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Abstract
The Arctic is undergoing unprecedented environmental change. Rapid warming, 
 decline in sea ice extent, increase in riverine input, ocean acidification and changes 
in primary productivity are creating a crucible for multiple concurrent environmen-
tal stressors, with unknown consequences for the entire arctic ecosystem. Here, we 
synthesized 30 years of data on the stable carbon isotope (δ13C) signatures in dis-
solved inorganic carbon (δ13C-DIC; 1977–2014), marine and riverine particulate or-
ganic carbon (δ13C-POC; 1986–2013) and tissues of marine mammals in the Arctic. 
δ13C values in consumers can change as a result of environmentally driven variation in 
the δ13C values at the base of the food web or alteration in the trophic structure, thus 
providing a method to assess the sensitivity of food webs to environmental change. 
Our synthesis reveals a spatially heterogeneous and temporally evolving δ13C base-
line, with spatial gradients in the δ13C-POC values between arctic shelves and arctic 
basins likely driven by differences in productivity and riverine and coastal influence. 
We report a decline in δ13C-DIC values (−0.011‰ per year) in the Arctic, reflecting 
increasing anthropogenic carbon dioxide (CO2) in the Arctic Ocean (i.e. Suess effect), 
which is larger than predicted. The larger decline in δ13C-POC values and δ13C in 
arctic marine mammals reflects the anthropogenic CO2 signal as well as the influence 
of a changing arctic environment. Combining the influence of changing sea ice condi-
tions and isotopic fractionation by phytoplankton, we explain the decadal decline in 
δ13C-POC values in the Arctic Ocean and partially explain the δ13C values in marine 
mammals with consideration of time-varying integration of δ13C values. The response 
of the arctic ecosystem to ongoing environmental change is stronger than we would 
predict theoretically, which has tremendous implications for the study of food webs 
in the rapidly changing Arctic Ocean.
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1  | INTRODUC TION

The Arctic is changing rapidly (IPCC, 2013), warming twice as fast as 
the global average (Carmack et al., 2015; Hoegh-Guldberg & Bruno, 
2010) and causing sea ice to decline in both extent and thickness 
(Kwok, 2018; Lind, Ingvaldsen, & Furevik, 2018). Sea ice underpins 
the entire arctic ecosystem and the decline in this seasonal habitat is 
affecting the entire food web. Primary production has increased by 
30% from 1998 to 2012 owing to an increase in light under reduced 
ice conditions (Arrigo & van Dijken, 2015). Arctic predators, such as 
seals and polar bears, that rely on sea ice for foraging, moulting and 
breeding are also adversely affected by the loss of sea ice (Laidre  
et al., 2008). Other climate-induced changes are occurring in tandem 
and include acidification (Yamamoto, Kawamiya, Ishida, Yamanaka, 
& Watanabe, 2012), shifts in wind patterns and enhanced wind field 
in the Western Arctic (Overland & Wang, 2010), increased coastal 
erosion, river flow and melting of permafrost and glaciers (Haine 
et al., 2015; Jones et al., 2009; Mars & Houseknecht, 2007). These 
multiple concurrent stressors have far-reaching implications for the 
arctic marine ecosystem at multiple trophic levels, and there is an 
urgent need to understand the ecosystem response in this unique 
polar habitat.

The ratio of stable carbon isotopes, 13C and 12C, expressed as 
δ13C (‰), provides a powerful tool for studying food webs. The 
δ13C values of particulate organic carbon (POC), consisting of fresh 
phytoplankton, microzooplankton, bacteria and marine and terres-
trial detritus, (Fry & Sherr, 1989; Lobbes, Fitznar, & Kattner, 2000; 
Michener & Kaufman, 2007; Wassmann et al., 2004), represent the 
base of the food web or ‘baseline’. The δ13C values of POC (δ13C-
POC) are generally transferred with a 13C enrichment of 1‰–2‰ 
between each trophic level, creating an inextricable link between 
the base of the food web and consumers (Fry, Anderson, Entzeroth, 
Bird, & Parker, 1984). Spatial trends in δ13C-POC values controlled by 
environmental factors have been used to decipher the foraging and 
migratory patterns of consumers on a regional scale (Hoffman, 2016; 
Iken, Bluhm, & Dunton, 2010; Polito et al., 2017; Wassenaar, 2019) 
and more recently on a global scale in the construction of global 
‘isoscapes’ (Bird et al., 2018; Bowen & West, 2008; Firmin, 2016; 
Graham, Koch, Newsome, McMahon, & Aurioles, 2010; McMahon, 
Hamady, & Thorrold, 2013b). However, spatial and temporal trends 
in the δ13C values of high trophic levels may also reflect changes in 
food web structure such as loss or addition of species, consumer's 
diet or a combination of factors. To disentangle the drivers of spatial 
and temporal trends in the δ13C values of consumers in the Arctic, it 
is crucial to establish spatial and temporal variations in δ13C values 
at the base of the food web, allowing the sensitivity of marine arctic 
consumers to environmental change to be quantified.

It is challenging to isolate phytoplankton-POC for analysis and 
so the nominal definition of δ13C-POC values typically assumes 
that the bulk of POC is derived from phytoplankton only, although 
δ13C-POC values can be influenced by other factors such as bac-
terial activity and detritus (Michener & Kaufman, 2007). While the 
detrital fraction of POC may be degraded by bacteria, potentially 

altering the δ13C values of that fraction, we assume that photosyn-
thetic phytoplankton are responsible for transforming the bulk of 
δ13C-POC values in time and space. δ13C value of phytoplankton, 
which underpins the δ13C-POC values, is controlled by fractionation 
during photosynthesis. This equates to the difference between the 
δ13C values of the carbon source, either dissolved inorganic carbon 
(DIC) or carbon dioxide (CO2), and the δ13C-POC values (Cassar, 
Laws, Bidigare, & Popp, 2004; Young, Bruggeman, Rickaby, Erez, 
& Conte, 2013). Factors such as phytoplankton growth rate, avail-
ability or concentration of carbon, light and nutrient availability 
affect isotopic fractionation and the δ13C-POC values (Burkhardt, 
Riebesell, & Zondervan, 1999; Keeley & Sandquist, 1992). As such, 
environmental conditions can create distinct patterns in these val-
ues. δ13C-POC values become enriched in 13C in an environment 
where replenishment of the CO2 pool is slow or restricted, for exam-
ple, during periods of rapid phytoplankton growth (Rau, Takahashi, 
Des Marais, Repeta, & Martin, 1992) or in sea ice associated with 
sympagic primary production (Budge et al., 2008; Hobson et al., 
2002; Søreide et al., 2013; Wang, Budge, Gradinger, Iken, & Wooller, 
2014). Conversely, an increase in CO2 concentration will lead to a 
carbon pool depleted in 13C (Rau et al., 1992) creating a 13C-deplete 
POC pool. Terrestrially derived POC delivered via rivers and coastal 
erosion also tends to be depleted in 13C relative to marine-derived 
POC (Boutton, 1991; Keeley & Sandquist, 1992). While global iso-
scapes capture the large-scale spatial trends in δ13C values related 
to oceanographic provinces (shelf vs. open ocean) and latitude (Bird 
et al., 2018; Bowen & West, 2008; Graham et al., 2010; McMahon 
et al., 2013b), they do not include the Arctic Ocean. We expect the 
δ13C values of POC in the Arctic to be influenced by the strong re-
gional trends in sea ice, productivity and terrestrial influence includ-
ing riverine input and coastal erosion, all of which vary along the 
water mass circulation pathways from the inflow shelves, which re-
ceive water from the Atlantic and Pacific oceans, to the arctic basins 
and interior shelves (Sakshaug, 2004; Tremblay & Gagnon, 2009; 
Varela, Crawford, Wrohan, Wyatt, & Carmack, 2013).

Imprinted on the regional trends is a temporal trend in δ13C 
values worldwide. Enhanced atmospheric CO2 since the industrial 
period (Tagliabue & Bopp, 2008) is causing an increase in oceanic 
CO2 (Sabine et al., 2004) and a decline in the δ13C values of DIC 
(δ13C-DIC), known as the Suess effect, as a result of 13C-depleted an-
thropogenic CO2 (Quay, Sonnerup, Westby, Stutsman, & McNichol, 
2003). δ13C-DIC values in the Arctic Ocean are predicted to change 
at a rate of −0.006‰ to −0.008‰ per year, compared to the global 
average of −0.017‰ per year (Tagliabue & Bopp, 2008). However, 
several studies have already shown that decadal trends in the δ13C 
values of marine mammals in the Arctic (Misarti, Finney, Maschner, 
& Wooller, 2009; Nelson, Quakenbush, Mahoney, Taras, & Wooller, 
2018; Newsome et al., 2007; Schell, 2001) are larger than the Suess 
effect alone, implying that other factors are altering their δ13C signa-
tures on decadal timescales.

The main objective of this study was to quantify how regional dif-
ferences and temporal trends in the arctic environment have altered 
the δ13C values in DIC and POC, representing the base of the food web 
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or ‘baseline’. We compared these trends at the base of the food web 
to trends in δ13C values in arctic marine mammals to investigate how 
environmental change (e.g. Suess effect, loss of sea ice) may alter δ13C 
values in the entire food web. We synthesized published data from 
1977 to 2014 on δ13C values of DIC and dissolved CO2, and δ13C-POC 
values in the surface ocean (POCwater) and in sea ice (POCice) across 
the entire Arctic Ocean, alongside data from arctic rivers (POCriv). We 
quantified regional differences in the δ13C values in POC and discuss 
the underlying environmental drivers of the observed spatial heteroge-
neity. We then quantified the decadal trends in δ13C values of DIC and 
CO2, and δ13C values of POC in the Arctic Ocean, comparing the rate 
of change to the Suess effect and observed trends in tissues of arctic 
marine mammals from the post-industrial period.

2  | MATERIAL S AND METHODS

2.1 | Data collation

Data on bulk δ13C-POCwater, δ13C-POCice and δ13C-POCriv values, 
focusing on suspended particulate organic matter above the ther-
mocline, were collated from tables and figures in 37 original manu-
scripts and two open access databases for both marine (PANGAEA; 
http://www.panga ea.de) and riverine (articGRO; https ://arcti cgrea 
trive rs.org/) environments, in Arctic and sub-Arctic regions, as de-
fined by the Köppen–Geiger climate classification (Kottek, Grieser, 
Beck, Rudolf, & Rubel, 2006). The database included 354 data points 
for marine δ13C-POCwater values (Brown et al., 2014; Connelly, 
McClelland, Crump, Kellogg, & Dunton, 2015; Forest et al., 2010; 
Griffith et al., 2012; Guo, Tanaka, Wang, Tanaka, & Murata, 2004; 
Hallanger et al., 2011; Hobson, Ambrose, & Renaud, 1995; Hobson 
et al., 2002; Iken et al., 2010; Iken, Bluhm, & Gradinger, 2005; 
Ivanov, Lein, Zakharova, & Savvichev, 2012; Kohlbach et al., 2016; 
Kuliński, Kędra, Legeżyńska, Gluchowska, & Zaborska, 2014; Kuzyk, 
Macdonald, Tremblay, & Stern, 2010; Lin et al., 2014; Lovvorn et al., 
2005; O'Brien, Macdonald, Melling, & Iseki, 2006; Parsons et al., 
1989; Roy et al., 2015; Sarà et al., 2007; Schubert & Calvert, 2001; 
Smith, Henrichs, & Rho, 2002; Søreide et al., 2008; Søreide, Hop, 
Carroll, Falk-Petersen, & Hegseth, 2006; Tamelander, Reigstad, Hop, 
& Ratkova, 2009; Tamelander et al., 2006; Tremblay, Michel, Hobson, 
Gosselin, & Price, 2006; Zhang et al., 2012), 69 data points for δ13C-
POCice values (Forest et al., 2010; Hobson et al., 1995; 2002; Iken  
et al., 2005; Kohlbach et al., 2016; Lovvorn et al., 2005; Roy et 
al., 2015; Schubert & Calvert, 2001; Søreide et al., 2006, 2008; 
Tamelander et al., 2006; Tremblay et al., 2006) and 383 data points 
for riverine δ13C-POCriv values (Goni, Yunker, Macdonald, & Eglinton, 
2000; Holmes, McClelland, Tank, Spencer, & Shiklomanov, 2018; 
Kuzyk et al., 2010; Lobbes et al., 2000). Data were available over 
different temporal scales: marine δ13C-POCwater values from 1986 
to 2013, δ13C-POCice from 1993 to 2012 and riverine δ13C-POCriv 
values from 1987 to 2016.

To relate the temporal trend in δ13C-POCwater values to the 
predicted decline of δ13C-DIC and δ13C-CO2 values, a compilation 
of data on δ13C-DIC values was extracted from three publications 

(Bauch, Polyak, & Ortiz, 2015; Schmittner et al., 2013; Young  
et al., 2013) and two databases (Becker et al., 2016; Key et al., 2015). 
δ13C-CO2 values were determined from the δ13C-DIC values and 
absolute temperature following the Equation (1) (Rau, Riebesell, & 
Wolf-Gladrow, 1996). δ13C-DIC and δ13C-CO2 values included 1,333 
data points covering 1977–2014.

where T is the temperature in Kelvin.
To determine if the temporal trend in δ13C-POC values was re-

flected in higher trophic levels within the Arctic Ocean, δ13C data 
were collated from arctic marine mammals covering years follow-
ing the industrial period (post 1950). We collated δ13C data from 
teeth of ringed seals (Pusa hispida) from 1986 to 2006 from East 
Greenland (Aubail, Dietz, Rigét, Simon-Bouhet, & Caurant, 2010) 
and northern fur seals (Callorhinus ursinus) from 1950 to 2000 
from the Bering Sea and Gulf of Alaska (Newsome et al., 2007). 
Additionally, δ13C data were collated from teeth of Beluga whales 
(Delphinapterus leucas) from 1963 to 2008 from the Hudson 
Bay and from 1976 to 2001 from the Baffin Bay (Matthews & 

(1)δ
13C- CO2= δ

13C- DIC+23.644−9,701.5∕T,

F I G U R E  1   Map indicating the locations of the arctic regions 
considered in this study. Circulation pathways are highlighted 
and modified from Carmack and Wassmann (2006). The yellow 
arrows represent the intermediate Pacific water and the red arrows 
represent the Atlantic water. White arrows indicate the mouths of 
the arctic rivers. The black circles point to the approximate location 
of the North Water Polynia in the Northern Baffin bay, North-
East Water Polynia in Northeast Greenland and Svalbard marine 
coastal area. Chu., Churchill River; Gr.Wh., Great Whale River; 
Hay., Hayes River; Inn., Innuksuac River; Li.Wh., Little Whale River; 
Nas., Nastapoca River; Nel., Nelson River; Win., Winisk River; 
Bathymetry and coast lines were from the software Ocean Data 
View (Schlitzer, 2016)

http://www.pangaea.de
https://arcticgreatrivers.org/
https://arcticgreatrivers.org/
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Ferguson, 2014), and baleen plates of bowhead whales (Balaena 
mysticetus) from 1950 to 1998 from the Bering and Chukchi Seas 
(Schell, 2001).

2.2 | Data treatment

We analysed the δ13C-POCwater, δ13C-POCice, δ13C-DIC and δ13C-
CO2 values in 17 marine arctic regions (Figure 1; Table 1). In ad-
dition, the δ13C-POCwater values from arctic rivers were grouped 
into two large riverine regions: the Siberian rivers and the North 
American rivers (Figure 1; Table 1). The regions were defined based 
on their location, and physical and biological characteristics. Most 
of the data were collected in summer and δ13C-POCwater did not vary 
seasonally (Appendix S1). In order to achieve the best spatial cover-
age, data from all seasons and years were combined for the spa-
tial comparison. Regional means were calculated for δ13C-POCwater, 
δ13C-POCice, δ13C-POCriv, δ

13C-DIC and δ13C-CO2 values (Table 1).
The decadal variation of regional marine δ13C-POCwater values 

in arctic regions was assessed where data were available for at least 
three different years covering a period of at least 5 years. This in-
cluded the following regions: arctic basins, Beaufort Sea, Chukchi Sea 
and Bering Sea. Svalbard and the Barents Sea, which had similar δ13C-
POCwater values and δ13C-POCice values (Table S2: ANOVA3 and 4), 
were combined into the ‘European Arctic’ to achieve the best temporal 
coverage. The mean decadal trend (all regions combined) was calcu-
lated for δ13C-POCwater, δ

13C-POCice, δ13C-DIC and δ13C-CO2 values.

2.3 | Statistical analyses

Quantile–quantile plots of the residuals were plotted to check how 
closely the data follow a normal distribution (Becker, Chambers, & 
Wilks, 1988). The data were normally distributed, and therefore, 
we used a one-way ANOVA (α = 0.005; Zuur, Ieno, & Smith, 2007) 
followed by post hoc Tukey pairwise comparison tests in R (R Core 
Team, 2018) to spatially compare: (a) the δ13C-POCwater data be-
tween arctic shelves and arctic basins (ANOVA1), between arctic 
shelves and arctic rivers (ANOVA2) and between all arctic shelves 
(ANOVA3); and (b) the δ13C-POCice values between all marine arctic 
regions where data were available (ANOVA4). We used a two-way 
ANOVA followed by post hoc Tukey pairwise comparison test to 
compare the δ13C-POCice values with δ13C-POCwater values (factor 
‘origin’) for regions (factor ‘region’) where both data sets were avail-
able (ANOVA5). Arctic regions with less than five data points were 
excluded from statistical analyses. Relevant p-values of the post hoc 
Tukey pairwise comparison tests following ANOVA1 to 5 are shown 
in Table S2.

We applied linear models in R (R Core Team, 2018) to quantita-
tively assess the latitudinal gradient in δ13C-DIC, δ13C-CO2 and δ13C-
POCwater values, and the temporal trends in δ13C values of marine 
POCwater, POCice, DIC, dissolved CO2 and arctic marine mammals. 
The significance and robustness of the linear models were assessed 
based on the p-values of the slopes and intercepts, the R2, the  
F-values and df (Table S3; Zuur et al., 2007).

3  | RESULTS

3.1 | Spatial trends in the δ13C of the baseline

The Atlantic and Pacific waters entering the Arctic via the South 
Iceland and Norwegian Sea, and Gulf of Alaska and Bering Sea, re-
spectively (Figure 1; Table 1), had similar δ13C-CO2 values and were 
depleted by up to 2‰ relative to the δ13C-CO2 values in the arctic 
basins (Table 1). We observed a significant depletion in δ13C-CO2 
and δ13C-POCwater values with increasing latitude (Figure 2). δ13C-
DIC did not vary with latitude (Figure 2a).

We analysed the δ13C-POCwater, δ
13C-POCice and δ13C-CO2 val-

ues in 17 marine arctic regions (Figure 1; Table 1). δ13C values of 
POCwater varied significantly between arctic regions (Figure 3a). 
POCwater from arctic shelves was significantly enriched in 13C com-
pared to POCwater from arctic basins and POCriv (Figure 3a; Table S2:  
ANOVA1 and ANOVA2). The δ13C-POCwater values were 13C de-
pleted in arctic shelves (Beaufort Sea, Svalbard fjords, Canadian ar-
chipelago and the Hudson Bay) influenced by fresh water (Table 1; 
Figure 1) relative to the inflow (Chukchi Sea and Barents Sea) shelves 
and the North Water Polynya (Figure 3a; Table S2: ANOVA3).

δ13C-POCice values followed the same regional trend as δ13C-
POCwater values, with δ13C-POCice values enriched in 13C in the 
inflow and outflow shelves (Barents Sea, North Water Polynya) 
compared to the interior shelf Beaufort Sea and the arctic basins 
(Figure 3b; Table S2: ANOVA4).

3.2 | Comparison between δ13C of 
POCice and POCwater

Generally, δ13C values of POCice were significantly 13C-enriched 
compared to those of POCwater (p < .005; Table S2: ANOVA5), with 
δ13C-POCwater being enriched by 4.4‰ in the Barents Sea, by 4.2‰ 
in the North Water Polynya and by 7.0‰ in the Canadian archipelago 
(Table 1). There were no significant differences between POCice and 
POCwater in the Svalbard region, the arctic basins and the Beaufort 
Sea (Table S2: ANOVA5). δ13C-POCice values were highly variable in 
most of the arctic regions (Figure 3b).

3.3 | Temporal trends in the δ13C of the baseline and 
Arctic marine mammals

In all arctic regions combined, δ13C-DIC (1977–2014), δ13C-CO2 (1977–
2014) and δ13C-POCwater (1986–2013) values became significantly 
13C depleted by 0.011 ± 0.001, 0.011 ± 0.002 and 0.149 ± 0.020‰ 
per year respectively (Figure 4a; Table 2). The temporal trends in 
δ13C-POCwater values were statistically significant in the Beaufort 
Sea (−0.117 ± 0.033‰ per year; 1987–2013) and in the arctic basins 
(−0.256 ± 0.057‰ per year; 1997–2012) and not statistically signifi-
cant in the European Arctic, Bering Sea and Chukchi Sea (Figure 4b; 
Table 2; Table S3). The temporal trend in δ13C-POCice values was not 
significant (Figure 4d; Table 2; Table S3). The δ13C values in the teeth 
of northern fur seals, ringed seals and beluga whales, and in baleen 
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F I G U R E  2   Stable carbon isotope 
values (δ13C, in ‰) of (a) marine dissolved 
inorganic carbon (DIC; n = 1,333) and 
marine dissolved CO2 (n = 1,333) and (b) 
marine POCwater (n = 354) in the surface 
waters with latitude; each dot is a single 
data point; the solid line represents the 
slope of the linear regression; dashed lines 
indicate the 95% confidence interval of 
the linear regression. The equations and p-
values of the linear regressions are shown 
on the figure. Trends are considered 
significant when p < .005

F I G U R E  3   Regional stable carbon 
isotope values (δ13C, in ‰) of (a) POCwater 
and POCriv and (b) POCice; Numbers of 
observations are shown as number on top 
of the boxplots. Results of post hoc Tukey 
tests following (a) ANOVA1 to ANOVA3 
and (b) ANOVA4 are expressed as letters 
on top of the boxplots. Different letters 
indicate significant differences (p < .005) 
between regions. The p-values of each 
test are shown in Table S2
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plates of bowhead whales were significantly depleted in 13C with 
time (Figure 4c; Table 2). The decline in δ13C values in teeth ranged 
from 0.020 ± 0.003‰ per year in northern fur seals from the Gulf 

of Alaska (1950–2000) to −0.046 ± 0.012‰ per year in ringed seals 
from East Greenland (1986–2006; Table 2). The δ13C in the baleen 
plates of bowhead whales from the Bering and Chukchi Seas signifi-
cantly decreased by 0.064 ± 0.010‰ per year (1965–1998; Table 2). 
The decline in δ13C values of POCwater and marine mammals was 
larger than decline in δ13C-DIC and δ13C-CO2 values (0.011‰ per 
year, this study). Details of the linear models are shown in Table S3.

4  | DISCUSSION

4.1 | Ice versus water

The 13C-enrichment in POCice compared to POCwater in arctic re-
gions has been observed previously and attributed to carbon limi-
tation around ice algae within sea ice (Budge et al., 2008; Hobson  
et al., 2002; Søreide et al., 2006; Wang et al., 2014). The termina-
tion of the spring ice edge bloom can cause 13C at the base of the 
food web to be altered when 13C-enriched ice algae were added 
to 13C-depleted pelagic phytoplankton (Søreide et al., 2006). The 
similarity in the δ13C-POCice and δ13C-POCwater values in some re-
gions (see Section 2.2) and the high intra-regional variability of 
the δ13C-POCice values may be explained by differences in ice po-
rosity, allowing replenishment of DIC from water to ice (Thomas 
& Papadimitriou, 2011). δ13C-POCice values were likely to have 
been influenced by light availability and the high bacterial activ-
ity in sea ice compared to open water (Wang et al., 2014). Thus, 
variation in the sampling month for sea ice might also contribute 
to the high variability in δ13C-POCice. This highlights that caution 
is required when using bulk δ13C values of POCice and POCwater to 
distinguish between open water versus ice-dependent food webs 
in the Arctic (Søreide et al., 2006). The challenge of disentangling 
the contribution of carbon derived from sympagic production to 
the food web has been successfully resolved by using compound-
specific stable isotope analyses (e.g. δ13C values of fatty acids; 
Graham, Oxtoby, Wang, Budge, & Wooller, 2014; Oxtoby, Budge, 
Iken, Brien, & Wooller, 2016; Oxtoby et al., 2017; Wang et al., 
2015).

4.2 | Spatial trends

Spatial trends in the δ13C values of POCwater and POCice were similar, 
implying that they were influenced by the same environmental driv-
ers within specific regions of the Arctic Ocean.

Low temperature, high wind speed and high productiv-
ity enhance the atmospheric CO2 uptake by the Arctic Ocean 
(Takahashi et al., 2002), driving strong latitudinal gradients 
in concentration and δ13C values of oceanic CO2 with 13C-CO2 
being more depleted in the Arctic Ocean (≈−10‰, Young  
et al., 2013; −10.2 ± 0.5‰, this study) relative to the tropics (≈−7 
‰, Young et al., 2013). In the marine environment, more than 
90% of DIC is composed of bicarbonate ions (HCO−

3
; Boutton, 

1991). Fractionation between HCO−

3
 and atmospheric CO2 in-

creases in cold water (Zhang, Quay, & Wilbur, 1995) leading 

F I G U R E  4   Decadal trend in δ13C values of: (a) dissolved 
inorganic carbon (DIC), dissolved CO2 and POCwater, (b) POCwater for 
each arctic region, (c) POCwater and arctic marine mammal tissues 
and (d) POCice for each arctic region. BS, Bering sea; CS, Chukchi 
sea; EG, East Greenland; GA, Gulf of Alaska; HB, Hudson bay. 
Results of the linear models can be found in Table 2 and Table S3. 
Number of observations can be found in Table 2
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to 13C enrichment of δ13C-DIC values with increasing latitude 
(Tagliabue & Bopp, 2008), as observed in this study (Figure 2a). 
δ13C-POCwater values became 13C-depleted with increasing lat-
itude (Figure 2b, this study; Goericke & Fry, 1994; McMahon  
et al., 2013b), reflecting the latitudinal trend in δ13C-CO2 values 
as well as multiple additional factors, including temperature, phy-
toplankton growth rates, bacterial activity and isotopic fraction-
ation, that also vary with latitude (Fouilland et al., 2018; Thomas, 
Kremer, Klausmeier, & Litchman, 2012; Young et al., 2013). A 
latitudinal trend in δ13C values of zooplankton was observed in 
the western Arctic (i.e. Bering and Chukchi Sea; Dunton, Saupe, 
Golikov, Schell, & Schonberg, 1989), demonstrating the transfer 
of this δ13C signature to the next trophic level.

The two orders of magnitude difference in phytoplankton 
production between the nutrient-rich arctic shelves and the ice 
covered nutrient depleted arctic basin (Sakshaug, 2004) may par-
tially explain the relatively large difference in δ13C-POCwater val-
ues of 2.3‰ between the arctic shelf (−24.0 ± 1.2‰) and arctic 
basins (−26.3 ± 1.6‰). High rates of primary production cause 13C 
enrichment of the δ13C-POC values (Boutton, 1991; McMahon, 
Hamady, & Thorrold, 2013a). The highly productive Bering Sea 
and Barents Sea account for up to two-thirds of the total arctic 
phytoplankton production (Sakshaug, 2004). Advection of nu-
trients from the arctic outflow and early exposure to sunlight 

enhance phytoplankton productivity in the North Water Polynya 
(Sakshaug, 2004). In contrast, high turbidity and strong strati-
fication caused by fresh water inflow from rivers onto the inte-
rior shelves reduce light and restrict phytoplankton production 
(Dittmar & Kattner, 2003). Lower phytoplankton productivity in 
the river influenced Beaufort Sea and Siberian Coast, as well as 
the North-East Water Polynia (Sakshaug, 2004) could explain the 
depleted δ13C-POC values observed in these regions relative to 
the more productive regions.

The 13C depletion in δ13C-POCwater values observed in the in-
terior shelves, Svalbard fjords, Hudson Bay and Canadian archi-
pelago compared to other arctic shelf regions likely reflects the 
contribution of 13C-depleted terrestrially derived POC (Boutton, 
1991) from rivers, coastal erosion and glacial streams. Seventy-
two arctic rivers supplying 40% of the total freshwater input from 
the surrounding continents of Eurasia and North America enter the 
Arctic Ocean via the interior shelves of the Siberian coast and the 
Beaufort Sea (Table 1; Figure 1) at a rate of 2,500–4,200 km3/year  
(Haine et al., 2015). In addition, terrestrially derived POC input 
resulting from coastal erosion may be equal to or larger than 
input from river discharge in some regions, for instance along 
the Siberian coast (Rachold et al., 2000). Finally, glacial fjords on 
Svalbard are fed with freshwater by large glaciers and streams 
with the highest freshwater inflow in summer during ice and snow 

 Slope ± SD p‐value Time period
Number of 
observations

POCwater

Beaufort sea −0.117 ± 0.033 <.005 1987–2013 71

European Arctic −0.499 ± 0.265 .076 1999–2004 20

Arctic basins −0.256 ± 0.057 <.005 1997–2012 87

Bering sea −0.019 ± 0.046 .679 1998–2010 62

Chukchi sea +0.008 ± 0.071 .906 2003–2009 36

All data −0.149 ± 0.020 <.005 1987–2013 311

POCice

All data −0.185 ± 0.106 .084 1993–2012 69

DIC

All data −0.011 ± 0.001 <.005 1977–2014 1,333

CO2

All data −0.011 ± 0.002 <.005 1977– 2014 1,333

Marine mammals

Northern fur seal—Bering 
sea/Gulf of Alaska

−0.020 ± 0.003 <.005 1950–2000 40

Ringed seal—East Greenland −0.046 ± 0.012 <.005 1986–2006 36

Beluga whale—Hudson Bay –0.026 ± 0.003 <.005 1963–2008 42

Beluga whale—Baffin Bay –0.021 ± 0.006 <.005 1976–2001 26

Bowhead whale—Bering sea/
Chukchi sea

−0.064 ± 0.007 <.005 1965–1998 34

Note: Lines in bold are considered significant (p < .005).
Detailed statistics of the linear models are shown in Table S3.

TA B L E  2   Slopes ± SD and p-values of 
the decadal linear models of δ13C values 
in dissolved inorganic carbon (DIC), ocean 
dissolved CO2, POCwater, POCice and arctic 
marine mammal tissues
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melt (Cottier et al., 2005). Any temporal alteration of the riverine 
inputs or the drainage basins would likely alter the δ13C-POCwater 
values in the interior shelves and subsequently alter the base of 
the food web.

4.3 | Temporal trends at the baseline

The increasing concentration of anthropogenic CO2, known as the 
Suess effect, is predicted to decrease the oceanic δ13C-DIC val-
ues by an average of 0.017‰ per year, with high spatial variabil-
ity from 0‰ per year in the Southern Ocean to 0.024‰ per year 
in the subtropical gyres (Tagliabue & Bopp, 2008). In the Arctic 
Ocean, the δ13C-DIC values are predicted to decrease by 0.006‰ 
to 0.008‰ per year (Tagliabue & Bopp, 2008). We observed a 
decreasing trend in δ13C-DIC values of 0.011 ± 0.001‰ per year 
from 1977 to 2014 across all arctic regions, which is larger than 
the predicted trend. Although CO2 represents less than 0.5% of 
the total DIC pool, it is the only component that is exchangeable 
with the atmosphere. In polar regions, especially the Arctic Ocean, 
the decline in sea ice has led to an expansion of open water (Arrigo 
& van Dijken, 2015). This facilitates atmospheric exchange and en-
hances the dissolved CO2 concentration (Yamamoto et al., 2012) 
resulting in an additional 13C depletion of δ13C-CO2 values (Rau 
et al., 1992) which may explain the larger decrease in δ13C-CO2 
values (0.011 ± 0.002‰ per year) and in turn the larger decrease 
in δ13C-DIC values (0.011 ± 0.001‰ per year) in the Arctic Ocean 
compared to the predicted decrease of 0.006–0.008‰ per year 
(Tagliabue & Bopp, 2008).

The decadal decline in δ13C-POCwater values (1987–2013) was 
more than 10 times larger than the trend in δ13C values of CO2 (or DIC) 
implying that other factors are influencing the δ13C values in POC in 
the Arctic Ocean. Since the mid-1990s, sea ice extent has declined by 
8.3 ± 0.6% per decade across the entire Arctic (Comiso, 2012). Sea ice 
algae are up to 7 ‰ enriched in 13C relative to pelagic phytoplankton 
(this study) and a decline in sea ice could decrease the contribution 
of ice algal biomass to total productivity and reduce the total mean 
δ13C values of POCwater. For example, the open water area of the 
Barents sea has increased by 15,789 km2 or 1.3% per year between 
1998 and 2012, alongside a 28% increase in net primary production 
over the same time period (Arrigo & van Dijken, 2015). Assuming dis-
tinct end members for δ13C-POCwater (−25.0 ± 1.7‰) and δ13C-POCice 
(−20.0 ± 1.3‰) values, sea ice decline would cause the entire pool of 
δ13C-POC values to decrease by 0.06 ± 0.15‰ per year. Additionally, 
the photosynthetic isotopic fractionation factor for phytoplankton in 
the Arctic Ocean has increased by 0.045‰ per year since the 1960s, 
compared to a global average of 0.022‰ per year (Young et al., 2013). 
The combined effect of a decline in ice algae (0.06 ± 0.15‰ per year, 
this study), increase in fractionation factor (0.045‰ per year, Young 
et al., 2013) and Suess effect (i.e. dissolved CO2, 0.011 ± 0.001‰ 
per year, this study) could potentially cause the δ13C-POC values to 
decrease by 0.116 ± 0.15‰ per year, which is of the same order of 
magnitude as the observed annual decrease in δ13C-POCwater values 
in the whole Arctic (0.149 ± 0.028‰ per year) and in the Beaufort 

Sea (0.126 ± 0.020‰ per year; Table 2). In support of this argument, 
the difference between the temporal trend or slope in δ13C-CO2 and 
δ13C-POC values (Figure 4a) increased by 0.138 ± 0.028‰ per year 
in agreement with the sum of the contributions from a change in ice 
(0.06 ± 0.15‰ per year), fractionation (0.045‰ per year) and Suess 
effect (0.011 ± 0.001‰ per year) influencing δ13C-POCwater values.

Other factors contributing to the decline in δ13C-POC values in the 
Arctic Ocean include river run-off, coastal erosion, primary production 
and bacterial activity. Increased riverine run-off (Haine et al., 2015) 
and coastal erosion (Jones et al., 2009; Mars & Houseknecht, 2007) 
resulting from ongoing climate change in the Arctic could contribute 
to the decline in δ13C-POC values by adding 13C-deplete terrestrially 
derived material to the marine POC pool. Changes in primary produc-
tivity will also influence the δ13C-POC values. For example, the decline 
of δ13C values in Bowhead whales from the Bering/Chukchi Sea was 
interpreted by Schell (2000) as reflecting a 30%–40% decrease in sea-
sonal primary productivity in the Bering Sea over the last 30 years. 
Increasing bacterial activity with increasing temperature (Vaqué  
et al., 2019; Vernet, Richardson, Metfies, Nöthig, & Peeken, 2017) and 
dissolved CO2 concentration (Grossart, Allgaier, Passow, & Riebesell, 
2006) in the Arctic may also influence the δ13C values of POC.

4.4 | Implications for food web

The reliability of stable carbon isotopes in deciphering the prove-
nance of feeding or migratory patterns of consumers is heavily de-
pendent on knowledge of δ13C values at the base of the food web. 
Maps that convey the geographical and temporal trends of δ13C values 
in the baseline, termed isoscapes (Bowen et al., 2009; Graham et al.,  
2010), have become a necessity for interpreting trophic structure 
using δ13C (or δ15N) values (Hansen, Hedeholm, Sünksen, Christensen, 
& Grønkjær, 2012; Newsome, Clementz, & Koch, 2010). Although 
isoscapes have been constructed for the atmosphere (Bowen et al., 
2009), terrestrial environment (Bowen & West, 2008; Firmin, 2016) 
and the Atlantic and Pacific Oceans (Graham et al., 2010; McMahon 
et al., 2013b), this study provides a first view of δ13C-POC values or 
carbon isoscape of the Arctic Ocean. We found spatially heterogene-
ous and temporally evolving δ13C values in the POC pool, which has 
ramifications for the study of food webs in space and time.

Previous studies have noted that the decline in δ13C in Arctic 
marine mammals is larger than the Suess effect alone (e.g. 
Matthews & Ferguson, 2014; Newsome et al., 2007), but the lack 
of δ13C baseline information prevented these authors from disen-
tangling the driving factors (Cullen, Rosenthal, & Falkowski, 2001; 
Schell, 2000, 2001). Generally, the temporal decline in the δ13C 
values in marine mammals was larger than in δ13C-DIC and δ13C-
CO2 values (both of −0.011 ± 0.001‰ per year) but smaller than 
the decline observed in δ13C-POCwater values (−0.149 ± 0.028‰ 
per year). The δ13C signature in phytoplankton or a consumer rep-
resents an average ratio related to the lifetime of the organism and 
tissue turnover time (Vander Zanden, Clayton, Moody, Solomon, & 
Weidel, 2015). Previous studies have shown that the seasonal vari-
ation in δ13C values of POC was higher than in higher trophic levels 
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reflecting the strong seasonal growth cycle of phytoplankton and 
shorter time period over which they integrate carbon (O'reilly, 
Hecky, Cohen, & Plisnier, 2002). In contrast, consumers from zoo-
plankton to predators are long-lived and thus integrate δ13C values 
over their seasonal foraging and migratory routes (Aubail et al., 
2010; Schell, Saupe, & Haubenstock, 1989) with the time of inte-
gration depending on the tissue type (Vander Zanden et al., 2015) 
or the animals’ lifetime (O'reilly et al., 2002). The effect of yearly 
averaging of the δ13C values in marine mammal teeth and baleen 
plates used to reconstruct decadal trends may have reduced the 
larger, short-lived variation observed in δ13C-POC values mainly 
representing summer in this study. The gradual linear decline in 
δ13C values in arctic seals and whales likely reflects alterations to 
the δ13C-POC values. A change in diet, for example, a shift towards 
foraging closer to freshwater (Nelson et al., 2018), or more pelagic 
feeding habits (Aubail et al., 2010), may also contribute to the tem-
poral decline in δ13C values observed in predators.

This study demonstrates that to disentangle factors driving vari-
ation in the δ13C values in a consumer, it is vital to know the spatial 
heterogeneity and temporal evolution of δ13C values of the baseline in 
the Arctic Ocean in order to avoid inaccurate interpretation of changes 
in food web structures. Some studies have attempted to correct the 
δ13C values in arctic marine mammals for the Suess effect using mod-
elled and predicted values for large geographical regions, prior to in-
terpreting decadal trends in δ13C values (Carroll, Horstmann-Dehn, 
& Norcross, 2013; Misarti et al., 2009; Nelson et al., 2018). However, 
the Suess effect varies spatially (Tagliabue & Bopp, 2008), and there-
fore, local values should be used for this correction. For example, the 
Suess effect in the Arctic Ocean (0.011 ± 0.001‰ per year, this study) 
differs from the predicted modelled values (0.006–0.008‰ per year; 
Tagliabue & Bopp, 2008), implying that other factors, such as the loss 
of sea ice, are accelerating the influence of anthropogenic CO2 in the 
Arctic. In addition, the decline in δ13C-POC values, representing the 
base of the food web, is larger than the decline in δ13C-DIC values 
(this study). This suggests that interpretation about diet shift should 
be done after consideration of temporal trends in δ13C-POC values 
and not only in δ13C-DIC (Suess effect). These results also highlight 
the importance of considering time-averaging effects when studying 
different trophic levels and/or tissues having, respectively, variable 
lifetime and turnover time. Insight from this study has direct impli-
cations for how we interpret changes in δ13C values in consumers, 
especially in environments experiencing rapid change.
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