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Background. The small molecule inhibitor XAV939 could inhibit the proliferation and promote the apoptosis of non-small cell
lung cancer (NSCLC) cells. This study was conducted to identify the key circular RNAs (circRNAs) and microRNAs (miRNAs) in
XAV939-treated NSCLC cells. Methods. After grouping, the NCL-H1299 cells in the treatment group were treated by 10 uM
XAV939 for 12 h. RNA-sequencing was performed, and then the differentially expressed circRNAs (DE-circRNAs) were analyzed
by the edgeR package. Using the clusterprofiler package, enrichment analysis for the hosting genes of the DE-circRNAs was
performed. Using Cytoscape software, the miRNA-circRNA regulatory network was built for the disease-associated miRNAs and
the DE-circRNAs. The DE-circRNAs that could translate into proteins were predicted using circBank database and IRESfinder
tool. Finally, the transcription factor (TF)-circRNA regulatory network was built by Cytoscape software. In addition, A549 and
HCC-827 cell treatment with XAV 939 were used to verify the relative expression levels of key DE-circRNAs. Results. There were
106 DE-circRNAs (including 61 upregulated circRNAs and 45 downregulated circRNAs) between treatment and control groups.
Enrichment analysis for the hosting genes of the DE-circRNAs showed that ATF2 was enriched in the TNF signaling pathway.
Disease association analysis indicated that 8 circRNAs (including circ. MDM2_000139, circ_ATF2_001418,
circ_CDC25C_002079, and circ_BIRC6_001271) were correlated with NSCLC. In the miRNA-circRNA regulatory network, let-7
family members— circ_MDM2_000139, miR-16-5p/miR-134-5p——-circ_ATF2_001418, miR-133b——circ_BIRC6_001271, and
miR-221-3p/miR-222-3p——circ_CDC25C_002079 regulatory pairs were involved. A total of 47 DE-circRNAs could translate
into proteins. Additionally, circ_ MDM2_000139 was targeted by the TF POLR2A. The verification test showed that the relative
expression levels of circ_MDM2_000139, circ_CDC25C_002079, circ_ATF2_001418, and circ_DICER1_000834 in A549 and
HCC-827 cell treatment with XAV939 were downregulated comparing with the control. Conclusions. Let-7 family members
and POLR2A targeting circ. MDM2_000139, miR-16-5p/miR-134-5p targeting circ_ATF2_001418, miR-133b targeting
circ_BIRC6_001271, and miR-221-3p/miR-222-3p targeting circ_CDC25C_002079 might be related to the mechanism in the
treatment of NSCLC by XAV939.

1. Introduction

In lung cancers, non-small cell lung cancer (NSCLC) and
small-cell lung carcinoma (SCLC) are the two main types [1].
Lung cancer usually can result in shortness of breath,
coughing, chest pains, and weight loss [2, 3]. In 2012, there
were 1.8 million new cases of lung cancer and led to 1.6
million deaths globally [4]. Especially, NSCLC takes up 85%
of all lung cancer cases, which are mainly induced by

smoking [5]. As NSCLC progresses from stage I to stage IV,
the five-year survival rate reduces from 47% to 1% [6].
Therefore, it is essential to study the treatment for NSCLC
and related mechanism.

XAV939 is a tankyrase (TNKS) inhibitor and an indirect
Whnt/f-catenin signaling inhibitor that is often used to in-
hibit proliferation of NSCLC cells. Guo et al. reported that
XAV939 could inhibit the viability of SCLC NCI-H446 cells
by causing cell apoptosis through the Wnt signaling pathway
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[7]. Besides, XAV939 also repressed the proliferation and
migration of lung adenocarcinoma A549 cells through at-
tenuating the Wnt signaling pathway [8]. Moreover, it is
known that circular RNAs (circRNAs) are implicated in the
development and  progression of cancers  [9].
CircRNA_100876 is tightly correlated with the oncogenesis
of NSCLC, which may function as a promising prognostic
marker and therapeutic target for the disease [10].
Circ_0014130 can serve as a candidate biomarker for
NSCLC, and may play critical roles in the formation of the
tumor [11]. Besides, plenty of reports have stated that the
circRNAs usually be involved in the NSCLC by the in-
teraction with miRNAs. CircRNA forkhead box O3
(FOXO03) acts as a tumor suppressor via sponging miR-155
in NSCLC, and thus expression restoration of circRNA
FOXO3 can be a new therapeutic option for NSCLC [12].
CircRNA_100833 (also called circRNA fatty acid desaturases
2, circFADS2) promotes the progression of NSCLC through
mediating miR-498 expression; therefore, circFADS2 can be
utilized as a novel target for treating NSCLC [13]. However,
the key circRNAs associated with the pathogenesis of
NSCLC have not been entirely revealed.

Our preliminary experiments showed that XAV939
could significantly inhibit the proliferation and promote the
apoptosis of NSCLC NCL-H1299 cells, and 10uM is the
appropriate XAV939 concentration for treating NCL-H1299
cells (data not shown). In this study, XAV939 (10 uM) was
used to treat NCL-H1299 cells in the treatment group. After
high throughput sequencing, the sequencing data were
analyzed using various bioinformatics methods. This study
might contribute to revealing the key circRNAs mediated by
XAV939 in NCL-H1299 cells.

2. Materials and Methods

2.1. Sample Source. The NSCLC NCL-H1299 cell line was
obtained from the Type Culture Collection of the Chinese
Academy of Sciences (Shanghai, China). Six NCL-H1299 cell
samples were randomly and evenly divided into the treat-
ment group and control group. The cells in the treatment
group were treated by XAV939 (10 uM) for 12 h. The cells in
the control group were treated by equal volume of dimethyl
sulfoxide (DMSO). Afterwards, the cells were harvested for
the following sequencing.

2.2. Library Construction and RNA-Sequencing. Using the
TRIzol reagent (Takara Biotechnology Co., Ltd., Dalian,
China), total RNA was extracted from the cells according to
the manufacturer’s instruction. Then, the quality and
quantity of total RNA were detected using a Thermo Sci-
entific NanoDrop 2000 (Thermo Fisher Scientific, Inc.,
Wilmington, DE, USA). Subsequently, cDNA library was
constructed following the manufacturer’s manual by a
TruseqTM RNA Library Prep kit for Illumina® (cat no.
E7530L; New England BioLabs, Inc., Ipswich, MA, USA).
Based on the 150 paired end method [14], sequencing was
performed by the Illumina Hiseq 4000 platform (Illumina,
Inc., San Diego, CA, USA). The sequencing data were
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deposited in Sequence Read Archives (SRA, https://http://
www.ncbinlm.nih.gov/sra) database under the accession
number SRP136747.

2.3. Quality Control and Preprocessing of Sequencing Data.
Quality control of the sequencing data was conducted using
Trimmomatic tool [15]. Barcode sequences were removed,
and the bases with continuous quality <10 at two ends of the
reads were taken out. Subsequently, the reads that contained
less than 80% bases with Q > 20 were filtered out, and the
reads with length <50 nt were also wiped off. Based on
TopHat2 software (http://ccb.jhu.edu/software/tophat) [16],
clean reads were aligned to the human reference genome
(GRCh38.p7 and GENCODE) [17]. In order to obtain back-
spliced junctions reads, the reads that could not be com-
pared to the reference genome in a linear way were com-
pared in a nonlinear way using TopHat-fusion algorithm
[18].

2.4. Identification and Annotation of CircRNAs.
CircRNAs were identified using CIRCexplorer2 software
[19], and the circRNAs with junctions read count >2 were
selected. Based on the locations of circRNAs in the genome
and their relationships with genes, the selected circRNAs
were annotated. Firstly, the circRNAs were classified
according to their locations. Secondly, the circRNAs were
conducted with functional annotation based on the
circRNA-hosting genes. The RefSeq gene annotation files
downloaded from the University of California Santa Cruz
(UCSC, http://genome.ucsc.edu/) database [20] were used as
references for annotating. Finally, the circRNAs were named
combined with the names of their hosting genes.

2.5. Identification of the Differentially Expressed CircRNAs
(DE-CircRNAs) and Enrichment Analysis. The expression of
the circRNAs was estimated based on the number of back-
spliced reads. Using the edgeR package (http://
bioconductor.org/packages/release/bioc/html/edgeR.html)
in R [21], the DE-circRNAs between treatment and control
groups were screened. The |log, fold change (FC)| > 0.585
and p value <0.05 were defined as the thresholds. The ex-
pression of circRNA was required to be higher than 0 in at
least 2 samples, and the ineligible circRNAs were filtered out.

Using the clusterprofiler package (http://bioconductor.
org/packages/release/bioc/html/clusterProfiler.html) in R
[22], the hosting genes of the DE-circRNAs were studied
with Gene Ontology (GO, including biological process (BP),
molecular function (MF), and cellular component (CC)
categories) [23] and Kyoto encyclopedia of genes and ge-
nomes (KEGG) [24] enrichment analyses. The significant
threshold was set at p value <0.05.

2.6. MiRNA Sponge Analysis and Disease Association Analysis.
Previous studies have found that there are multiple target
sites of miRNAs in some circRNAs sequences, and thus
circRNAs can bind with miRNAs to play certain regulatory
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TaBLE 1: The results of quality control for the sequencing data.

Sample Raw reads Clean reads Effective rate (%) Error rate (%) Q20 (%) Q30 (%) GC content (%)
k3 55388409 54435729 98.28 0.01 98.17 95.44 46.97
k2 52553686 51681295 98.34 0.01 97.93 94.92 47.2
k1 52146382 51484123 98.73 0.01 98.18 95.44 47.73
s3 54313514 53504243 98.51 0.01 96.92 92.81 47.05
s2 49367345 48641646 98.53 0.01 98.19 95.47 47.52
sl 53737400 52909845 98.46 0.01 97.76 94.55 47.31

Note. s1, s2, and s3 represent the samples in the treatment group. k1, k2, and k3 represent the samples in the control group. Sample, the name of samples; raw
reads, the number of raw reads; clean reads, the number of clean reads; error rate, the average base sequencing error rate; Q20, the percentage of the bases with
Phred value > 20; Q30, the percentage of the bases with Phred value > 30; GC content, the percentage of G/C bases.

TaBLE 2: The results of sequence alignment.

Reads Mapping k3 k2 k1 s3 s2 sl

Input 54435729 51681295 51484123 53504243 48641646 52909845
Mapped reads 43706641 41399669 40805316 42960786 38202327 41965536

Left reads Mapped rate (%) 80.29 80.11 79.26 80.29 78.54 79.32
Uniquely mapped 40483797 38479400 37712691 40029424 35183009 38751263

Uniquely mapped rate (%) 74.37 74.46 73.25 74.82 72.33 73.24
Input 54435729 51681295 51484123 53504243 48641646 52909845
Mapped reads 41882371 39205669 39063079 40162292 36529153 39526360

Right reads Mapped rate (%) 76.94 75.86 75.87 75.06 75.10 74.71
Uniquely mapped 38760420 36422877 36072263 37394997 33623734 36501173

Uniquely mapped rate (%) 71.20 70.48 70.06 69.89 69.13 68.99

Overall read Mapped rate (%) 78.60 72.60 77.60 77.70 76.80 77.00

Note. s1, s2, and s3 represent the samples in the treatment group. k1, k2, and k3 represent the samples in the control group. Left/right reads, sequences at the
two ends; input, the total number of sequences; mapped reads, the number of the reads mapped to the genome; mapping rate, the ratio of the reads mapped to
the genome; unique mapped, the number of the reads mapped to a unique position in the genome; unique rate, the ratio of the reads mapped to a unique

position in the genome.

roles in vivo [25, 26]. Using miRanda tool [27], miRNA-
circRNA pairs were predicted for the DE-circRNAs.

Based on DisGenet (http://www.disgenet.org) [28] and
miRWalk (http://mirwalk.uni-hd.de/) [29] databases, the
genes or miRNAs correlated with NSCLC were searched. If
the hosting genes of DE-circRNAs were related to NSCLC, the
DE-circRNAs were deemed to be associated with the disease.
For the disease-associated miRNAs and the DE-circRNAs, the
miRNA-circRNA regulatory network was built using Cyto-
scape software (http://www.cytoscape.org) [30].

2.7. Prediction of the CircRNAs with the Ability to Translate
into Proteins. The corresponding data of the DE-circRNAs
were obtained from circBank (http://www.circbank.cn/) and
circBase [31] databases. The DE-circRNAs with protein-
encoding ability (coding_prob >0.364) were selected from
circBank database. Besides, the IRESfinder tool [32] was
used to predict whether there were internal ribosome entry
sites (IRESs) in the DE-circRNAs. The circRNAs with both
protein-encoding ability and IRESs were considered to be
with the ability to translate into proteins.

2.8. Construction of Transcription Factor (TF)-CircRNA
Regulatory Network. The TRCirc database [33] (http://www.
licpathway.net/TRCirc/view/index) integrates the chip-se-
quencing data, RNA-sequencing data, and 450k array data in
ENCODE database and combines with human circRNA

information in circBase database for the analysis of circRNA
transcriptional regulation. TFs were predicted for the DE-
circRNAs using TRCirc database [33], and then TF-circRNA
regulatory network was constructed using Cytoscape soft-
ware [30].

2.9. Validation of Key DE-circRNAs in A549 and HCC-827 Cell
Treatment with XAV939. In order to observe the effect of
XAV939 on the expressions of key DE-circRNAs, A549 and
HCC-827 cells were used. A549 and HCC-827 cells were
purchased from the Cell Bank of Chinese Academy of
Science (Shanghai, China). Cells in the logarithmic growth
phase of the experimental group were treated with 10 uM
XAV939, and the control group was supplemented with an
equal volume of DMSO. Then, the total RNA was extracted
by the TRIzol reagent (Takara Biotechnology Co., Ltd.,
Dalian, China). Finally, the relative expression levels of key
DE-circRNAs were detected by the real-time reverse tran-
scription polymerase chain reaction (RT-PCR). The primer
information is shown in the Supplementary Table 1.

3. Results

3.1. Data Preprocessing, Identification, and Anmnotation of
CircRNAs. The results of quality control and sequence
alignment separately were listed in Tables 1 and 2. A total of
8914 circRNAs corresponding to 3542 hosting genes were
identified. After annotation of the circRNAs, the GO
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FiGure 1: The functional terms enriched for the hosting genes of the identified circular RNAs (circRNAs). BP, biological process; CC,

cellular component; and MF, molecular function.

control and treatment groups were significantly separated by

downregulated circRNAs (Table 3). The clustering heatmap
of the DE-circRNAs is presented in Figure 2. The samples of
the DE-circRNAs. For the hosting genes of the DE-circR-

functional terms enriched for the hosting genes of the
circRNAs are shown in Figure 1, such as biological regu-
lation, cellular progress, chemoattractant activity, and so on.

NAs, 204 BP terms (such as microtubule cytoskeleton or-

ganization), 27 CC terms (such as centrosome), 40 MF terms
(such as N-acetyltransferase activity), and 9 KEGG pathways

control groups, including 61 upregulated circRNAs and 45

3.2. Differential Expression Analysis and Enrichment Analysis.
There were 106 DE-circRNAs between treatment and
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TaBLE 3: The most significant differentially expressed circular RNAs (circRNAs) (top 10 listed).

CircRNA_name Chrome  Exon count  Gene name logFC logCPM LR P value FDR

circ_POCI1B_000154 chr12 6 POCIB -5.905057  8.894108  13.44331  0.000246  0.277026
circ_RUFY2_003156 chr10 4 RUFY2 -5.727558  8.778988  11.1986  0.000819  0.691708
circ_LHMGCR_002010 chr5 3 HMGCR  -5.434035  8.602139  8.488467  0.003574  0.711366
circ_ZNPLOC4_000576 chrl7 3 NPLOC4 -5.243566  8.494641 7.161364  0.007449  0.711366
circ_.CAPRIN2_000093  chrl2 5 CAPRIN2  -5228417 8487116  7.073269  0.007824  0.711366
circ_ZMYNDS8_006470 chr20 4 ZMYND8 5.2603368 8.50343 7.25106 0.007086 0.711366
circ_SENP5_006766 chr3 1 SENP5 5.3402468 8.54897 7.790759 0.005251 0.711366
circ_ARFGEF1_008029 chr8 3 ARFGEF1 5.6240365 8.715481 10.05927 0.001516 0.711366
circ_ RC3H2_007996 chr9 7 RC3H2 5.9666606 8.935713 14.32273 0.000154 0.260251
circ_DCBLD2_006709 chr3 5 DCBLD2 7.1049669 9.787842 39.81423 2.79E-10 9.44E-07

Note. FC, fold change; CPM, counts per million; LR, likelihood ratio; FDR, false discovery rate.

(such as the TNF signaling pathway, which involved acti-
vating transcription factor 2 (ATF2)) were enriched
(Figure 3).

3.3. miRNA Sponge Analysis and Disease Association Analysis.
After miRNA-circRNA pairs were predicted for the DE-
circRNAs, the top 10 miRNAs targeting more circRNAs were
selected and listed in Table 4. Through disease association
analysis, 8 circRNAs (including circ. MDM2_000139, corre-
sponding to hosting gene MDM2 (murine double minute 2);
circ_ ATF2_001418, corresponding to hosting gene ATF2;
circ_CDC25C_002079, corresponding to hosting gene CDC25C
(cell division cycle 25C); and circ BIRC6_001271, corre-
sponding to hosting gene BIRC6 (baculoviral inhibitor of ap-
optosis repeat-containing 6)) were found to be related to the
disease (Table 5). Finally, the miRNA-circRNA regulatory
network was constructed, which had 106 nodes (including 38
miRNAs and 64 circRNAs) and 194 regulatory pairs (including
let-7 family members—circ MDM2_000139, miR-16-5p/
miR-134-5p—circ_ATF2_ 001418, miR-133b——circ_BIRC6_
001271, hsa-miR-197-3p circ_RIPK1_001778, hsa-miR-128-2-
5p circ. PRKAA1 001969, and miR-221-3p/miR-222-3p—
circ_CDC25C_002079) (Figure 4).

3.4. Prediction of the CircRNAs with the Ability to Translate
into Proteins. The DE-circRNAs were mapped to circBank
and circBase databases, and three novel circRNAs (including
circ. ATF2_ 001418, circ FLYWCH1 007212, and circ_
GTF2IP1_006504) were not found in the two databases.
Among the 65 DE-circRNAs with protein-encoding ability,
there were 47 DE-circRNAs which had IRESs. Therefore, the
47 DE-circRNAs were taken as circRNAs that could
translate into proteins.

3.5. Construction of TF-CircRNA Regulatory Network.
After TFs were predicted for the DE-circRNAs, the TF-
circRNA regulatory network was built (Figure 5). In the TF-
circRNA regulatory network, there were 72 nodes (including
22 circRNAs and 50 TFs) and 115 edges. Especially,
circ. MDM2_000139, which was correlated with the disease,
was targeted by RNA polymerase II (POLR2A) in the TF-
circRNA regulatory network.

The expressed levels of key DE-circRNAs in A549 and
HCC-827 cells are treated by XAV939

In order to validate the effect of XAV939 on other NSCLC
cells, the relative levels of key DE-cirRNAs such as circ_MD-
M2_000139, circ_ATF2_001418, circ_DICER1_000834, circ_
PRKAA1 001969, circ_ RIPK1 001778, and circ_CDC25C_
002079 were further studied in A549 and HCC-827 cells. As
shown in Figure 6, comparing with the NC group, the relative
expression levels of circ. MDM2 000139, circ_ CDC25C_
002079, circ_ ATF2_001418, and circ. DICER1_000834 in A549
and HCC-827 cell treatment with XAV939 were down-
regulated (P < 0.05 or P <0.01). There were no differences in
the circ. PRKAA1 001969 levels between the control and
XAV939 group. In addition, after treatment with XAV939, the
circ_RIPK1_001778 levels were upregulated in the A549 cells,
and no obvious change was found in HCC-827 cells.

4. Discussion

In this study, 106 DE-circRNAs (including 61 upregulated
circRNAs and 45 downregulated circRNAs) were screened
between the treatment and control groups. Disease associ-
ation analysis showed that 8 circRNAs (including
circ_MDM2_000139, circ_ATF2_001418, circ_CDC25C_
002079, and circ_BIRC6_001271) were correlated with
NSCLC.  Besides, let-7 family members—>circ_
MDM2_000139,  miR-16-5p/miR-134-5p——-circ_ATF2_
001418, miR-133b——circ_BIRC6_001271, and miR-221-3p/
miR-222-3p—circ_CDC25C_002079 regulatory pairs were
involved in the miRNA-circRNA regulatory network. Fur-
thermore, 47 DE-circRNAs were taken as circRNAs that
could translate into proteins. In addition, circ_
MDM?2_000139 was found to be targeted by POLR2A in the
TF-circRNA regulatory network. The results of validation
experiments showed that circ. MDM2_000139, circ_
CDC25C_002079, circ_ATF2_001418, and circ_ DICER1_
000834 were also downregulated in the A549 and HCC-827
cells after treatment with the XAV939, which were con-
sistent with the sequencing results.

Tumor necrosis factor-ac (TNF-«) acts as a critical in-
flammatory factor that links inflammation and tumor, which is
also correlated with angiogenesis, proliferation, invasion, and
migration in human cancers [34]. Via TNF-a/nuclear factor
kappa B (NF-kB) and phosphatidylinositol 3-kinase (PI3K)/
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FIGURE 2: The clustering heatmap of the differentially expressed circular RNAs (circRNAs). s, s2, and s3 represent the samples in the
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AKT pathways, sotetsuflavone suppresses the migration and 204 can inhibit cell proliferation and migration, and promote
invasion of NSCLC cells and may be effective in treating the =~ GI arrest and cell apoptosis in NSCLC [36]. Elevated miR-16 is
tumor [35]. Through targeting ATF2, tumor suppressor miR-  an independent factor that predicts unfavorable overall survival
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F1GuRre 3: The functional terms and pathways enriched for the hosting genes of the differentially expressed circular RNAs (circRNAs) (top 5
listed). BP, biological process; CC, cellular component; MF, molecular function; and KEGG, Kyoto encyclopedia of genes and genomes. The

black trend line represents -logl0 (p value).

TaBLE 4: The top 10 miRNAs targeting more circular RNAs
(circRNAs).

MiRNA Frequency
hsa-miR-4659b-3p 32
hsa-miR-4778-3p 32
hsa-miR-4659a-3p 30
hsa-miR-4691-5p 27
hsa-miR-6792-3p 27
hsa-miR-3059-5p 24
hsa-miR-6875-3p 24
hsa-miR-103a-1-5p 23
hsa-miR-103a-2-5p 22
hsa-miR-6881-3p 21

(OS) and disease-free survival (DFS), and thus miR-16 ex-
pression may be taken as a prognostic indicator in NSCLC [37].
Via mediating oncogenic cyclin D1 (CCNDI), miR-134 re-
presses proliferation, invasion, and migration and accelerates
apoptosis of NSCLC cells [38, 39]. ATF2 was enriched in the
TNF signaling pathway, suggesting that miR-16-5p/miR-134-
5p targeting circ_ ATF2_001418 might act in the mechanisms of
NSCLC through the TNF signaling pathway. We concluded
that the TNF signaling pathway might be another potential
target of XAV939.

MDM?2 and matrix metalloproteinase 9 (MMP9) ex-
pressions are related to the formation and migration of

lung cancer; therefore, they can serve as the markers for the
treatment and prognosis of the disease [40]. MDM2 gene
amplification is closely associated with DFS and OS, in-
dicating that MDM?2 amplification can be used for pre-
dicting the survival of NSCLC patients who experienced
surgical treatment [41]. The let-7 family members function
as tumor suppressors in lung cancer, which can be re-
pressed by Lin-28 and inhibit cell proliferation [42].
Through suppressing the transcription of POLR2A, the type
IT glycoprotein CD26 plays an inhibitory role in tumor
growth [43]. Therefore, let-7 family members and POLR2A
targeting circ. MDM2_000139 might be also correlated
with the progression of NSCLC. However, after consulting
the literature, there were few reports providing direct re-
lationship between let-7 family members, POLR2A, and
XAV939.

Increased BIRCG6 protein level may be a predictive factor
for chemoresistance and an adverse prognostic marker for
NSCLC, and inhibiting BIRC6 may be a useful method for
treating the tumor [44]. MiR-133b is found to be able to
decrease cisplatin resistance, and its overexpression sup-
presses cell growth and invasion in cisplatin-resistant
NSCLC via regulating glutathione-S-transferase P1 (GSTPI)
[45]. Through reducing CDC25C and CDC2 protein levels,
the heat shock protein 90 (HSP90) inhibitor is implicated in
antiproliferative activity and tumor progression in lung
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TaBLE 5: The circular RNAs (circRNAs) correlated with non-small cell lung cancer.
CircRNA_name Gene symbol Disease name Score  No. of Pmids No. of Snps Source
circ_ MDM2_000139 MDM2 Non-small cell lung carcinoma 0.2085165 32 2 BEFREE; CTD_human
circ_ATF2_001418 ATEF2 Non-small cell lung carcinoma 0.0005495 2 0 BEFREE
circ_ DICER1_000834 DICER1 Non-small cell lung carcinoma 0.0008242 3 0 BEFREE
circ_. PRKAA1_001969 PRKAAI Non-small cell lung carcinoma 0.0002747 1 0 BEFREE
circ_ BIRC6_001271 BIRC6 Non-small cell lung carcinoma 0.0002747 1 0 BEFREE
circ_BUBI1_001363 BUBI1 Non-small cell lung carcinoma 0.0002747 1 0 BEFREE
circ_ RIPK1_001778 RIPK1 Non-small cell lung carcinoma 0.0005495 2 0 BEFREE
irc_CDC25C_002079 CDC25C  Non-small cell lung carcinoma 0.0002747 1 0 BEFREE
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FIGURe 4: The miRNA-circular RNA (circRNA) regulatory network.
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Blue triangles, red circles, and green circles represent miRNAs,

upregulated circRNAs, and downregulated circRNAs, respectively. The circles with yellow ring represent disease-associated circRNAs.

cancer cells and thus can be applied for the treatment of lung
cancer [46]. MiR-221 and miR-222 are involved in multiple
human cancers, which play tumor-suppressive roles in lung
cancer and may be promising targets for the therapy of the
disease [47]. These indicated that miR-133b targeting
circ_BIRC6_001271 and miR-221-3p/miR-222-3p targeting
circ_ CDC25C_002079 might be implicated in the patho-
genesis of NSCLC. Dicer is important for microRNA-me-
diated silencing and other RNA interference, which were
profoundly involved in cancer related networks [48]. Diaz-

Garcia et al. found that the DICER1 expression level varied
among cancer specimens and 66% cancer samples had
decreased DICERI mRNA. Besides, the median overall
survival (OS) of those with low level of DICER1 mRNA was
substantially reduced [49]. In addition, the copy number
variation of DICERI correlates well with the expression and
survival of NSCLC, and the increased expression DICER1
increases the survival [50]. In our study, we found that
circ_DICER1_000834 was downregulated in the A549 and
HCC-827 cells after treatment with the XAV939. The reports
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FIGURE 6: The relative expressions of key DE-circRNAs in the A549 and HCC-827 cells. NC represents the control cells. XAV939 represents
the A549 and HCC-827 cells treated by 10 uM XAV939. *P < 0.05 indicates a significant difference compared with that of the NC group;
**P <0.01 indicates a very significant difference compared with that of the NC group; *** P <0.001.

indicated that the DICERI in the pathogenesis of NSCLC
and circ_DICER1_000834 might play an important during
the XAV939 treatment for NSCLC.

In conclusion, 106 DE-circRNAs between the treatment
and control groups were identified. Besides, let-7 family
members and POLR2A targeting circ_ MDM2_000139, miR-
16-5p/miR-134-5p targeting circ_ATF2_001418, miR-133b
targeting circ_BIRC6_001271, and miR-221-3p/miR-222-3p
targeting circ_CDC25C_002079 might be involved in the
function during the treatment of NSCLC by XAV939.
However, the roles of these RNAs and regulatory re-
lationships in treatment of NSCLC by XA V939 needed to be
further confirmed by experimental research studies.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Additional Points

Highlights. (1) There were 106 differentially expressed
circRNAs between the XAV939-treated NSCLC cells and
control. (2) ATF2 was enriched in the TNF signaling
pathway. (3) Circ_MDM2_000139, circ_ATF2 001418,
circ_CDC25C_002079, and circ_BIRC6_001271 were key
circRNAs in XAV939-treated NSCLC cells.
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