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Abstract

Introduction

Reliable measurements of the protein content of biological fluids like serum or plasma can

provide valuable input for the development of personalized medicine tests. Standard MALDI

analysis typically only shows high abundance proteins, which limits its utility for test develop-

ment. It also exhibits reproducibility issues with respect to quantitative measurements. In

this paper we show how the sensitivity of MALDI profiling of intact proteins in unfractionated

human serum can be substantially increased by exposing a sample to many more laser

shots than are commonly used. Analytical reproducibility is also improved.

Methods

To assess what is theoretically achievable we utilized spectra from the same samples

obtained over many years and combined them to generate MALDI spectral averages of up

to 100,000,000 shots for a single sample, and up to 8,000,000 shots for a set of 40 different

serum samples. Spectral attributes, such as number of peaks and spectral noise of such

averaged spectra were investigated together with analytical reproducibility as a function of

the number of shots. We confirmed that results were similar on MALDI instruments from dif-

ferent manufacturers.

Results

We observed an expected decrease of noise, roughly proportional to the square root of the

number of shots, over the whole investigated range of the number of shots (5 orders of mag-

nitude), resulting in an increase in the number of reliably detected peaks. The reproducibility

of the amplitude of these peaks, measured by CV and concordance analysis also improves

with very similar dependence on shot number, reaching median CVs below 2% for shot

numbers > 4 million. Measures of analytical information content and association with biologi-

cal processes increase with increasing number of shots.

Conclusions

We demonstrate that substantially increasing the number of laser shots in a MALDI-

TOF analysis leads to more informative and reliable data on the protein content of
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unfractionated serum. This approach has already been used in the development of clini-

cal tests in oncology.

Introduction

Plasma and serum proteomic profiling are valuable tools to assess the disease state of an

organism [1–3], relating the relative abundance of circulating proteins to clinical data for

diagnosis, prognosis, and treatment selection. We present a method for enhancing the sensi-

tivity, reproducibility, and information content of measurements of the circulating proteome

based on Matrix-Assisted Laser Desorption Ionization (MALDI) Time of Flight (TOF) mass

spectrometry.

While there are many approaches attempting multiplexed measurements of protein abun-

dance, for example, multiplexed immunoassays [4–8] and aptamer-based methods [9–13],

most of these methodologies are targeted at a pre-defined set of known proteins assumed to be

relevant for a particular disease state. In addition, circulating proteins are often post-transla-

tionally modified. Common modifications such as truncations, methylations, phosphoryla-

tions, splice isoforms, intrinsic oxidations etc., are not easily differentiable in classic antibody-

based approaches [14–16]. These modifications can be important for the phenotypic state of

disease [17], and disease specific effects may be missed when studies rely on measurements at

the level of protein families. For example, in Wu et al [18] different modifications of serum

amyloid A (SAA) were shown to be associated with gastric cancer when compared to gastritis

and healthy patients. Differences in relative amounts of truncated forms of SAA have been

observed in acute vs chronic inflammation [19] as well as in type 2 diabetes mellitus patients

compared to non-diabetics [20].

In contrast to many other methods, mass spectrometry based proteomic profiling requires

neither prior knowledge of disease mechanism nor a list of protein targets, and is capable of

quantifying the relative abundance of hundreds of proteins simultaneously, including trun-

cated and modified forms. A combination of mass spectral features (peaks) representing many

different proteins/peptides can provide a robust way to discriminate between two clinical

groups where individual features do not [21,22]. Successful application of multivariate data

analysis and modern machine learning methods to mass spectrometry based proteomic data

depends on the ability to simultaneously measure a large number of features in the mass spec-

tra [23–29].

The use of proteome profiling of unfractionated serum with MALDI-TOF mass spectrome-

try provides several practical advantages. The required sample volume is very small (a few

microliters of serum or plasma), enabling large scale experiments on archival sample sets

where often only small volumes are available. Samples can be shipped either frozen or dried on

paper cards, enabling the analysis of archival samples and providing an easy transport mecha-

nism for potential clinical application. Data acquisition and analysis are high throughput. The

same MALDI-TOF platform can be used for discovery, development and validation of tests, as

well as for running the tests in the clinical setting.

The plasma and serum proteome is extremely complex, and its quantitative analysis pres-

ents unique challenges, mainly related to the wide range of protein concentrations, which can

span more than 10 orders of magnitude [30–32]. The peak content of standard MALDI spectra

of unfractionated serum is believed to be limited to about 150 peaks, associated with proteins

(at masses above approximately 5 to 6 kDa) and peptides (at lower masses), including protein
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fragments and truncated forms, originating from highly abundant proteins [2]. An estimate of

the range of protein abundances observable in standard MALDI-TOF experiments is about

two to three orders of magnitude [33]. Quantitation of less abundant proteins is presumed dif-

ficult due to the limited dynamic range of MALDI-TOF [34], and is exacerbated by matrix-

related chemical noise [35] and ion suppression effects [36–41]. Analytical reproducibility in

MALDI protein profiling also remains a significant challenge [34, 42].

Fractionation techniques, such as multidimensional chromatographic separation coupled

to mass spectrometry [43–52], could potentially improve the detection of low abundance pro-

teins. However, such complicated multistep processes are time-consuming and hence not suit-

able for high-throughput applications; they require large sample volumes (from 10 μl [51]

to 200–400 μl [48], typically 25–50 μl [46, 47, 49, 52]) and are difficult to reproduce, limiting

the suitability for clinical applications. While approaches like multiple reaction monitoring

(MRM) [53–58] can overcome some of the practical problems, these solutions require prior

knowledge of useful proteins [59, 60].

In this work we study serum proteome profiling in the m/z range from 3 to 30 kDa using

linear mode MALDI-TOF instruments. As we do not perform protein digestion, the proteins

outside this mass range (i.e. heavier than 30 kDa) can only be observed via their naturally

occurring fragments and truncated forms. Regarding the feasibility of proteome profiling

using other types of mass spectrometers, linear MALDI-TOF remains a mainstream option.

The m/z that we are studying are too high for a reflectron MALDI-TOF. Another promising

possibility is Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR

MS). These instruments demonstrate extremely high resolution, which would be very benefi-

cial for profiling purposes. Historically, MALDI-FTICR instruments could only be used for

relatively low m/z, such as up to 2500 Da [61] or up to 4000 Da [62]. However, relatively

recently, using the state of the art 15-Tesla MALDI-FTICR instrument, the m/z range has been

extended to 6500 Da [63], then to about 15 kDa [64, 65], and eventually to about 20 kDa [66].

It remains to be seen whether MALDI-FTICR becomes more widely used for proteome profil-

ing. In this work we limit ourselves to improving the sensitivity, dynamic range and reproduc-

ibility of serum proteome profiling with MALDI-TOF MS, which remains highly relevant for

discovery and validation of new biomarkers, as well as for clinical applications in personalized

medicine where throughput is an important consideration [34]. One of our primary goals is to

be able to acquire MALDI-TOF mass spectra that would provide a good starting point for fur-

ther analysis with modern machine learning methods [23–29].

The problem of expanding the information content of MALDI-TOF proteomic profiling

with respect to the accessible abundance range, e.g., number of detectable peaks, while retain-

ing accuracy and reproducibility of quantitation, can be viewed as a problem of improving the

signal-to-noise ratio (SNR) of peaks. This calls for reduction of noise in MALDI-TOF spectra,

which can be achieved by averaging spectra from a very large number of laser shots.

Traditionally, MALDI-TOF applications using serum or plasma use around 2000 laser

shots. Averaging tens of thousands of laser shots to improve signal-to-noise ratios has been

done for MALDI-MS-MS fragmentation spectra [67–71]. Averaging 10 spectra, 500 laser shots

each, to improve the accuracy of mass measurements of peptides, using reflectron MALDI-

TOF MS, has been done in [72]. Summation of 20000 laser shots (reflectron MALDI-TOF,

m/z range from 1000 to 5000 Da) was used in [73, 74] to quantify N-glycans in human serum.

We applied the spectrum averaging approach to linear MALDI-TOF and found that the

method can be extended to use much higher numbers of laser shots—up to 108 shots.

In this paper, we describe the deep MALDI approach which enables acquisition of MALDI-

TOF spectra with many more laser shots than conventionally used, by acquiring a large num-

ber of spectra from within and across sample spots and averaging them together. We show
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that this leads to reduction of noise and of the CVs of feature intensities, resulting in an

increase of peak content, SNR, dynamic range, and quantitative reproducibility of MALDI-

TOF spectra. These effects can also be observed in appropriate measures of spectral informa-

tion content, and in association of spectral features with biological processes, computed using

set enrichment techniques [75]. We present data from two different MALDI-TOF instru-

ments: Bruker Ultraflextreme and SimulTOF100.

Materials and methods

Samples and sample preparation

The spectra used for this study were acquired over multiple years as a part of the standard qual-

ity control process at Biodesix. Spectra of unfractionated human serum samples were acquired

on MALDI-TOF instruments in linear mode. Peaks in the spectra reflect peptides and proteins

originally present in the sample. For each batch of experimental samples, four separate prepa-

rations of a reference control sample were spotted: two at the beginning, and two at the end of

each MALDI sample plate, resulting, in total, in acquisition of 248,350 raw spectra of reference

samples. We used two reference samples: one with Ultraflextreme (we denote this sample by

RS1 in the remainder of the paper) and another with SimulTOF100 (denoted by RS2). Each

reference sample was created by pooling equal volumes of serum obtained from five healthy

individuals, purchased from ProMedDx LLC (Norton, MA, USA).

To evaluate the performance of the proposed acquisition methods on a data set obtained

from a diverse set of samples, we utilized spectral acquisitions from our mass spectrometer

qualification procedure. This procedure uses a sample set consisting of 40 serum samples pur-

chased from Oncology Metrics (Fort Worth, TX, USA), which were derived from the blood

of colorectal cancer and lung cancer patients. This set is called the machine qualification set

(MQS) in the remainder of the paper.

To evaluate the biological implications of the presented approach we used a set of samples

with sufficient volume to obtain protein expression measurements for a panel of 1305 known

proteins, the SOMAscan (SomaLogic, Boulder, Co). 100 serum samples were purchased

from the commercial biobanks Conversant Bio (Huntsville, AL) and Oncology Metrics (Fort

Worth, TX). Samples were collected under ethics-approved protocols according to the require-

ments of Conversant Bio and Oncology Metrics. This set is called biological reference set (BR)

in the remainder of the paper.

All samples used in this study have been approved for use in this study.

Sample preparation reagents acetonitrile (Burdick and Jackson), HPLC grade water (JT

Baker), trifluoroacetic acid (EMD), and centrifugal filters were purchased from VWR Interna-

tional. Sinapinic acid was purchased from Sigma (St Louis, MO, USA) or Proteochem (Loves

Park, IL, USA) and used without further purification. Serum cards and punches were pur-

chased from Therapak (Claremont, CA, USA) and Acuderm (Ft Lauderdale, FL, USA), respec-

tively, and Protein Calibration Standard I was purchased from Bruker Daltonics (Billerica,

MA, USA).

Instruments and instrument qualification

Two MALDI TOF mass spectrometers from different manufacturers were used for serum

analysis in this study: Ultraflextreme (Bruker Daltonics, Bremen, Germany) and SimulTOF100

(SimulTOF Systems, Marlborough, MA, USA).

In order to obtain comparable spectra on different instruments and over extended periods

of time, we have established a procedure to evaluate instrument performance. This is necessary

as instrument performance will inevitably vary with normal wear and tear, repairs, and
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cleaning. Briefly, spectra are acquired from the machine qualification set and the reference

control sample, and processed following a standardized sample preparation protocol. (Details

on these procedures are provided in the S1 Appendix: Sample preparation and spectral acqui-

sition). Feature values (integrated peak intensities) from spectra of each qualification and ref-

erence sample are compared to baseline acquisitions or “gold standard” spectra. Instrument

parameters are tuned or adjusted until settings produce feature values concordant with the

gold standard baseline acquisition.

Spectral processing

Generation of averages. The raw data generated by the instrument is stored in the form

of raw spectra, containing the sum of 800 laser shots each. In our experience, up to about 100

raw spectra can be acquired from each sample spot. Almost all spots allow acquisition of at

least 50000 shots, before the sample is exhausted. To obtain average spectra for higher number

of shots, we acquire raw spectra from multiple spots. This produces a pool of raw spectra

which we align and use to obtain final average spectra. To generate averages without losing res-

olution, the raw spectra need to be aligned. A set of internal calibration points were selected

that were detected in the majority of raw spectra using a SNR threshold of 3 for peak detection,

and used to generate aligned spectra for averaging. Raw spectra that could not be properly

aligned were excluded from further analysis. Average spectra were created by randomly select-

ing, without replacement, a fixed number of aligned raw spectra to achieve a predefined shot

number. For example, to generate an 800,000 shot average, 1,000 raw spectra were included

from the total pool of raw spectra acquired from multiple sample spots.

Spectral processing of averages. Preprocessing techniques were employed to allow com-

parison of averaged spectra, including background estimation and subtraction, alignment, and

normalization.

Background was estimated using the convex hull method [76–78], and subtracted. Aver-

aged spectra were re-aligned using peaks common to all spectra. Normalization was performed

to adjust for overall intensity differences. We normalized spectra using the integrated intensity

of background subtracted spectra over the union of three mass ranges: [6100, 7500], [8500,

10700], and [13300, 16400]. (All values in Da).

Each feature (typically containing a single peak) was defined by its left and right m/z

boundary. Feature values are computed as the integrated intensity between the boundaries

(sum of intensities of the mass spectral signal) for each feature and spectrum independently.

Feature boundaries were designed to allow for variations in peak width and slight shifts in

alignment. In this study, we predominantly focus on a set of features that are observable across

all samples and acquisitions. This set contains 298 features listed in the S1 Appendix, unless

otherwise stated.

Noise estimation. Noise in our mass spectra is defined as fluctuations around a mean

value with a wavelength (much) smaller than the peak-width. For large numbers of laser shots

the spectra become quite smooth, and we needed to use extra care to estimate these fluctua-

tions. First, we isolate high-frequency noise, by computing the smoothed spectrum, using

Savitzky-Golay smoothing [79] (window length = 29, polynomial order = 8), and subtracting

the smoothed spectrum from the original spectrum. Then, to estimate noise at a given m/z, we

consider all intensity values from data points within an m/z window of relative width 0.08 cen-

tered around this m/z value. For example, to estimate noise at 12 kDa, the m/z window is from

11520 to 12480 Da. We estimate the standard deviation of noise as the difference between the

50-th and the 25-th percentiles of this data, divided by 0.6745. This provides an estimate of the

noise strength that (1) is robust to possible outliers in the data, and (2) in the special case of the
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normal distribution N(μ, σ2) reproduces its standard deviation σ. Indeed, for the normal distri-

bution N(μ, σ2) the difference between the 50-th percentile z0.5 and the 25-th percentile z0.25 is

z0:5 � z0:25 ¼ s
ffiffiffi
2
p

erf � 1
ð0:5Þ;

where erf−1(x) is the inverse error function, erf−1(0.5)� 0.4769362762 [80]. Thus

s ¼
z0:5 � z0:25ffiffiffi
2
p

erf � 1
ð0:5Þ

�
z0:5 � z0:25

0:6745
:

Analytical information measure

We have developed a measure of the information content of a feature, designed to characterize

its ability to differentiate between different samples. With this goal in mind, we consider the

ratio of variability between samples (biological variability) to variability in repeated measure-

ments of the same sample (technical variability). If this ratio is low (close to one), the measure-

ment cannot distinguish between samples, and thus we cannot expect to be able to extract

from it any clinically useful information. Consider repeated mass spectrometric measurements

(“runs”) of a set of samples. We define the information content, Sj, of a single feature, j, as fol-

lows. Using indices i: sample index (1 . . . number of samples), j: feature index (1 . . . number

of features), k: run index (1 . . . number of runs), and denoting by f(i,j,k) the feature value for

sample i, feature j, and run k:

Sj ¼ log
2

standard deviationðall samples; all runsÞ
average over samplesðstandard deviation for a sample over runsÞ

� �

¼ log
2

standard deviationðf ð:; j; :ÞÞ
average over iðstandard deviationðf ði; j; :ÞÞÞ

� �

:

Here we use Matlab-inspired notation: f(:,j,:) is the collection of (number of samples)�

(number of runs) values of feature j for (all samples, all runs), and f(i,j,:) is a collection of

(number of runs) values of feature j for all runs of sample i. The total information content for a

mass spectrum is then just the sum of Sj over all features.

Association of peaks with biological processes

The strength of association of mass spectral features with biological processes was estimated by

applying the commonly used bioinformatics tool, gene set enrichment analysis (GSEA) [75],

to protein expression. The set enrichment approach determines the association of a measured

quantity (in this case a mass spectral feature value) with a particular biological process by look-

ing for a consistent pattern of associations with the quantity in question across a set of proteins

(or genes) known to be related to that biological process. Hence, to be able to associate individ-

ual mass spectral features with biological processes, it is necessary to have matched protein

expression data and mass spectral data for a reference sample set. Relative protein abundance

measurements for a panel of 1305 proteins were obtained for the BR set using the aptamer-

based 1.3k SOMAscan assay (SomaLogic, Boulder, CO). Mass spectral data from the same

samples were also collected as described in “Materials and methods”, and mass spectral feature

values determined for each sample for a predefined set of 298 features (See “Spectral process-

ing of averages”).

Protein sets for various biological processes of interest were defined as follows. The Gen-

eOntology database, GO, (Gene Ontology Consortium) [81,82] was queried using AmiGO

[83, 84] and EMBL-EBI QuickGO [85] web applications to perform ontology searches and

Extending the information content of the MALDI analysis of biological fluids

PLOS ONE | https://doi.org/10.1371/journal.pone.0226012 December 9, 2019 6 / 21

https://doi.org/10.1371/journal.pone.0226012


create lists of gene products associated with biological processes of interest. Many processes

are interrelated; for example, activation of the complement system and acute phase response

are important parts of innate immunity, and some elements of these lists inevitably overlap.

This redundancy reflects the common aspects of related pathways. Typically, we selected rela-

tionships to the annotated terms that included “is a”, “part of”, “occurs in”, and “regulates”;

however, when this choice seemed too broad, we used narrower relationships. Evidence was

filtered to allow for all types of manually reviewed annotations, but to exclude “electronic”

annotations (not manually reviewed; evidence code “IEA” [86]). The intersection of the set of

proteins found to be associated with a GO biological function of interest and the proteins mea-

sured in the SOMAscan panel yielded the protein set for this particular biological function. A

table of the biological functions considered and their associated protein sets is provided in S1

Appendix.

The protein set enrichment analysis (PSEA) approach [87] first determined the univariate

correlation between the values of a mass spectral feature and each of the 1305 proteins mea-

sured by the SOMAscan panel within the BR set. These univariate associations were assessed

using the Spearman correlation coefficient. From these correlations, an enrichment score was

generated, which assessed the relative consistency of the univariate correlations for the pro-

teins contained in the protein set for the biological process in question compared with that for

proteins measured but not contained in the relevant protein set. The enrichment score was

defined as in [88] as this approach provides increased power for the identification of associa-

tions compared with the standard GSEA method [75]. P-values of association between each

mass spectral feature and the biological processes were obtained by comparing the enrichment

score with the null distribution generated by random permutation of the features values across

the sample set. This approach followed the standard GSEA method described in [75]. False dis-

covery rates for this multiple testing problem were estimated using the method of Benjamini-

Hochberg [89].

Results

The numbers of raw spectra (800 laser shots each) available for averaging and further analysis

are summarized in Table 1. As described in “Materials and methods”, we randomly selected

fixed numbers of these raw spectra to generate averages for fixed numbers of laser shots up to

100 million (for RS2 on the SimulToF instrument).

The dependence of the averaged spectra on the number of shots for the RS2 acquisition

acquired on the SimulTOF100 is shown in Fig 1A. While there are no distinguishable peaks in

the 8000 shot spectrum (in the selected mass range), small peaks emerge from the noise as the

number of shots is increased; the peaks become better defined and differentiable, and the noise

decreases. The last point is better illustrated by comparing averaged spectra including different

numbers of shots and zooming into the y-axis as shown in Fig 1B. As the number of shots

increases from 400 thousand to 8 million shots, the noise is greatly reduced, enabling the

detection of small peaks (e.g. at 8320 and 8380 Da) and the differentiation of close peaks (e.g.

Table 1. The number of raw spectra in each raw spectra pool for the different samples and instruments.

Sample/instrument Number of raw spectra in the raw spectra pool Total number of laser shots

RS1 Ultraflextreme 28,283 22.6×106

RS2 SimulTOF100 220,067 176×106

MQS SimulTOF100 794,994 (overall); 16,511. . .20,706 (per sample) 636×106 (overall); (13.2. . .16.5)×106(per sample)

BR SimulTOF100 189,595 (overall); 1,686. . .2,012 (per sample) 152×106 (overall); (1.35. . .1.61)×106 (per sample)

https://doi.org/10.1371/journal.pone.0226012.t001
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around 8140 Da). It is necessary to zoom into the intensity axis to see the small peaks due to

the large range of protein abundances in human serum [30–32] visible in the deep MALDI

averages.

Assuming that abundance and peak intensity are proportional, and neglecting possible ion-

suppression [36–41], our estimate of the observable dynamic range in our acquisition is about

4 orders of magnitude, as measured by the ratio of the largest observable peak to the smallest

observable peak. (For comparison, at 8000 laser shots the observable dynamic range is about

2 orders of magnitude). This shows that it is possible to directly measure low abundance pro-

teins in the presence of high abundance proteins with MALDI-TOF without fractionation, as

long as the respective peaks are well resolved in m/z.

Dependence of SNR and number of observable peaks on shot number

To further investigate the characteristics of the spectra as a function of number of shots, we

analyzed how noise varies with increasing number of laser shots. According to the law of large

numbers and assuming ideal experimental conditions, the noise should decrease as the square

root of the number of laser shots. Indeed, consider the average spectrum �yðxÞ obtained by

averaging n spectra yi(x):

�yðxÞ ¼
1

n

Xn

i¼1

yiðxÞ ;

where x = m/z, and i = 1 . . .n is the index of the spectrum. Individual spectra yi(x) contain

Fig 1. Dependence of average spectrum on the number of laser shots. A) Processed spectra for the reference sample RS2 acquired

on the SimulTOF100 are shown in the mass range from 5.53 kDa to 6.55 kDa for 8K, 400K, 4 million, and 100 million laser shots. B)

Comparison of average spectra for the reference sample RS2 acquired on the SimulTOF100 in the m/z-range 8.1 to 8.8 kDa. Orange:

0.4 million laser shots, Black: 8 million laser shots. Top panel: The whole intensity range; Bottom panel: Enlarged to show low-

intensity peaks. The dashed vertical lines indicate the m/z position of small peaks discussed in the text.

https://doi.org/10.1371/journal.pone.0226012.g001
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signal s(x) and noise ri(x):

yiðxÞ ¼ sðxÞ þ riðxÞ:

The signal s(x) is the same for all spectra, thus

�yðxÞ ¼ sðxÞ þ �rðxÞ;

where

�rðxÞ ¼
1

n

Xn

i¼1

riðxÞ:

At any given x, each of ri is independently drawn from the same probability distribution,

characterized by expected value E[ri] = 0 and variance Var(ri) = σ2. Thus

Varð�rÞ ¼
1

n
VarðriÞ;

and its standard deviation

sð�rÞ ¼
1
ffiffiffi
n
p sðriÞ:

This does not require the distribution of ri to be Gaussian; however, due to the central limit

theorem, for large n we expect the distribution of �r to be approximately Gaussian.

In Fig 2A, we show the estimated noise (see “Materials and methods”) as a function of the

number of shots for RS1 acquired on the Bruker Ultraflextreme and RS2 on the SimulTOF100.

For acquisitions on either instrument, the noise decreases over the whole accessible range of

numbers of shots with the expected inverse square root behavior, indicating that increasing

the number of laser shots and using the described averaging procedure efficiently reduces the

amount of noise present in the average spectra, independent of the instrument.

We are interested in measuring as many peaks as possible with reasonable SNR cutoffs. In

Fig 2B, we show the increase in the number of observable peaks as a function of laser shots for

four different SNR cut-offs for RS2 acquired on the SimulTOF100. As expected, the number

of observable peaks increases with increasing number of shots, but then surprisingly reaches a

plateau at about 800 peaks. As the noise continues to decrease (see Fig 2A), this effect is at first

glance surprising. We believe that the limit on the number of observable peaks is related to

the finite resolution of the instrument, and that we are observing the effect of “peak crowding”.

The masses of observable proteins are not uniformly distributed across the m/z axis and there

are regions where there are more peaks that are too close together to be resolved by the instru-

ment. Hence, we would not be able to distinguish peaks in these areas even if we had optimal

sensitivity, and in our high-number-of-shots approach, the number of peaks as a function of

shot number is primarily limited by the resolution of the instrument. This explanation is illus-

trated in Fig 2C which shows the density of peaks and compares this density with the estimated

inverse peak width. Over the whole m/z range from 3 to 30 kDa the density of peaks appears

to be proportional to the inverse of the peak width. This supports the idea that the number of

observable peaks is limited by instrument resolution, rather than by its sensitivity. Of course,

the underlying distribution of peaks depends on how many proteins are actually present in

a sample in a given m/z interval. One would need to repeat these experiments using instru-

ments with higher resolution to answer this question more definitively. Artificially reducing

resolution, by smoothing the spectra using a moving average with window width of 41 points
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Fig 2. Noise level, number of detected peaks and peak density. A) Noise level in the spectra, as a function of the

number of shots. Noise is estimated as described in “Materials and methods” and shown for RS1 obtained on the

Bruker Ultraflextreme (purple) and for RS2 on the SimulTOF100 (green). The lines show the expected slope of -1/2

and are shifted by instrument dependent offsets. B) Number of detected peaks for a fixed SNR cutoff, as a function of

the number of laser shots for RS2 on the SimulTOF (SNR = 10 (dark blue circles), 20 (light blue triangles), 40 (green

Extending the information content of the MALDI analysis of biological fluids
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(in S1 Fig we compare such a smoothed spectrum with the original), we observe that the pla-

teau in Fig 2B is reduced from around 798 peaks to 442 peaks, indicating that the number of

observable peaks in MALDI serum spectra is limited more by resolution effects than sensitiv-

ity, if one utilizes many laser shots. Note that this effect is a manifestation of a high complexity

of the sample (serum contains thousands of proteins or protein isoforms), whereas samples

with lower complexity, e.g. spiked proteins in water, are not expected to be affected by peak

crowding.

Analytical reproducibility of peak intensity as a function of laser shots

For clinical applications it is important to have good analytical performance of the measure-

ment process. Having demonstrated that substantially increasing the number of shots leads to

a reduction in noise and an increase in the number of observable peaks, we now show how

reproducibility improves with increasing number of shots. We needed to perform this experi-

ment using a diverse set of samples to ensure that we were not confounded by peculiarities of a

single sample. To demonstrate the improvement of analytical reproducibility with increasing

shot number, we created two sets of averages for the 40 samples in MQS ranging from 2400

shots to 8 million shots (limited by the available number of raw spectra). We examined the

reproducibility of the 298 feature values by comparing the two sets in concordance analyses.

We use linear regression analysis as a measure of concordance (perfect concordance would

result in a slope of 1). In Fig 3A, we report the results of the concordance analysis showing the

median of (1—Pearson’s R) from fits to a straight line in the feature concordance as a function

of the number of laser shots. We see that as the number of shots increases, the median Pear-

son’s R becomes closer to one indicating that reproducibility as measured by feature concor-

dance improves.

To obtain an additional measure for the analytical reproducibility as a function of number

of shots, we also estimated the CVs of the 298 features using 20 replicate averages at different

numbers of shots for the RS2. In Fig 3B we show the CV distribution of the features as a func-

tion of the number of shots. As the number of shots increases, both the range and the median

of the distribution decrease systematically (see also Table 2), indicating that the reproducibility

of mass spectral features improves with the number of laser shots. The median CV decreases

as a power law in the number of shots with exponent 0.5, as expected.

Information content of mass spectra as a function of laser shots

One primary application of MALDI proteome profiling is the development of tests based on

the measurements of the abundance of circulating proteins, without requiring prior selection

of specific target proteins. Successful development of such tests depends on the richness of the

information content of the underlying data. Here we attempt to assess the dependence of the

information content of spectra on the number of laser shots in spectral acquisition, both from

an analytical and a biological perspective.

The observed reduction of the CVs of features with increasing number of laser shots reflects

the decrease of noise-related random errors in the measurements of feature values. As can be

seen in Fig 4, this is accompanied by an increase of the information content of spectra. Hence

increasing the number of laser shots allows for more reliable differentiation of serum samples.

squares), 60 (red diamonds)). C) Density of detected peaks at a SNR cut-off of 10 obtained by counting the number of

peaks in equal-width m/z bins (the m/z range from 3200 to 30000 Da was divided into 60 bins), for the 100 million

shot spectrum as a function of m/z. The dotted blue line is a smoothed version of this density, and the red line is

proportional to the inverse peak width estimated from several most prominent peaks in the spectrum.

https://doi.org/10.1371/journal.pone.0226012.g002
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Fig 3. Reproducibility of feature values. A) The median of (1-Pearson’s R) over all peaks, as a function of the number

of shots for the MQS acquired on the SimulTOF100. The inset shows an example of the concordance analysis for the

peak at 10236 Da for 240,000 shots. In the inset the horizontal axis relates to feature values from the set 1 of the MQS

averages (Run A), and the vertical axis to feature values of MQS set 2 averages (Run B). B) The distributions of CVs of

all features (peaks) for increasing numbers of laser shots of RS2. For each number of shots the median CV is

highlighted. The horizontal axis for each panel is the relative frequency of values of CVs. The histograms are

normalized as probability densities (area under the histogram is equal to 1). For each histogram, the value on the

horizontal axis is a half of the maximum value of the histogram. The inset shows the median CV as a function of the

number of shots with the red line indicating a behavior proportional to the inverse square root of the number of shots.

https://doi.org/10.1371/journal.pone.0226012.g003
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Association of peaks with biological processes

The question arises whether the increase in analytical information content with increasing

number of laser shots described above leads to an increased ability to detect biologically

important phenomena. We address this question in the framework of set enrichment analysis,

which estimates the association of individual features (peaks) with a set of biological processes

(see “Materials and methods”). We analyzed how this association depends on the number

of shots, using spectra up to 400K shots from the BR set. Asking which peaks are associated

with a biological process we decide on a p-value cutoff of p<0.01 and set a false discovery rate

(FDR) cut-off of 5%. The number of peaks meeting these criteria for different numbers of laser

shots and for all investigated biological processes is shown in Table 3. For some processes,

Table 2. Median CVs and ranges for the distributions of Fig 3B as a function of number of shots.

Number of shots Median CV 25th Quartile 75th Quartile

2,400 18.50 11.90 27.64

8,000 11.48 6.85 19.44

24,000 7.91 4.60 14.25

80,000 4.53 2.62 9.42

240,000 2.80 1.61 6.10

400,000 2.31 1.37 4.97

800,000 1.54 0.92 3.46

2,400,000 1.04 0.60 2.47

8,000,000 0.57 0.29 1.50

https://doi.org/10.1371/journal.pone.0226012.t002

Fig 4. The dependence of the analytical information content of mass spectra on the number of laser shots. Spectra

were obtained from the MQS set on the SimulTOF100 instrument, as defined in “Materials and methods”.

https://doi.org/10.1371/journal.pone.0226012.g004
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e.g. acute inflammatory response, there are many features associated even at low shot numbers

(with fluctuations within the FDR), while for other processes, e.g. innate immune response

and immune tolerance, the number of associated features increases with shot number indicat-

ing that increasing shot number allows for a deeper view of biology in serum profiling.

As this study is devoted to the role of the number of laser shots in MALDI-MS profiling of

unfractionated serum, and, in particular, to improvements that can be achieved by increasing

the number of shots, we have adopted an approach to analysis of the association of MALDI

peaks with biological processes that does not require the assignment of peaks to specific pro-

teins and their fragments. Remarkably, set enrichment analysis approach [75, 87] makes this

possible. Data on assignment of some MALDI peaks to specific proteins does exist in the litera-

ture [1–3, 33], but most of the peaks that we observe remain unassigned. This is a separate

important problem which is outside of the scope of this study, and can be addressed by meth-

ods such as tandem mass spectrometry.

Discussion

We have presented a method for improving the sensitivity of MALDI-TOF mass spectrometry

by increasing the signal-to-noise ratio of the measurements leading to an increase in the num-

ber of measurable circulating proteins from human serum samples. The same approach can

be performed without modification for plasma. We observed that high-frequency noise in the

spectra decreased approximately as an inverse square root of the number of shots, all the way

up to 108 laser shots. This led to an increase of the observable abundance range to about 4

orders of magnitude (compared to about 2 orders of magnitude for 8000 laser shots) and the

number of clearly observable and quantitatively useful peaks in MALDI-TOF mass spectra of

unfractionated serum to about 800 peaks.

The extremely high number of laser shots (in the order of millions) presented here is not

practical in high throughput operations, and for routine applications one needs to select a

number of shots that is practically possible and retains the advantages of using many laser

Table 3. Number of peaks associated with the listed biological processes at a p-value cutoff of 0.01 and with a FDR< 5% obtained for the BR set.

Biological Process 8K 24K 80K 240K 400K

Acute inflammatory response 106 105 104 108 109

Acute phase reaction 122 121 119 122 122

Complement activation 58 60 67 70 70

Cytokine production involved in immune response 1 2 3 2 3

Response to hypoxia 0 3 4 7 7

Extracellular matrix organization 0 0 0 0 0

Epithelial- mesenchymal transition 0 0 0 0 0

Angiogenesis 1 2 1 2 2

IFN type 1 signaling/ response 22 26 28 28 33

IFN γ signaling/ response 18 20 27 25 25

Glycolysis 1 1 1 2 2

Behavior 3 6 5 7 8

Cellular component morphogenesis 3 2 3 3 4

Immune tolerance and suppression 22 26 31 28 31

Chronic inflammatory response 0 1 2 1 2

Type 17 immune response 4 4 1 3 2

Innate immune response 2 2 3 6 8

Wound healing 96 102 103 104 100

https://doi.org/10.1371/journal.pone.0226012.t003
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shots. We have decided to use averages generated from 400,000 laser shots for the routine gen-

eration of tests to be used in the clinical setting. On the SimulTOF100 mass spectrometer this

requires spotting the sample onto eight separate MALDI spots (prepared as described in the

section “Materials and methods”) and consumes about 3 μl of serum. Reserving 32 spots for

four reference samples, this results in a batch size of 43 samples using a 384 well plate. With

current qualified instrument settings it takes about 30 hours to run a batch of 47 samples

including the 4 reference samples. For these 400,000 shot spectra the median CV of the CV

distributions is 2.31%, the number of observed peaks at a SNR cut-off of 15 is 677 for the refer-

ence sample, and the mean number of observed peaks for samples in the machine qualification

set at the same SNR cut-off is 646.

In order to achieve the presented decrease in noise, the resulting increase in SNR and in the

number of observable peaks, and the corresponding improvement in reproducibility, much

care has to be taken, especially with regards to spectral pre-processing. The alignment of the

spectra to be averaged is of principal importance because even slight inaccuracies in this part

can lead to peak broadening in the averaged spectra, and this loss in resolution limits the num-

ber of observable peaks, in addition to the limit imposed by the instrument resolution.

While the results presented here open the theoretical possibility of probing much deeper

into the proteome than previously considered possible, they represent an idealized setting. As

we randomly sampled raw spectra from acquisitions over many years, batch effects could be

ignored. In clinical practice, we do not have a large reservoir of spectra available for individual

samples spanning many batches. Instead a sample is prepared and collected within a single

batch. To compensate for batch effects, we spot the reference sample at the beginning and at

the end of each MALDI plate, and apply additional batch correction processing to map to pre-

viously acquired batches serving as baselines for clinical tests. We have established rigorous

instrument qualification procedures to minimize batch effects and ensure test reproducibility,

based on running a plate containing the MQS set of samples and confirming concordance

with the “gold standard” MQS acquisition.

In general, the peaks we observe should be related to proteins of the classical plasma prote-

ome as described in [30], but there could be other proteins visible in certain sample sets that

are not usually described in the literature. We could increase the mass range of our measure-

ments beyond the 3-30kDa range to further extend the number of detected proteins with this

method. However, in the high mass range the resolution of the MALDI TOF instruments we

used in this study becomes very poor. In the m/z range 30–70 kDa we have observed only a

handful of very broad peaks. Thus we decided to limit the m/z range in this study to 30 kDa. In

the low mass region highly variable metabolomic decay products may confound our ability to

reliably detect peptides.

Conclusions

The results demonstrate that increasing the number of laser shots increases the number of

measurable peaks in human serum samples without requiring fractionation steps. This holds

true over a large dynamic range and appears to be limited by instrument resolution rather

than sensitivity.

The approach requires only very small amounts of serum or plasma, less than 5 μl, which

preserves clinical sample pools from retrospective studies. The reproducibility of the method

compares well with multiplexed techniques, which typically show CVs between> 4%

and< 15% [4,6,8], with exception of the aptamer-based SOMAscan assay, which shows

median CV about 3–4% [13]. The method does not require multiple dilution steps, which are

often needed when the population variation of the abundance of the chosen proteins is large
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[4–13]. In addition, this method allows to separately measure different splice isoforms or post

translationally modified proteins that may have different biological functions [14–20].

Increasing the number of laser shots leads to an increase of information content, both from

an analytical and biological perspective. Assuming that subtle questions related to drug efficacy

and toxicity, especially in oncology in the era of immunotherapy and early detection, require

the detection and measurement of complicated regulatory processes, it is possible that the pre-

sented approach can lead to more reliable test discoveries, especially in the context of multivar-

iate tests using modern machine learning methods.

This approach has been successfully applied to multiple test development efforts related to

the development of prognostic and predictive tests in the area of oncology. Of particular rele-

vance are the validated results obtained for a pre-treatment test identifying patients with meta-

static cancer who are resistant to checkpoint inhibition [90–94]. Immune oncology should be

a fertile ground for multivariate methods investigating the circulating proteome, given the

interplay between tumor biology and the host immune system.

In summary, we have presented a method that significantly increases the useful information

that can be mined from mass spectrometry-based profiling of serum samples. The method

extends the observable dynamic range in a single workflow on MALDI-TOF platforms and

could lead to the development of many more clinically useful and validated tests.
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shown. B) The same spectrum with resolution artificially reduced by a factor of 2 by applying a
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S2 Fig. Average spectrum used to compute the peak density depicted in Fig 2C. The 100
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