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Abstract

Increased versatility of intermolecular radical addition to imino acceptors via photoredox catalysis 

is reported. Primary and secondary radicals, generated via visible-light photocatalysis from alkyl 

biscatecholatosilicates with organocatalyst 4CzIPN, add successfully to both aromatic and 

aliphatic N-acylhydrazones in the presence of MgCl2. With N-benzoylhydrazones, a simple 

reductive cleavage of the N-N bond of the hydrazine adduct furnishes the free amine. Synthetic 

utility is exemplified in a synthetic application toward repaglinide, a clinically important 

hypoglycemic agent.

Graphical Abstract

A mines are prevalent in natural products, drugs, and other biologically significant 

molecules, underlining the importance of developing efficient methods for their synthesis.1 

Expanding upon classical imine reduction and addition methods,2 recent developments in 

this area include transition-metal-catalyzed hydroamination of alkenes and other C-N bond 

constructions.3 However, imines remain attractive amine precursors because of their ready 

availability from a wide range of commercial materials and also the versatility for either C-C 

or C-H bond constructions at the imine carbon to form chiral α-branched amines.1 Often, 

such reactions have limited applicability to imines from aliphatic aldehydes, as these 

substrates are subject to competing aza-enolization by deprotonation of the α-carbon.4 We 

have addressed this issue through the use of radical additions to C=N bonds of hydrazones.
5–7 In support of that objective, our group developed a versatile Mn-mediated radical 

addition to chiral N-acylhydrazones, which enabled the asymmetric synthesis of chiral 

amines using both primary and secondary radicals (Scheme 1a).8 These reactions are 

compatible with additional functionality in both radicals and acceptors, facilitating 
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applications in complex molecule synthesis.9,10 While very effective for aliphatic imino 

acceptors, the Mn-mediated additions were unsuccessful with hydrazones derived from 

aromatic aldehydes. Conversely, Molander recently reported radical additions to N-

sulfonylimines and N-phenylimines that are effective for aromatic acceptors, but 

incompatible with imines from aliphatic aldehydes.11 These reactions use organosilicate 

salts as radical precursors in the presence of the organic photoredox catalyst 4CzIPN 

(Scheme 1b).12 Informed by our prior successes with radical additions to aliphatic N-

acylhydrazones, we hypothesized that a combination of N-acylhydrazone radical acceptors 

with photoredox-catalyzed radical generation would lead to improved versatility in radical 

additions to C=N bonds. Here, we report a carbon–carbon bond constructive amine synthesis 

method that (a) takes advantage of the excellent radical acceptor behavior of the N-

acylhydrazone functional group, (b) adopts catalytic conditions for radical generation, and 

(c) expands the versatility of photoredox-catalyzed radical additions to include both aliphatic 

and aromatic imino acceptors (Scheme 1c).

Recent developments in photoredox catalysis have impacted a wide variety of radical 

transformations,13 including radical additions to imino acceptors.14 We planned to exploit 

N-acylhydrazones such as 1a (Table 1) as radical acceptors, using the known reductive 

quenching of photoexcited 4CzIPN by alkyl bis-catecholatosilicates to generate alkyl 

radicals. We envisioned that the proven Lewis acid promoted radical acceptor properties of 

N-acylhydrazones could expand the versatility of such reactions; hydrazones have not yet 

been exploited in reductive additions to C=N bonds via photoredox catalysis.11b After 

radical addition, SET reduction and proton transfer to the intermediate aminyl radical would 

furnish the desired adduct and also regenerate 4CzIPN.

Toward this end, our initial experiments sought to test whether this photoredox catalysis 

cycle could be completed with C=N acceptors lacking an anion-stabilizing N-substituent 

such as sulfonyl; the efficiency of aminyl radical reduction and catalyst turnover was in 

question. Indeed, N-acylhydrazones are compatible with this redox cycle: In an initial trial at 

15 mol % loading of photocatalyst 4CzIPN, cyclohexyl silicate addition to 1a proceeded in 

DMSO solution with 40% conversion to 2a over 24 h (Table 1, entry 1). Although this result 

demonstrated successful photocatalyst turnover, the modest conversion did not increase via 

longer reaction time (entry 2). Next, a variety of Lewis acids (2 equiv) were tested in order 

to assess the potential for enhanced reactivity via chelation of the N-acylhydrazone8,10a 

(entries 3–10), with ZnBr2 and MgCl2 offering the most improved results (see the 

Supporting Information for results with various Lewis acids). Increased Lewis acid loading 

did not improve reactivity (compare Table 1, entries 5 and 7).

Aside from DMSO, other solvents were screened and found to be inferior; we attribute this 

to alkyl silicate insolubility problems (entries 11–13). Reaction time, catalyst loading, and 

silicate stoichiometry were also examined and gratifyingly led to greatly improved 

conversion (entry 17); these conditions were selected as a starting point to test substrate 

scope (entry 17).

As noted above, one of our main goals for this project was a versatile method tolerant of 

both aliphatic and aromatic substituents at the C=N bond. Complementing the result with 
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benzaldehyde N-acylhydrazone 1a (Table 2, entry 1), cyclohexyl addition to aliphatic N-

acylhydrazones 1b and 1c occurred in modest isolated yields in the presence of unbranched 

alkyl groups (entries 2 and 3); branching at the α-position of the hydrazone was detrimental 

to yield (entries 4 and 5). Additions of more reactive primary radicals furnished expected 

adducts in low yield (entries 6–8), presumably impacted by premature quenching through H-

abstraction.

While Table 2 demonstrated some potential for improved versatility, yields were not 

consistently at a practical level. Fortunately, further scope studies revealed that N-

benzoylhydrazones were superior to the hydrazones of Tables 1 and 2. Cyclohexyl addition 

to N-benzoylhydrazones 6a–6c gave significant improvement to 79–94% isolated yield 

(Table 3, entries 1–3). When silicate loading was reduced from 3 to 1.5 equiv and catalyst 

loading was lowered from 15 to 5 mol %, the yield of 7a was only slightly diminished from 

79% to 75% (entry 1). Additions to aliphatic N-benzoylhydrazones 6d and 6e also afforded 

improved yield versus their analogues in Table 2. Importantly, a 15-fold scaleup to 1 g of 6d 
afforded 60% yield of 7d (entry 4). Cyclohexyl additions to a series of substituted 

benzaldehyde hydrazones showed tolerance for the presence of electron-donating or -

withdrawing effects, and identical yields were obtained when ortho versus para substituents 

were compared (entries 2, 3, 6, and 7). As before, the effect of branching on the α-carbon 

for N-benzoylhydrazones was detrimental to radical addition (entry 5).

The diversity of alkyl radicals suitable for this transformation was next examined (Scheme 

2). Primary alkyl silicates were added to N-benzoylhydrazones using the conditions 

described previously (Table 3) to afford adducts 8–13. Tolerance of heteroatoms either on 

the alkyl radical (10 and 11) or on the hydrazone acceptor (7c, 7g, 7h, 12, and 13) suggests 

that various functional group manipulations (including transitionmetal-catalyzed cross 

coupling) can be sequenced with these radical additions.

Previously, we have observed that hydrazines bearing N-benzoyl functionality readily 

undergo N-N bond reduction with SmI2 to liberate the free amine.15 Treatment of adduct 7a 
with SmI2 yielded free amine 14 in 66% yield (Scheme 3). In combination with the 

functional group compatibilities of the radical addition, the ease of N-N bond cleavage 

enhances the potential for applications in syntheses of more complex targets.

As a demonstration of synthetic utility, we targeted repaglinide, a drug that stimulates 

insulin production to combat diabetic hyperglycemia.16 Nucleophilic aromatic substitution 

of commercially available 2-fluorobenzaldehyde with piperidine, followed by condensation 

with benzoic hydrazide (BzNHNH2), afforded hydrazone 16 in excellent yield. Photoredox-

catalyzed isobutyl addition then provided 17, the chiral amine portion of repaglinide 

(Scheme 4). It is noteworthy that the bulky o-piperidinyl substituent is tolerated in this 

radical addition.

Amine synthesis has always been a critical undertaking in organic chemistry, given that 

amines are commonly found in a broad spectrum of compounds of biological importance. 

The N-acylhydrazone radical acceptors herein allow both aromatic and aliphatic aldehydes 

to undergo carbon–carbon bond constructive synthesis of amines, facilitating access to a 
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broad range of valuable building blocks for drug discovery. Considering the asymmetric 

induction strategies we have previously developed for hydrazone radical acceptors,17 further 

advances in this direction may be anticipated.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Scheme 1. 
Bridging a Gap in Radical Addition to C=N
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Scheme 2. 
Addition of 1° Radicals to N-Benzoylhydrazones
a1.5 eq silicate and 5 mol % 4CzIPN used. bThree eq silicate and 15 mol % 4CzIPN used
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Scheme 3. 
Accessing a Primary Amine by N-N Cleavage
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Scheme 4. 
Progress toward Formal Synthesis of Racemic Repaglinide
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Table 1.

Optimization of Radical Addition Reaction

entry Lewis acid (2 equiv) silicate (equiv) solvent time (h) % conv
a

1 none 2 DMSO 24 40

2 none 2 DMSO 49 48

3 ZnBr2 1 DMSO 18 27

4 Zn(OTf)2 1 DMSO 18 27

5 ZnBr2 2 DMSO 18 63

6 ZnBr2 4 DMSO 18 64

7 ZnBr2 (3 equiv) 2 DMSO 18 49

8 MgCl2 2 DMSO 18 59

9 MgBr2 2 DMSO 18 54

10 Mg(OTf)2 2 DMSO 18 31

11 ZnBr2 2 DMF 16 28

12 MgCl2 2 DMF 16 44

13 MgCl2 1.2 EtOH 23 10

14 MgCl2 2.6 DMSO 48 86

15 MgCl2 3 DMSO 48 22
b

16 MgCl2 3 DMSO 48 68
c

17
d MgCl2 3 DMSO 47 88 (60

e
)

18 MgCl2 2 DMSO 24 73

a
Determined by 1H NMR integration.

b
1 mol % of catalyst loading.

c
5 mol % of catalyst loading.

d
Conversions in control experiments using conditions of entry 17: Absence of blue LED (0%), absence of 4CzIPN (0%), open to air (67%), 

replacing silicate with CyBF3K (59%).

e
Isolated yield.
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Table 2.

N-Acylhydrazone Compatibility Study with Secondary and Primary Radical Addition

entry R1 product R2 yield
a
 (96)

1 Ph (la) 2a Cy 60

2 PhCH2CH2 (lb) 2b Cy 28

3 n-C5H11 (lc) 2c Cy 22

4 i-Pr (Id) 2d Cy 19

5 t-Bu (le) 2e Cy 0

6 Ph (la) 3 n-Pr 45

7 Ph (la) 4 PhCH2CH2 21

8 PhCH,CH, (lb) S i-Bu 14

a
Used 3 equiv of silicate and 15 mol % of 4CzIPN.
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Table 3.

Addition of Alkyl Radicals to Aliphatic and Aromatic N-Benzoylhydrazones, Including Gram-Scale Reaction

entry R product yield (%)

1 Ph (6a) 7a 79
a
 (75

b
)

2 p-tolyl (6b) 7b 94
a

3 p-CIC6H4 (6c) 7c 84
a

4 PhCH2CH2 (6d) 7d 63
b
(60

c
)

5 i-Pr (6e) 7c 25
b

6 o-tolyl (6f) 7f 94
a

7 o-C1C6H4 (6g) 7g 84
a

8 4-(Me2N)C(sH4 (6h) 7h 32
a

a
0.1–0.3 mmol of 6, 3 equiv of silicate, and 15 mol % of 4CzIPN.

b
1.5 equiv of silicate and 5 mol % of 4CzIPN.

c
Gram-scale reaction (4 mmol).
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