Skip to main content
. 2019 Nov 28;9:1330. doi: 10.3389/fonc.2019.01330

Table 3.

ROC analysis of the features selected from mRMR.

Features AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI)
Radiomics signature 0.979 (0.873–1.000) 90.00 (68.3–98.8) 100.00 (82.4–100.0)
wavelet.LLL_glcm_MaximumProbability 0.903 (0.764–0.974) 90.00 (68.3–98.8) 84.21 (60.4–96.6)
wavelet.LLH_glcm_Idmn 0.792 (0.632–0.905) 60.00 (36.1–80.9) 94.74 (74.0–99.9)
wavelet.LHH_gldm_LargeDependenceLowGrayLevelEmphasis 0.839 (0.687–0.937) 70.00 (45.7–88.1) 94.74 (74.0–99.9)
original_shape_Sphericity 0.718 (0.552–0.850) 85.00 (62.1–96.8) 57.89 (33.5–79.7)
wavelet.HHH_gldm_DependenceNonUniformityNormalized 0.703 (0.535–0.838) 65.00 (40.8–84.6) 84.21 (60.4–96.6)
wavelet.LHL_glcm_Idn 0.758 (0.594–0.880) 95.00 (75.1–99.9) 52.63 (28.9–75.6)
wavelet.LLH_gldm_DependenceEntropy 0.711 (0.543–0.844) 55.00 (31.5–76.9) 84.21 (60.4–96.6)
wavelet.LLH_glcm_MCC 0.679 (0.510–0.819) 55.00 (31.5–76.9) 84.21 (60.4–96.6)
wavelet.LHL_glrlm_LongRunHighGrayLevelEmphasis 0.737 (0.571–0.865) 75.00 (50.9–91.3) 73.68 (48.8–90.9)
wavelet.LHL_firstorder_Skewness 0.647 (0.478–0.793) 100.00 (83.2–100.0) 36.84 (16.3–61.6)