
Genome analysis

Augmented Interval List: a novel data structure

for efficient genomic interval search

Jianglin Feng1, Aakrosh Ratan1,2,3 and Nathan C. Sheffield 1,2,3,4,*

1Center for Public Health Genomics, 2Department of Public Health Sciences, 3Department of Biochemistry and

Molecular Genetics and 4Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904,

USA

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on January 18, 2019; revised on April 8, 2019; editorial decision on May 7, 2019; accepted on May 28, 2019

Abstract

Motivation: Genomic data is frequently stored as segments or intervals. Because this data type is so

common, interval-based comparisons are fundamental to genomic analysis. As the volume of available

genomic data grows, developing efficient and scalable methods for searching interval data is necessary.

Results: We present a new data structure, the Augmented Interval List (AIList), to enumerate inter-

sections between a query interval q and an interval set R. An AIList is constructed by first sorting R

as a list by the interval start coordinate, then decomposing it into a few approximately flattened

components (sublists), and then augmenting each sublist with the running maximum interval end.

The query time for AIList is Oðlog2N þ n þmÞ, where n is the number of overlaps between R and q,

N is the number of intervals in the set R and m is the average number of extra comparisons

required to find the n overlaps. Tested on real genomic interval datasets, AIList code runs 5–18

times faster than standard high-performance code based on augmented interval-trees, nested con-

tainment lists or R-trees (BEDTools). For large datasets, the memory-usage for AIList is 4–60% of

other methods. The AIList data structure, therefore, provides a significantly improved fundamental

operation for highly scalable genomic data analysis.

Availability and implementation: An implementation of the AIList data structure with both con-

struction and search algorithms is available at http://ailist.databio.org.

Contact: nsheffield@virginia.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A genomic interval r is defined by the two coordinates that represent

the start and end locations of a feature on a chromosome. The gen-

eral interval search problem is defined as follows.

Given a set of N intervals in R¼ fr1; r2; . . . ; rNg for N � 1, and

a query interval q, find the subset S of R that intersect q. If we define

all intervals to be half-open, S can be represented as:

SðqÞ ¼ fr 2 Rjðr:start < q:end ^ r:end > q:startÞg:

If the order of intervals in R remains the same when the elements

are sorted based on interval start or based on interval end, then S

can be computed using a single binary search followed by another

n þ 1 comparisons, where n is the number of overlaps between R

and q. We refer to R in this case as being flat. The strategy of a bin-

ary search followed by sequential comparisons becomes sub-optimal

when intervals in R possess a coverage or containment relationship,

i.e. one interval covers or contains another interval in R. Such non-

flat interval lists require extra comparisons beyond n þ 1 after the

binary search.

The interval search problem is fundamental to genomic data ana-

lysis (Giardine et al., 2005; Jalili et al., 2018; Layer et al., 2018; Li

and Durbin, 2011) and several approaches have been developed to

do this efficiently (Alekseyenko and Lee, 2007; Cormen et al., 2001;

Kent et al., 2002; Neph et al., 2012; Quinlan and Hall, 2010;

VC The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 4907

Bioinformatics, 35(23), 2019, 4907–4911

doi: 10.1093/bioinformatics/btz407

Advance Access Publication Date: 31 May 2019

Original Paper

http://orcid.org/0000-0001-5643-4068
http://ailist.databio.org
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz407#supplementary-data
https://academic.oup.com/

Richardson, 2006). Currently, the most popular data-structures are

the nested containment list (NCList) by Alekseyenko and Lee

(2007), the augmented interval-tree (AITree) by Cormen et al.

(2001) and the R-tree by Kent et al. (2002). The design of these

data-structures can be conceptualized as minimizing the additional

comparisons in the search strategy we described earlier. NCList and

AITree require OðNlog2NÞ time to build the data-structures, and

their query time complexities are Oðlog2N þ nþmÞ, where m is the

average number of extra comparisons (comparisons that do not

yield overlapping results) required to find the n overlaps. The R-tree

has a complexity of O(N) in construction and Oðmþ nÞ in query.

For genomic interval datasets, N is usually several orders of magni-

tudes larger than n or m.

NCLists, AITrees and R-trees differ both in time to build the

data structure and to search it. As shown in Alekseyenko and Lee

(2007), both average construction time and search time can vary sig-

nificantly among the methods in practice. The search time differen-

ces are determined by the extra comparison value m, which differs

based on the different approaches of each algorithm: for NCList,

many sublists may be involved in a query, which requires many

extra binary searches; for AITree, one must compare all interval

nodes marked by the augmenting value, and not all of them intersect

the query and for R-tree, all intervals in an indicated bin are

scanned, although many of these may not overlap the query.

In this paper, we present a new data structure, the Augmented

Interval List (AIList). The AIList search algorithm reduces the num-

ber of extra comparisons (m) and thereby achieves better

performance.

2 AIList data structure and query algorithm

2.1 A simple AIList and query algorithm
To begin, we sort R based on the interval start to create an interval

list. We then augment the list with the running maximum end

(MaxE) value, which thus stores the MaxE value among all preced-

ing intervals (Fig. 1a) to create the AIList. MaxE reflects the contain-

ment relationship among the intervals: because the second interval

[3, 8) contains the third interval [5, 7), they have the same MaxE

value (8); similarly the fourth interval [7, 20) contains the next three

intervals and they all have the same MaxE value 20. MaxE therefore

indicates a list of containment groups. The coverage length of a con-

tainment group can be defined as the number of sequential identical

MaxE values �1. A variation of this approach instead augments the

list with the sorted end value, SortedE, which we detail in the

Supplementary Material.

Once an AIList is constructed, we seek to search it with a query

interval. To find the overlaps of a query ½q:start; q:endÞ with the

AIList, we first do a binary search using the query interval end

against the sorted list of database interval starts to find the right-

most interval in the AIList where r:start < q:end. We then step

backwards to test for each interval whether MaxE > q:start. Since

MaxE is in ascending order, and MaxE � r:end, when we find the

first interval with MaxE � q:start, we are guaranteed that all

remaining intervals do not overlap the query and can be skipped.

For example, if our query was [9, 12), we first binary search to

find the index of the last interval IE that has r:start < 12, which is

the fifth interval [9, 10), MaxE ¼20. We know all intervals on the

right side will not overlap the query since their r:start � 12. We

then step backwards to the fifth, then the fourth interval, but we

can stop at the third interval, [5, 7) with MaxE ¼ 8, since

MaxE < 9, which ensures that no further intervals on the left side

will overlap the query. This is very efficient since we only checked

one extra interval.

However, this strategy becomes less efficient in the presence of

long coverage groups. For example, if the query was [17, 21), then

we need to check six intervals: from the eighth, [19, 30) with

MaxE ¼ 30, back to the third, [5, 7) with MaxE ¼ 8, which requires

four extra comparisons. This example query is the worst case for

this list. To mitigate the issue of containment, we next extend the

AIList by decomposing the list.

2.2 Decomposition of an interval list
Because long coverage groups lead to extra comparisons, we seek to

reduce the length of these groups. We achieve this by extracting

containing intervals into a second list. In the simple case shown in

Figure 1a, we can define the coverage length len of a list interval i as

the number of the immediately following intervals (iþ1, iþ2, . . .)

that are covered by interval i; so in Figure 1a

len½1� ¼ 0; len½2� ¼ 1; len½4� ¼ 3, etc. Then, we can extract all inter-

vals that have coverage length larger than or equal to a criterion

(minimum coverage length MinL). In the above example, we can set

MinL ¼ 3 to decompose the list into two sublists, L1 and L2

(Fig. 1b). Then we add MaxE to each L1 and L2 independently and

attach L2 to the end of L1 to form an improved AIList with the

same size as the original list. The start of the sublists in the new

AIList is maintained in a header list hSub. Now in L1 there are only

two containment groups, both of length 1, and there is no contain-

ment in L2.

For a more complex dataset, the L2 sublist may in turn have

long containments, in which case the decomposition is repeated re-

cursively as long as L2 is decomposable. The practical

(a)

(b)

Fig. 1. (a) An interval list sorted by the Start and augmented with MaxE, the maximum end counting from the first interval. (b) Interval list decomposition:

Intervals in the above list with End value larger than that of the three following intervals are put into a separated list. The two component lists L1 and L2 are both

flattened. Two queries [9, 12) and [17, 21) are discussed in the text

4908 J.Feng et al.

implementation of this decomposition may need to relax our defin-

ition of the coverage length len to include more general cases. For

example, if iL½5� does not contain iL½6�, but it contains all intervals

from iL½7� to iL½12�, we may still want to extract iL½5�. The AIList

data structure can accommodate different ways to implement the

decomposition depending on how len is defined. In our implementa-

tion, we define coverage length len½i� for interval item i as the num-

ber of intervals among the next 2 �MinL intervals that are covered

by interval i. Therefore, to find len½i� we can simply check intervals

from iL½iþ 1� to iL½iþ 2 �MinL� to count how many of them

are covered by iL½i�. Limiting the search range to 2 �MinL reduces

construction time.

Selection of MinL determines the extent of decomposition, with

greater values leading to less decomposition. The optimal MinL dif-

fers mildly among datasets (Fig. 2). It is clear from Figure 2 that

MinL ¼ 20 is near optimal for datasets we tested, and more import-

antly, that the runtime is relatively robust to substantial variation in

MinL choice, so it is not necessary to find the optimal MinL for

each dataset. We have set the default MinL to 20, which results in

the number of components nSub being <10 for all the datasets we

have tested (see Table 1).

Algorithm 1 lists a simplified O(Nlog2N) algorithm for con-

structing an AIList, including both decomposition and augmenta-

tion. The function AddRunningMax is a simple linear scan to

determine the maxE value.

2.3 The AIList query algorithm including decomposed

sublists
Queries against the decomposed list structure are similar to the ori-

ginal case, but now done independently on each sublist. The decom-

position process has divided the original list into two or more

flattened or nearly flattened sublists, so queries in each sublist are

close to optimal. The cost of this improvement is that we now re-

quire additional binary searches to get the indices IE for each sublist.

This approach thus implements a tradeoff between number of bin-

ary search comparisons and number of extra interval comparisons

due to interval containment. Similar to other algorithms mentioned

above, the query time complexity for AIList is Oðlog2N þ nþmÞ,

Fig. 2. Runtime ratio as a function of MinL value for four different datasets with

a fixed query dataset. Since the runtime for the four different sized datasets dif-

fer significantly, each curve is scaled to the runtime of its own at MinL¼20

Table 1. Genomic interval datasets used as database or query for performance evaluation

Genomic File name N Average dcRatio nSub nHits

datasets (.bed format) (x1000) width (%) (x1000)

Dataset 1 fBrain-DS14718 199 460 0.0 1 321

Dataset 2 exons 439 311 0.2 2 2633

Dataset 3 chainOrnAna1 1957 3688 28.1 6 1 086 692

Dataset 4 chainVicPac2 7684 913 13.1 8 3 892 116

Dataset 5 chainXenTro3Link 50 981 68 7.0 7 18 432 255

Dataset 6 chainMonDom5Link 128 187 70 5.6 7 27 741 145

Dataset 0 chainRn4 2351 2113 22.2 6 1 375 224

Note: N is the number of intervals, dcRatio is the ratio of the number of intervals that cover their immediate next over N, nSub is the number of total sublists

for AIList, nHits is the number of overlaps with query Dataset 0, Datasets 1 and 2 are from BEDTools, and others are from UCSC.

Algorithm 1. AIList Construction Algorithm

Input: interval list iL, MinL

Output: aiL, hSub

1: procedure AILISTCONSTRUCTION(iL, MinL)

2: sortListByStart(iL) " OðNlogNÞ sort

3: aiL 1; hSub f1g
4: repeat

5: L1;L2 DecomposeðiL;MinLÞ
6: aiL aiL [L1

7: hSub jaiLj þ 1 " start of the next sublist

8: iL L2

9: until iL ¼1
10: return aiL, hSub

11: end procedure

1: procedure DECOMPOSE(L, MinL)

2: L1 1;L2 1
3: for i 1 to jLj do

4: if L½i� covers MinL intervals then" find len½i�, see text

5: L2 L2 [L½i�
6: else

7: L1 L1 [L½i�
8: end if

9: end for

10: L1 AddRunningMaxðL1Þ " Augmentation

11: return L1;L2

12: end procedure

Augmented Interval List 4909

but the average number of extra comparisons m is minimized. The

search algorithm is listed in Algorithm 2.

3 Results

AIList is implemented in C. To evaluate the efficiency of AIList, we

compared its performance with AITree, NCList and R-trees. For

AITree we used the rbtree-based interval tree from Linux kernel (see

Supplementary Material); for NCList we used the C code

intervaldb:c implemented by Alekseyenko and Lee (2007) and for R-

tree we used the popular Cþþ implementation BEDTools v2.25.0

by Quinlan and Hall (2010). AIList outperforms other approaches

on all datasets that we have tested so far. Table 1 lists seven real and

representative genomic datasets ranging in size from 199 000 to 128

million intervals. In each of the experiments we describe below, we

used Dataset 0 as the query set, with the other six used as the data-

base interval set. All experiments were run on a computer with

2.8 GHz CPU and 16 GB memory, and the reported runtime for

each method includes the time required for data loading, data struc-

ture construction, searching and result output.

For all datasets, AIList outperformed all other methods (Table 2).

The improvement was more dramatic for the datasets with more com-

plex containment structure: for flat Dataset 1 and near flat Dataset 2,

AIList is 120–150% faster than AITree and NCList and two times

faster than BEDTools. For datasets with greater containment, AIList

is up to five times faster than AITree and NCList, and up to 18 times

faster than BEDTools. Furthermore, AIList consumed substantially

less memory than the other algorithms (Table 3).

To evaluate how AIList, AITree, NCList and R-tree scale in prac-

tice for differing sizes of input dataset, we selected a single compari-

son (Dataset 0 queried against Dataset 5 as input dataset) and then

downsampled the input dataset in increments of 1 000 000 intervals.

Figure 3a shows four curves of runtime versus input dataset size.

Figure 3b shows the ratio of the runtime compared to AIList. As input

dataset size increases from 1 to 10 million, the runtime ratio increases

from 2.8 to 8.3 for AITree, from 2.8 to 4.5 for NCList and from 6.9

to 20 for BEDTools, demonstrating the superior scaling of AIList.

We also performed a similar simulation experiment by subsam-

pling the query, which demonstrates the practically lower scaling of

the AIList algorithm (Fig. 4). As expected, all algorithms scale lin-

early but AIList has the lowest coefficient.

4 Conclusion

We defined a novel data structure that dramatically improves on the

enumeration of interval overlaps. Our method pairs the techniques

of list augmentation and list decomposition to provide tighter ter-

minal conditions for overlap checking, which reduces the number of

extra comparisons that must be made. We demonstrated that this

method outperforms existing methods across a series of datasets

that range from flat structure to highly nested interval containment.

Similar to the NCList, the AIList data structure contains only

one extra data element MaxE, so it is more efficient than the AITree

(three extra elements) and the R-tree (contains duplicate elements);

but the AIList header size is negligible, while the NCList header size

can be comparable to database size (see Supplementary Material for

details). Another advantage of the AIList is that inserting a new

interval element requires simply checking the few sublists to find

roughly where it belongs, which is much more flexible than NCList,

which can require reconstructing the whole data structure. Because

of its simple data structure, AIList is also the simplest to implement

(see Algorithms 1 and 2, and source code). Finally, as shown in

Table 3, AIList takes the least memory.

Taken all these together, AIList provides a significantly improved

fundamental operation for highly scalable genomic data analysis.

Funding

This work was supported by the Univesrity of Virginia 4-VA and by National

Institutes of Health grant [1R35GM128636-01] (to N.C.S.).

Conflict of Interest: none declared.

Algorithm 2. AIList Search Algorithm

Input: AIList aiL, sublist header hSub, query ½start; endÞ
Output: Overlaps H

1: procedure AILISTSEARCH(aiL;hSub; start; end)

2: H 1
3: for i 1 to jhSubj � 1 do

4: k BinarySearchðaiL; hSub½i�;hSub½iþ 1� � 1; endÞ
5: while k � hSub½i� and aiL½k�:MaxE > start do

6: if aiL½k�:end > start then

7: H H [aiL½k�
8: end if

9: k k� 1

10: end while

11: end for

12: return H

13: end procedure

Table 2. Runtime (seconds) of AIList, AITree, NCList and BEDTools

for datasets listed in Table 1

Runtime(s) Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6

AIList 0.916 1.023 7.189 19.465 78.640 141.986

AITree 1.235 1.532 24.053 73.670 368.177 581.189

NCList 1.080 1.192 26.094 101.796 419.106 661.759

BEDTools 1.741 2.073 46.533 139.8467 1, 430.620 NA

Note: Datasets 1–6 are used as database and Dataset 0 is as query set. No

result for BEDTools on Dataset 6 since it took nearly all of the machine mem-

ory (16 GB) and was terminated.

Table 3. Memory-usage (%, memory used by a program divided by

the total machine memory) of AIList, AITree, NCList and BEDTools

for large datasets on a computer with a total memory of 16 GB

Dataset AIList AITree NCList BEDTools

Dataset 5 3.7 19.6 6.2 95.4

Dataset 6 9.2 49.2 19.1 NA

Note: BEDTools was terminated for Dataset 6 because it took all machine

memory.

4910 J.Feng et al.

References

Alekseyenko,A.V. and Lee,C.J. (2007) Nested Containment List (NCList): a

new algorithm for accelerating interval query of genome alignment and

interval databases. Bioinformatics, 23, 1386–1393.

Cormen,T.H. et al. (2001) Introduction to Algorithms, Second Edition. The

MIT Press, Cambridge, MA, USA.

Giardine,B. et al. (2005) Galaxy: a platform for interactive large-scale genome

analysis. Genome Res., 15, 1451–1455.

Jalili,V. et al. (2018) Next generation indexing for genomic intervals. In: IEEE

Transactions on Knowledge and Data Engineering. pp. 1.

Kent,W.J. et al. (2002) The human genome browser at UCSC. Genome Res.,

12, 996–1006.

Layer,R.M. et al. (2018) GIGGLE: a search engine for large-scale integrated

genome analysis. Nat. Methods, 15, 123–126.

Li,H. and Durbin,R. (2011) Fast and accurate short read alignment with

Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760.

Neph,S. et al. (2012) BEDOPS: high-performance genomic feature operations.

Bioinformatics, 28, 1919–1920.

Quinlan,A.R. and Hall,I.M. (2010) BEDTools: a flexible suite of utilities for

comparing genomic features. Bioinformatics, 26, 841–842.

Richardson,J.E. (2006) fjoin: simple and efficient computation of feature over-

laps. J. Comput. Biol., 13, 1457–1464.

(a) (b)

Fig. 3. Performance comparison of AIList with AITree, NCList and BEDTools as a function of the size of the target dataset. Dataset 0 is the query set, target data-

sets are subsets of Dataset 5 by sampling (a): Runtime in seconds plotted against increasing number of intervals; (b): Runtime ratio of each tool compared to the

AIList runtime

Fig. 4. Performance comparison of AIList with AITree, NCList and BEDTools

as a function of the size of the query interval set. Dataset 4 is the target data-

set, query sets are subsets of Dataset 0 by sampling

Augmented Interval List 4911

	btz407-TF1
	btz407-TF2
	btz407-TF3

