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Background: Fiber tracking with diffusion-weighted magnetic resonance imaging has become 

an essential tool for estimating in vivo brain white matter architecture. Fiber tracking results are 

sensitive to the choice of processing method and tracking criteria.

Purpose: Phantom studies provide concrete quantitative comparisons of methods relative to 

absolute ground truths, yet do not capture variabilities because of in vivo physiological factors. 

Reproducibility does not assess validity of brain connections yet, is still of importance because it 

describes the variability for an algorithm in group studies. The ISMRM 2017 TraCED challenge 

was created to fulfill the gap.

Study Type: Systematic review of algorithms and tract reproducibility study

Subjects: Single healthy volunteer

Field Strength/Sequence: 3.0 T, two different scanners of the same manufacturer. The multi-

shell acquisition included b-values of 1000, 2000 and 3000 s/mm2 with 20, 45 and 64 diffusion 

gradient directions per shell, respectively.

Assessment: Nine international groups submitted 46 tractography algorithm entries each 

consisting 16 tracts per scan. The algorithms were assessed using intra-class correlation (ICC) and 

dice similarity measure.

Statistical Tests: Containment analysis was performed to assess if the submitted algorithms had 

containment within tracts of larger volume submissions. This also serves the purpose to detect if 

spurious submissions had been made.

Results: 7The top five submissions had high ICC & Dice > 0.88. Reproducibility is high within 

top 5 submissions when assessed across sessions or across scanners: 0.87–0.97. Containment 

analysis shows that top 5 submissions are contained within larger volume submissions. From the 

total of 16 tracts as an outcome relatively the number of tracts with high, moderate and low 

reproducibility are 8, 4 and 4.

Conclusion: The different methods clearly result in fundamentally different tract structures at 

the more conservative specificity choices. Data and challenge infrastructure remain available for 

continued analysis and provide a platform for comparison.
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INTRODUCTION

Diffusion weighted magnetic resonance imaging (DW-MRI) is a technique which allows for 

non-invasive mapping of the human brain’s micro-architecture at milli-metric resolution. 

Using voxel-wise fiber orientation reconstruction methods, tractography can provide 

quantitative and qualitative information for studying structural brain connectivity and 

continuity of neural pathways of the nervous system in vivo. There have been many 

algorithms, global, iterative, deterministic and probabilistic, that reconstruct streamlines 

using fiber reconstruction methods. Tractography was conceived[1, 2] using one of the first 

fiber reconstruction method, diffusion tensor imaging (DTI) [1]. However, DTI has a well-
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known limitation: it cannot resolve complex fiber configurations [3]. With the advancement 

in acquisitions protocols allowing for better resolution and higher number of gradient values 

new methods for reconstruction of local fiber have been developed. These methods are 

commonly referred to as high angular resolution diffusion imaging (HARDI), e.g., q-ball, 

constrained spherical deconvolution (CSD), persistent angular structure (PAS) [4–6]. 

HARDI methods enable characterization of more than a single fiber direction per voxel, but 

have been often shown to be limited when more than two fiber populations exist per voxel 

[7–9]. While there is definite gain in sensitivity when using HARDI methods, there remain 

critical questions of their reproducibility [10].

There have been many validation efforts that aim to assess the anatomical accuracy of 

tractography. Early studies investigated how well tractography followed large white matter 

trajectories through qualitative comparisons with dissected human samples [11], or previous 

primate histological tracings [12]. Later works on the macaque [13] or porcine [14] brains 

highlighted limitations and common errors in tractography. Recently, the sensitivity and 

specificity of tractography in detecting connections has been systematically explored against 

tracers in the monkey [15–17], porcine [18], or mouse [19] brains. The main conclusions 

drawn from these are (1) that algorithms always show a tradeoff in sensitivity and specificity 

(i.e. those that find the most true connections have the most false connections) (2) short-

range connections are more reliably detected than long-range, (3) connectivity predictions 

do better than chance and thus have useful predictive power, and (4) tractography performs 

better when assessing connectivity between relatively large-scale regions rather than 

identifying fine details or connectivity.

Despite the wide range of validation studies, there have been few reproducibility studies of 

tractography [20–23]. Rather than ask how right (or wrong) tractography is, we ask how 

stable are the outputs of these techniques? Because tractography is an essential part of track 

segmentation, network analysis, and microstructural imaging, it is important that 

reproducibility is high, otherwise power is lost in group analyses or in longitudinal 

comparisons. In this study, given a standard, clinically realistic, diffusion protocol, we aim to 

assess how reproducible tractography results are between repeats, between scanners, and 

between algorithms.

Publicly organized challenges provide unique opportunities for research communities to 

fairly compare algorithms in an unbiased format, resulting in quantitative measures of the 

reliability and limitation of competing approaches, as well as potential strategies for 

improving consistency. In the diffusion MRI community, challenges have focused on 

recovering intra-voxel fiber geometries using synthetic data [24] and physical phantoms [20, 

25]. Similarly, diffusion tractography challenges [21] have provided insights into the effects 

of different acquisition settings, voxel-wise reconstruction techniques, and tracking 

parameters on tract validity by comparing results to ground truth physical phantom fiber 

configurations [20, 22]. Recently, more clinically relevant evaluations have been put forth. 

For example, a recent MICCAI challenge benchmarked DTI tractography of the pyramidal 

tract in neurosurgical cases presenting with tumors in the motor cortex [26]. Towards this 

direction, the current challenge utilized a large-scale single subject reproducibility dataset, 

acquired in clinically feasible scan times. This challenge was intended to study 
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reproducibility to describe the limitations for capturing physiological and imaging 

considerations prevalent in human data and evaluate the newest generation of tractography 

algorithms.

This paper is organized as follows. First, we present the analysis structure of this challenge 

to characterize which tracts are the most reproducible. Second, we characterize the variance 

across the tractography methods by design features and compare the potential containment 

of tracts on a per algorithm basis.

METHODS

DW-MRI Data Acquisition

Informed consent following Institutional Review Board (IRB) approval, was obtained to 

conduct this study.

The data were acquired with a multi-shell HARDI sequence on single healthy human 

subject. The two scanners were both Phillips, Achieva, 3T, Best, Netherlands. These are 

referred to as scanner ‘A’ and ‘B’. The three shells that were acquired: b=1000 s/mm2, 

2000s/mm2 and 3000s/mm2 with 20, 48 and 64 gradient directions respectively (uniformly 

distributed over a hemi-sphere and independently per shell, this was done in consideration of 

scanner hardware.). The other parameters were kept consistent for all shells. They are as 

follows: Delta=~48ms, delta=~37ms, partial fourier=0.77, TE = 99 ms, TR ~= 2920 ms and 

voxel resolution=2.5mm isotropic. A total of 15 non-weighted diffusion volumes ‘b0’ 

images interspersed as 5 per shell were acquired. Additionally, for scanner A & B, 5 reverse 

phase-encoded b0 images and 3 diffusion weighted directions were acquired to aid in 

distortion correction. The additional 3 diffusion-weighted direction volumes were acquired 

for ease of acquisition from the scanner. They do not contribute to the pre-processing of the 

data in any way.

Additionally, a T1-weighted reference image (MPRAGE) was acquired for each session per 

scanner (4 volumes total). A single volume of T1 was used which was registered to the first 

session of scanner A where the session had already been registered to the MNI template. 

This was done using a 6 degree of freedom rigid body registration.

For the initial data release, a technical issue resulted in 5 non-reverse phase-encoded b0 

images for scanner A. Note that at the end of the challenge, the scanner ‘A’ data were 

completely re-acquired for both sessions with 5 reverse phase-encoded b0 images and 3 

diffusion weighted directions. These data were released as supplementary material, but not 

included in the presented challenge data. Following the protocol for tractography in [25], we 

delineated six tracts cingulum (CNG) Left/Right (L/R), inferior longitudinal fasciculus (ILF) 

(L/R), inferior fronto-occipital (IFO) (L/R). The mean intra-class correlation (ICC) inter-

scanner values for the original challenge data and the updated challenge data were 0.86 and 

0.89, respectively. The mean difference between methods was 0.15 in terms of ICC. As 

expected, the inclusion of full reverse phase encoding for Scanner ‘A’ introduced a small 

increased in consistency relative to much larger differences between methods.
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DW-MRI Data Pre-processing as illustrated in Fig 1, the 5 repeated acquisitions from each 

of the four sessions (two repeated on scanner A and B) were concatenated and corrected 

with FSL’s eddy and topup [27–29]. Intensity normalization was performed by dividing 

each diffusion weighted scan by the mean of all non-weighted diffusion volume (B0) per 

session. The average B0 from scanner A of the first sessions was rigidly (six degrees of 

freedom) registered [30] to a 2.5 mm T2 MNI template (this was done to ensure resampling 

from registration was done on both datasets). Next, the average B0 from the scanner A 

second session was rigidly registered to the average B0 of the registered scanner A first 

session B0 which had already been registered to the MNI space. Successively, the sessions 

from scanner B were registered to the sessions of scanner A. The b-vectors were rotated to 

account for the registration of the DW-MRI data [31].

The T1 weighted MPRAGE was rigidly registered to the average registered b0 from the first 

session of scanner A. This transformation was applied to the T1 maintaining 1 mm isotropic 

resolution, thus providing a high-resolution segmentation that may be converted into 

diffusion space by performing a simple down-sampling. Multi-atlas segmentation with non-

local spatial STAPLE fusion was used for the segmentation of the T1 volume to 133 

different ROI’s [32, 33]. Finally, Multi-atlas CRUISE (MaCRUISE) was used to identify 

cortical surfaces [34]. These were provided for ease of algorithm implementations.

Challenge Rules and Metrics

For each of the 20 HARDI datasets (5 repetitions x 2 sessions x 2 scanners), participants 

were asked to submit a tractogram (i.e., “fiber probability membership function”) for each 

well-modeled fiber structures (uncinate (UNC) [L/R], fornix (FNX) [L/R], genu of the 

corpus callosum, cingulum (CNG) [L/R], corticospinal tract (CST) [L/R], splenium of the 

corpus callosum, inferior longitudinal fasciculus (ILF) [L/R], superior longitudinal 

fasciculus (SLF) [L/R], and inferior fronto-occipital (IFO) [L/R](1)). Each tractogram is a 

NIFTI volume at the field of view and resolution of the T1-weighted reference space where 

the floating-point value (32-bit single precision) of each voxel is in [0, 1] and indicates the 

probability of the voxel belonging to the specified fiber tract. Thus, participants submitted a 

total of 320 (5 × 2 × 2 × 16) NIFTI volumes using the acquisition of both the scanners. 

Assessment of fiber fractions was supported (i.e., the sum across all tracts is <=1 with the 

remainder as background). However, strict probabilities where each voxel may have a high 

probability of 2 or more fibers with a sum greater than 1 were permitted as well.

Tractograms within a submission were compared based on reproducibility of the tracts 

(intra-class correlation coefficient (ICC) statistics for continuous values and Dice similarity 

scores based on maximum probability assignment at 0.5). Intra-session, inter-session, same 

scanner, and inter-scanner scanner metrics have been reported for quantitative interpretation. 

The ICC and dice value of unique number of combinations of pairs of repeats were used as 

data points for violin plots depicting results of intra-session, inter-session and inter-scanner. 

The unique combinations of repetitions were 40, 50 and 100 respectively for the three levels 

of reproducibility.
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Containment Analysis

A key question is whether the differences in tractography are driven by different 

considerations of the volume of the track, i.e., the larger the volume is, the more likely the 

track may include the underlying true track. For example, it is plausible that a set of 

tractography methods could see the same underlying probabilistic connection pattern and 

choose to threshold it based on different preferences for the volume of tracks. If the 

preference was driving the tractography differences, then tractograms would essentially be 

able to be nested from smallest to largest. To examine this hypothesis, we define the 

property containment index (CI) for two tracts where

CI A, B =
A = 0:1

A ≠ 0 and B = 0:0
otherwise: A ∩ B / B

(1)

For the purposes of this discussion, we define the tractogram set to be the binary volume 

resulting at a 0.05 threshold of the mean of all results submitted for each algorithm. A visual 

understanding of containment index can be observed in Fig 3.

Then, an optimal ordering (“nesting”) of tractogram entries can be computed by maximizing 

the containment energy (CE, i.e., sum of CI for all tracts versus the tracts earlier than the one 

under consideration):

argmaxo ∈ perm 1… Entry CE =

argmaxo ∈ perm 1… Entry i

N
j ≤ i
N CI Entry oi , Entry i j

(2)

Where perm denotes the permutation operator and Entry is a list of all entered tractograms. 

Conceptually, this procedure finds the ideal order to stack the tractograms inside each other 

where the first tract is “most inside” the subsequent ones and the last tract is “most outside” 

all others. We define <CI> as the average containment index of all nesting for the ordered 

entries that are smaller than or equal to an entry provides a quantitative way to examine 

“nesting” (note, this approach includes the self-containment index so that the first entry has 

a CI of 1). Then, we can see how the nesting holds up from the inner (#’1’) to the outer 

(#’46’) entry.

Tractography Reconstruction Methods

Team 1—A CSD-based probabilistic streamline tractography [35] seeding from the WM, 

with a step size of 0.2mm and a maximum deviation angle of 30 degrees (multi-shell data, 

20 different datasets). The Tract Querier [36] was used to extract the bundles from 

anatomical constraints. The processing steps were identically applied to all dataset, without 

manual intervention any level of the processing. Automatic streamline filtering was applied 

using COMMIT [37]. The bundle volumes were also post-processed using a distance 

transform, resulting in weighted volumes with values corresponding to the distance to the 

closest boundary.
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Team 2—Instead of using traditional tractography, which reconstructs every single fiber, 

the problem is viewed as an image segmentation task. A U-Net is used to segment each fiber 

bundle. As input features the peaks of the fiber orientation distribution functions were used. 

As ground truth data for training of the model manual segmentation was performed on the 

bundles of 30 HCP subjects. The approach is described in more detail in [38].

Team 3—Two shells at b-values of 1000 and 2000 s/mm2 were used and the data was 

upsampled to 2mm isotropic. The tractography approach relies on free water invariant 

estimation of tensor (FERNET). The free water correction has been adapted from the work 

described in [39]. FA thresholds of 0.15 and 0.20 were used with angular thresholds of 25 

and 35 degrees.

Team 4—The diffusion data ( b=3000 s/mm2) was up-sampled from 2.5mm isotropic to 

1mm isotropic. WM mask was computed from the T1-weighted image using FSL FAST 

[40]. The fiber orientation distribution (FOD) function was estimated using CSD [41] 

implemented in DiPy [35]. An in-house probabilistic tractography algorithm was used [42]. 

Tractography parameters were: step size = 0.2 mm, maximal deviation = 20 degrees, number 

of seeds per voxel = 3. Bundle segmentation was performed using a novel automatic atlas-

based bundle segmentation method [43]. The atlas was built from a HCP tractogram using 

the definition provided by the organisers.

Team 5—A technique for the estimation of the FOD was combined with a more traditional 

method for tract selection. Specifically, the spherical mean technique (SMT) was used to fit 

a microscopic compartment model of brain tissue [44] to the pre-processed multi shell 

diffusion data which subsequently enabled the recovery of the FOD quantitatively using 

CSD. Resulting FOD’s were used for whole-brain probabilistic tractography. Anatomically 

constrained tractography and spherical deconvolution informed filtering of tractograms were 

used to discard spurious tracts. Streamlines belonging to the tracts were selected using both 

atlas-derived regions (JHU-DTI) and ROI’s manually drawn [45] on track density images.

Team 6—A pipeline was evaluated for diffusion tensor bundle modeling using an atlas-

based approach [46], implemented using the Quantitative Imaging Toolkit [47]. First, 

reference bundles were produced in the IIT tensor atlas consisting of include, exclude, and 

seed masks, which were deformed to subject space using DTI-TK. The pipeline included 

denoising using nonlocal means filtering, up-sampling to 1mm3 voxels, weighted-least 

squares tensor estimation, and streamline integration with step size 1mm, angle threshold 40 

degrees, and a FA threshold of 0.15. Fiber bundles were extracted from the streamlines using 

the atlas masks with outlier rejection and finally discretized to native space voxels.

Team 7—The method described in [48] was augmented into a 2 pass tractography 

approach. Broad WM waypoints are defined in MNI template space at anatomically 

significant locations for each fascicle [49]. A deterministic tractography algorithm (based on 

CSD [50]) generates 500,000 streamlines. These streamlines are filtered by groups of 

waypoints warped from MNI space into patient space. Waypoints are then refined, only 

retaining waypoint voxels intersected by at least 1 streamline from each relevant fascicle. 

5,000,000 streamlines generated by a CSD based probabilistic tractography algorithm 
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(iFOD2), are filtered by refined waypoints then converted to fiber probability maps for each 

fascicle.

Team 8—Multi-shell compartment analysis is used on the pre-processed images (v1.0) to 

compute FODs [51]. Streamlines are computed using the algorithm in [52]. For each of the 

20 images, 1.25 million streamlines are obtained using the following parameters: FOD cut-

off threshold=0.04, min. length=10mm, max. length=250 mm, step=0.005 mm, σT
2 = 60°, 

σN
2 = 0.8°, σB

2 =0.8°, σK
2=0.5, σt

2=0.25, r=3.75 mm. No post-processing is done. Initially, 

bundles are obtained by filtering whole brain tractograms with manually drawn ROIs. Final 

bundles are obtained by removing dangling streamlines. After extracting the bundles, 

separate binary masks are generated on the 1 mm template.

Team 9—First, a morphological T1-weight image is used to segment the brain (estimate a 

new mask or tracts identified), identify different structures and different tissues. Then, 

whole-brain tractography with multi-tissue CSD is performed using four tractography 

methods. Moreover, multi-tractography-based tracts atlas is exploited to combine four 

tractography and to reduce the error from individuals tractography algorithms. Fiber bundles 

with multi-tractography-based tracts atlas were finally automatically segmented with a Tract 

Querier [36] method. Finally, tracts space will be converted to DWI space by affine 

transform to mapping tracts to binary images.

RESULTS

Table 1 presents a more detailed technical contribution of each of the works:

• Team 1, Team 5, Team 6, Team 8 and Team 9 used all three shells of b-values 

provided in the dataset. Team 2 used all shells with data from an additional 30 

subjects from the Human Connectome Project. Team 3 used shells of b-values 

1000 and 2000 s/mm2. Team 7 and Team 4 only used the shell of b-value 3000 

s/mm2.

• Additional pre-processing has been used by four teams. Team 4: Data was up-

sampled to 1mm isotropic resolution. Team 6 used image de-noising techniques 

and up-sampled the data to 1.25mm. Team 5 and Team 9 used different styles of 

segmentation of the data presented for analysis.

• In terms of the fiber detection model, Team 6 and Team 3 used variants of tensor 

models while the others have used different variants of constrained spherical 

deconvolution. Notably Team 8 used a compartment analysis model using 

spherical harmonics.

• Considering the tractography parameters - the range of step sizes that have been 

used lie between 0.2–1.25mm. Threshold angle lies in the range of 20–40 

degrees.

• Single fiber assumptions were considered with the condition of FA > 0.7 by 

teams Team 1 and Team 4. A notable observation here is that a general 

assumption was made by Team 6 to reject voxels which were less than 0.15 FA.
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• Team 2, Team 6 and Team 8 post-processed the tractography results for removal 

of spurious fibers by defining different and specific constraints.

• Of note, Team 2 treated the tractography problem as a segmentation problem and 

developed a U-net which was trained on the HCP data. While Team 9 used a 

multi-atlas approach to tractography. The other teams used the general approach 

of probabilistic or deterministic tractography.

An overlay of all 46 submissions, for all estimated fiber pathways can be observed (Fig 2 

Column 1 & 3). Only the left side has been shown as the right side is a similar observation. 

There are vast differences that can be noticed in the estimated pathways. The volume of the 

brain occupied by each tract from different submissions varied dramatically. When all 46 

submissions are overlaid, tracts occupy 14–53% of the brain volumetrically (average – 

34%). Specifically, the union of all entries for FNX (L/R), CNG (L/R), IFO (L/R) and SLF 

(L/R) cover (30.7, 25.8), (40.9, 37.2), (42.4, 46.1), (50.6, 53.3) respectively, while CST 

(L/R), ILF (L/R), UNC (L/R) and Fminor and Fmajor cover (23.6, 25.4), (33.4, 33.6), (14.3, 

17.4), 44.3 and 34.1. Note that individual submissions appear qualitatively reasonable (Fig 2 

Column 2 & 4).

The number of algorithmic submission’s team wise are Team 1: 14, Team 2: 1, Team 3: 2, 

Team 4: 12, Team 5: 1, Team 6: 6, Team 7: 1, Team 8: 6 and Team 9: 3. It can be observed 

that the ICC range for the set of algorithms on a per team basis does not show a lot of 

variance. The ICC range of algorithms per team are Team 1 (0.61 – 0.77), Team 4 (0.52 – 

0.58), Team 6 (0.77 – 0.85), Team 8 (0.81 – 0.89), Team 9 (0.27 – 0.69), Team 3 (0.64, 

0.73), Team 2 (0.85), Team 7 (0.88) and Team 5 (0.97). The teams that submitted more than 

3 algorithms show an average difference of 0.1 in terms of ICC.

Violin plots (depict the probability density of the data) of ICC and Dice for intra-session 

reproducibility, inter-session, and inter-scanner measures of reproducibility are presented in 

Figures 4, 5 and 6, respectively. Since the observations are highly similar in the afore-

mentioned figures we only present a detailed comment on Figure 4 which holds true for 

Figure 5 and 6 as well. This figure helps in identifying the low, moderate and high 

reproducibility tracts. The intra-session distributions (Figure 4B) across entries for UNC 

(L/R) and FNX (L/R) are bi-modal with a median of the lower mode less than 0.4 ICC. The 

CST (L) has a smaller fraction of the entries with ICC less than 0.4, while the remainder of 

the entries have only a few outlier entries less than 0.4 The inter-session (Fig. 5) and inter-

scanner (Fig. 6) distributions were similar, with a slight increase in outlier entries for IFO 

(L/R). The patterns in the dice were similar when using a quality threshold of less than 0.4 

dice.

We define cutoffs for high, moderate, and low reproducibility on the inter-scanner 

reproducibility. High reproducibility was defined as a median ICC greater than 0.6 and less 

than 5% of entries less than 0.4 ICC. Moderate reproducibility was defined as median ICC 

greater than 0.4 and less than 25% of entries less than 0.4 ICC. Low reproducibility was 

defined as a median ICC less than 0.4 or more than 25% of entries less than 0.4 ICC. Hence, 

the high reproducibility tracts were Fminor, CST (/R), ILF (L/R), SLF (L/R) and IFO (L/R). 

The moderate reproducibility tracts were CST (L), Fmajor, CNG (L/R). The low 
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reproducibility tracts were UNC (L/R) and FNX (L/R). This above is observed when looking 

at all submissions however when observing the top 5 submissions we see higher 

reproducibility.

When the analysis is restricted to only the top five submissions, we see a different picture 

that suggests substantively reproducible methods. The inter-scanner reproducibility among 

the top 5 entries in ICC (min-max, average) are shown in Fig 6.

Figure 7 illustrates the top five entries for the tracts with the lowest inter-scanner 

reproducibility alongside the volumetric median (median per voxel from five submissions) 

of the top five entries. Qualitatively, the volumetric profiles of the UNC (L/R) and FNX 

(L/R) are very different across the top five entries. The first submission has small “core” 

tracts labeled, while the second, third and fifth found much larger spatial extents and the 

fourth was mid-way between.

DISCUSSION

The most reproducible tracts were Fminor, CST (\R), ILF (L\R), SLF (L\R), IFO (L\R), 

while the moderately reproducible tracts were Fmajor, CNG (L\R) and CST (\L). Lowest 

reproducibility tracts are UNC (L\R), FNX (L\R). These tracts have a well-spread/broad 

probability distribution. Note that the reproducibility of these tracts was maintained across 

imaging sessions and change of scanner. It is evident that all the algorithms entered are not 

consistently identifying the same fiber structures given the extreme variance observed. 

While most of the individual submissions show a reasonable detection of the tracts if 

observed from a ROI point of view, the difference between tract volumes between methods 

is quite high.

Previous validation studies have assessed sensitivity and specificity with respect ground 

truth. For example, comparisons with phantoms, histology, and known anatomy have 

provided valuable insight into the limitations of tractography [53]. Fibercup shows 

limitations in terms of tuning of different parameters of tractography [22]. The ISMRM 

2015 challenge shows false positives and ambiguity. The 3D Votem challenge shows that 

sensitivity and specificity are limited. However, rather than anatomical accuracy, this study 

focuses on the variability of the algorithms themselves, specifically, the volume of the 

pathways where it was assessed by the containment analysis to assess if there is an ordering 

for the containment of volumes.

The data acquisition is limited by the acquisitions of two scanners. Alternative approach 

would be similar to MUSHAC challenge where their ultimate goal was harmonization, but 

there were multiple datasets across multiple scanners. This study investigated the 

reproducibility and containment of volume overlap, and did not assess the trajectories of 

streamlines themselves. For example, streamline density, orientation, and trajectories would 

provide detailed analysis of the similarities and differences within and across algorithms on 

the scale of individual voxels.

This study presents a perspective of reproducibility as compared to prior studies which 

characterize specificity and sensitivity with reproducibility as a limitation. This study shows 
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that reproducibility can be characterized with an indirect estimation of sensitivity and 

specificity analysis (containment analysis).

However, the study is limited by data acquisition of a single subject. For a better 

reproducibility validation multi-subject and multi-site (>2) acquisitions would be valuable. 

Another limitation is that there are quite a few hyper-parameters that can be tweaked for pre 

and post-processing. In general, the tweaking improves reproducibility but a deterministic 

study of which combinations maximize reproducibility without tradeoff’s on specificity and 

sensitivity would be valuable to the diffusion community.

In conclusion, there are 8, 4 and 4 tracts which are depict high, moderate and low 

reproducibility. The most reproducible algorithms are 5A, 8D, 7A, 6E and 6F as per criteria 

of ICC. The mentioned algorithms are not an example of a consistent null learning as they 

all lie with in a nested containment with the largest covered volume.

The 2017 ISMRM TraCED Challenge created a publicly available multi-scanner, multi-scan 

in-vivo reproducibility dataset and engaged nine groups with 46 algorithm entries. The 

TraCED Challenge dataset is freely available at www.synapse.org. Consistent with previous 

studies, reproducibility of tractograms was found to vary by anatomical tract. When viewed 

across all entries, reproducibility was concerning (ICC <0.5); however, the cluster of top 

performing methods resulting in reassuringly high results (ICC > 0.85). Variation in 

performance were seen across processing parameters, but the challenge design did not 

provide sufficient number of samples to identify uniformly preferred design choices. The 

key novel finding of this challenge is that variations in tractography methods can be largely 

attributed to larger/smaller volumetric difference tradeoffs for the larger tracts, especially 

among methods that are tuned towards volumetrically larger tractograms. Yet, the different 

methods clearly result in fundamentally different tract structures at the more conservative 

specificity choices (i.e., volumetrically smaller tractograms). The containment index, 

containment energy, and containment index framework provide a consistent approach to 

evaluate the nesting structure tractograms, and the freely available data and results from this 

challenge can be used to quantify new tractography approaches. There is still room for 

improvements and innovations in the challenge process itself. For example, combining the 

knowledge and skillsets of the tractography community with the microstructural community 

could lead to improvements in phantoms, ground truth evaluations, and potentially unique 

features that could increase tracking accuracy.
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Figure 1. 
The acquisition per session included five repeats of a single b0 and successively at b-values 

of 3000, 2000 and 1000 s/mm2 using 64, 48 and 20 gradient directions respectively. Each 

session was individually corrected using topup, eddy and then normalized. All the sessions 

were registered using flirt to the first session of scanner A.
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Figure 2. 
Left: An overlay of all the 46 submissions from all sessions that were acquired using both 

scanners per tract Right: An overlay of a single submission using all sessions that were 

acquired using both scanners per tract A) Uncinate left B) Fornix left C) Cingulum eft D) 

Corticospinal tract left E) Inferior Longitudinal Fasciculus left F) Inferior Fronto-Occipital 

Fasciculus left G) Superior Longitudinal Fasciculus left H) Fminor.

Nath et al. Page 16

J Magn Reson Imaging. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig 3. 
A) Where the shape X is impeccably contained in Y and Y is contained in Z. The resulting 

containment CI(Y, X) = 1, CI(Z, X) = 1 and CI(Z, Y) = 1. B) Shape Y is a noisy 

representation of shape Z where CI(Y, Z) = 0.84. C) Shape Z is different from shape Y in a 

different orientation and the CI(Z,Y) = 0.17
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Figure 4. 
Violin plots of intra-session submissions across both the scanners per tract. A) Dice 

similarity coefficients B) Intra-class correlation coefficients. The top row depicts the median 

of the top five intra session submissions. The tracts are in the following order (L/R): a) 

Uncinate b) Fornix c) Fminor & Fmajor d) Cingulum e) Corticospinal tract f) Inferior 

longitudinal fasciculus g) Superior longitudinal fasciculus h) Inferior fronto-occipital tract
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Figure 5. 
Violin plots of inter-session submissions across both the scanners per tract. A) Dice 

similarity coefficients B) Intra-class correlation coefficients. The top row depicts the median 

of the top five inter session submissions. The tracts are in the following order (L/R): a) 

Uncinate b) Fornix c) Fminor & Fmajor d) Cingulum e) Corticospinal tract f) Inferior 

longitudinal fasciculus g) Superior longitudinal fasciculus h) Inferior fronto-occipital tract
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Figure 6. 
Violin plots of inter-scanner submissions across both the scanners per tract. A) Dice 

similarity coefficients B) Intra-class correlation coefficients. The top row depicts the median 

of the top five inter scanner submissions. The tracts are in the following order (L/R): a) 

Uncinate b) Fornix c) Fminor & Fmajor d) Cingulum e) Corticospinal tract f) Inferior 

longitudinal fasciculus g) Superior longitudinal fasciculus h) Inferior fronto-occipital tract

Nath et al. Page 20

J Magn Reson Imaging. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
First row shows the median of Uncinate (L/R) and the top five submissions. The second row 

shows the median and submissions of Fornix (L/R).
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Figure 8. 
A) Quantifies the number of algorithms that used a specific part of the dataset or added more 

from other sources. B) Quantifies the usage of HARDI/Tensor methods by different 

tractography algorithms as a pre-step. C & D) Quantifies the step size and threshold angle 

parameter for tractography algorithms. E & F) Quantify the number of additional pre-

processing and post-processing techniques applied for the tractography algorithms.
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Figure 9. 
Ordering entries to minimize containment energy (CE) shows that containment index is 

generally lower for the volumetrically smaller tractograms (toward “inside” on each subplot) 

and increases for the larger tractograms (toward “outside” on each subplot). Variations in 

containment explained the least amount of entry variability for the UNC and Fornix, while 

the other tracts were more consistent. The containment between all methods (A) were more 

variable and lower than the containment for the top five methods (B).
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