSAR10g under-
estimation results for each model using the deep learning 
method
FIGURE S5 Normalized RMS error boxplot for each model 
over all considered cases
FIGURE S6 Flip angle and relative transmit phase‐error dis-
tributions (between measured and simulated B

+

1
 maps) and 

SAR10g error distributions (between predicted and simulated 
SAR10g distributions) with default and prostate‐shimmed 
phase‐shimming settings for each volunteer included in the in 
vivo validation
FIGURE S7 Ground‐truth SAR10g distributions, predicted 
SAR10g distributions, and error SAR10g distributions over 10 
slices through the model M01 using the deep learning method 
with phase shimming set for prostate imaging
FIGURE S8 A, Complex B+

1
 maps for each channel of the 

model M01. B, Spiral nonselective (SPINS) RF pulses de-
signed for the model M01 (ΔB0(r) = 0 μT). C, Drive vector, 

https://doi.org/10.1002/nbm.3729
https://doi.org/10.1002/nbm.3729


      |  711MELIADÒ et al.

shimmed B
+

1
, ground‐truth, and predicted SAR10g distribu-

tions for 1 time step (e.g., time step 0.575 ms). D, Transverse 
MIP of the ground‐truth and predicted SAR10g distributions 
with SPINS RF pulses designed for the model M01
TABLE S1 A, Data of the volunteers included in the training 
set. B, Data of the volunteers included for in vivo validation. 
C, Data of the generic body model Duke

How to cite this article: Meliadò EF, Raaijmakers AJE,  
Sbrizzi A, et al. A deep learning method for  
image‐based subject‐specific local SAR assessment. 
Magn Reson Med. 2020;83:695–711. 
https​://doi.org/10.1002/mrm.27948​

https://doi.org/10.1002/mrm.27948

