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Abstract

The sheer size of the human genome makes it improbable that identical somatic mutations

at the exact same position are observed in multiple tumours solely by chance. The scarcity

of cancer driver mutations also precludes positive selection as the sole explanation. There-

fore, recurrent mutations may be highly informative of characteristics of mutational pro-

cesses. To explore the potential, we use recurrence as a starting point to cluster >2,500

whole genomes of a pan-cancer cohort. We describe each genome with 13 recurrence-

based and 29 general mutational features. Using principal component analysis we reduce

the dimensionality and create independent features. We apply hierarchical clustering to the

first 18 principal components followed by k-means clustering. We show that the resulting 16

clusters capture clinically relevant cancer phenotypes. High levels of recurrent substitutions

separate the clusters that we link to UV-light exposure and deregulated activity of POLE

from the one representing defective mismatch repair, which shows high levels of recurrent

insertions/deletions. Recurrence of both mutation types characterizes cancer genomes with

somatic hypermutation of immunoglobulin genes and the cluster of genomes exposed to

gastric acid. Low levels of recurrence are observed for the cluster where tobacco-smoke

exposure induces mutagenesis and the one linked to increased activity of cytidine deami-

nases. Notably, the majority of substitutions are recurrent in a single tumour type, while

recurrent insertions/deletions point to shared processes between tumour types. Recurrence

also reveals susceptible sequence motifs, including TT[C>A]TTT and AAC[T>G]T for the

POLE and ‘gastric-acid exposure’ clusters, respectively. Moreover, we refine knowledge of

mutagenesis, including increased C/G deletion levels in general for lung tumours and specif-

ically in midsize homopolymer sequence contexts for microsatellite instable tumours. Our

findings are an important step towards the development of a generic cancer diagnostic test

for clinical practice based on whole-genome sequencing that could replace multiple diag-

nostics currently in use.
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Author summary

Mutations found in the DNA of a tumour are expected to be largely unique to each

tumour as there are three billion places in the DNA that can be mutated. However, despite

these odds, in a cancer study with 2,583 participants covering 37 tumour types we observe

in total over a million non-unique mutations. Based on this observation, we hypothesize

that these mutations can be highly informative of the biological processes that caused

them. Using characteristics of these non-unique mutations and general statistics like the

total number of mutations, we classify the tumours into 16 groups. These groups not only

delineate various mutational processes, but also characterize them in more detail. More-

over, we can link the groups to several clinically actionable phenotypes. Our work is a cru-

cial step towards the development of a generic and personalized cancer diagnostic test

that only uses the mutations found in the tumour.

Introduction

Mutational processes induced by exogenous sources and/or endogenous mechanisms deter-

mine the mutational burden of a cell. They each leave their own genomic fingerprint that dif-

fers in terms of the number, types and distribution of mutations. Cancer cells usually show

higher mutation rates than normal cells due to elevated cell proliferation and lack of proper

DNA repair. The mutations accumulated before, during and after the oncogenic transforma-

tion may result in a mutational load exceeding several thousand per cancer genome [1]. Even

with such a high burden, the sheer size of the human genome with over three billion bp still

makes it improbable that by chance alone identical somatic mutations are found at exactly the

same genomic location in two or more cancer patients. Such mutations we will henceforth

refer to as being ‘recurrent’. Positive selection is one possible explanation for the recurrence of

mutations. Recurrent mutations or often more general, recurrently mutated genes and regula-

tory elements, are used in the prediction of cancer drivers that provide a growth advantage to

the cell [2]. However, the number of mutations per cancer genome that so far has been identi-

fied as being under positive selection is very small [3, 4] and the discussion on what are suffi-

cient conditions for driver mutations to cause cancer is on-going [5, 6]. Instead of focusing on

driver mutations, we hypothesize that recurrent mutations may be highly informative of the

non-randomness of mutagenesis and provide a different way to group cancer genomes. In sup-

port of this, at both megabase as well as local scale cancer-specific patterns of the non-random

distribution of mutations have been well described [7]. For instance, mutation rate is influ-

enced by replication time [8], is linked to epigenomic features [9], shows a periodic pattern

around nucleosomes [10], and can depend strongly on the 5’ and 3’ flanking base as shown in

mutational signatures for several mutational processes [11]. This enrichment of mutations in

specific genomic regions or sequence contexts increases the probability of recurrence as does

the number of mutations per sample, which also varies across mutagenic processes.

We use recurrence as a starting point for a systematic analysis of cancer genomes from the

Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium [12]. This cohort study,

brought together by an initiative of the International Cancer Genome Consortium (ICGC)

and The Cancer Genome Atlas (TCGA), covers 37 tumour types from 2,583 donors (S1 Table)

and is the largest publicly available dataset of its kind. It allows a comprehensive pan-cancer

analysis of recurrence in particular since the somatic mutation calling pipeline was identical

across all genomes. Moreover, the whole-genome sequencing data that is available for all
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donors provides a more complete view than whole-exome sequencing data that so far has been

used for large-scale pan-cancer analyses [13]. To make full use of the whole-genome sequenc-

ing data and analyse recurrence in an unbiased way, we take here a purely data driven

approach that is independent of the completeness and correctness of current genome annota-

tions. Hereby we will focus on Somatic Single-base Mutations (SSMs) and Somatic Insertion/

deletion Mutations (SIMs). We first confirm that the number of recurrent mutations is far

higher than expected by chance alone and shed light on the relationship between recurrence

and the number of samples. Next, we analyse recurrence in the context of general mutational

characteristics that capture the effect of mutational processes on the genome. Finally, these

general features together with recurrence-related features form the base for clustering cancer

genomes in a novel way and determine what recurrence can tell us about mutagenesis. To help

interpret the recurrence observed in the 16 identified clusters, link clusters to potential muta-

tional processes and provide further details of each cluster, we use various types of metadata,

including tumour type information, driver predictions, and replication time. As a result, we

are not only able to refine the mutational consequences of many exposure-specific processes,

but also capture clinically relevant phenotypes by using hitherto unused, but easily obtainable

mutational features from whole-genome sequences.

Results

Recurrence is higher than expected by chance

There are 1,057,935 recurrent SSMs, which represent 2.44% of the total number of SSMs

found in the PCAWG cohort. This is around five times higher (Fig A-I in S1 Text) than

expected if only chance would drive recurrence (based on 5,000 simulations, S1 Text). For the

six SSM subtypes (see Methods) the observed recurrence is around three (C>G and T>C

SSMs) to twelve times (T>G SSMs) higher than expected by chance (Fig A-II in S1 Text). On

tumour type level, we can either determine recurrence by only considering the samples from

the same tumour type (‘within tumour type’) or across all samples (‘pan-cancer’). In both

cases, Kidney-RCC, Liver-HCC, Lung-AdenoCA and Lung-SCC stand out as the observed

number of recurrent SSMs is only around three times (within tumour type) and around two

times (pan-cancer) higher than expected by chance (Fig A-III+IV in S1 Text). In contrast, the

largest ratio is 86 times for recurrence ‘within tumour type’ (Prost-AdenoCA) and 7 times for

recurrence ‘pan-cancer’ (Eso-AdenoCA).

Number of samples does not always correspond to the level of recurrence

To see the effect of the number of samples on recurrence, we look at the overall recurrence

within each tumour type (Fig 1). Although tumour types with more samples generally have a

higher total number of recurrent mutations (Fig 1A), there are notable exceptions. For exam-

ple, Liver-HCC has the most samples of all tumour types (314), but less recurrent SSMs and

SIMs than six and five other tumour types, respectively. If we look at the percentage of recur-

rent mutations, even more tumour types overtake Liver-HCC as in this respect it ranks 9th and

10th in terms of SSMs and SIMs, respectively (Fig 1B). The opposite is true for Eso-AdenoCA

(97 samples), which has a higher absolute number and percentage of recurrent SSMs than

eight other tumour types that have more samples. Stomach-AdenoCA has the highest absolute

number and percentage of recurrent SIMs of all tumour types, but less samples than 13 of

them. One partial explanation for this is that a lower number of samples does not always trans-

late to a lower total number of mutations (Fig 1C), even though the correlation is strong

(Spearman’s Rank correlation coefficient rS = 0.73, p = 2.8e-07). However, even if the number

of samples and the number of mutations are in line, the level of recurrence may still give a
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different picture. Liver-HCC, for instance, has also a higher total mutational load than Eso-

AdenoCA (1.2�106 and 7.9�104 more SSMs and SIMs, respectively), but still a lower level of

recurrence.

General mutational characteristics versus recurrence

For each cancer genome, we compute 29 basic mutational characteristics that capture the

effects of mutagenesis (e.g. relative frequency of each SSM subtype) and 13 features capturing

recurrence at different levels (Table A in S1 File, see Methods). Recurrence for these features is

determined based on the entire cohort. A detailed description of each of these 42 measures is

available in S1 File. Based on the comparison of the recurrence-related features with the gen-

eral ones (S2 Text), the key findings are that across the entire cohort: 1) the correlation

between mutational load and the absolute level of recurrence is stronger for SSMs (rS = 0.89)

than for SIMs (rS = 0.76); 2) the same correlation, but instead taking the percentage of recur-

rent mutations, is weak and negative for SSMs (rS = -0.21) and non-significant for SIMs; 3) rel-

ative recurrence for SIMs is higher than for SSMs; 4) a particularly high percentage of C>T

SSMs and 1 bp A/T deletions are recurrent (4.19% and 15.27%, respectively); 5) there is a

strong tendency for T>G SSMs to be recurrent despite its modest total number; 6) there is a

strong correlation between the level of recurrence for SIMs and the percentage of 1 bp SIMs in

a long homopolymer context. Looking into the different tumour types, there are clear contrasts

in terms of the associations between general and recurrence-related characteristics. For exam-

ple, there is a statistically significant positive correlation between the number of mutations and

the percentage recurrent for only two tumour types in the case of SSMs (Eso-AdenoCA: rS =

0.48 and Skin-Melanoma: rS = 0.58) and for seven types with respect to SIMs (most notably:

Biliary-AdenoCA: rS = 0.71 and Eso-AdenoCA: rS = 0.67) (Fig D in S2 Text).

Recurrence characteristics divide the cohort

Next, we use the recurrence-based and general mutational features all together to see if we can

uncover meaningful clusters of cancer genomes. As there are strong correlations between

some of these features (Fig 2), we first perform a principal component analysis (PCA) to obtain

independent features and reduce dimensionality (Fig 3). We take as many principal compo-

nents (PCs) as needed to explain at least 80% of the variance in the data and consider the

remaining PCs to capture noise. We use this subset of PCs as input for hierarchical clustering

[14]. The resulting hierarchical tree is cut at the desired height to obtain clusters. The centroids

are computed for each cluster and used as input to the k-means consolidation step, which fur-

ther improves the initial clustering (see Methods) [15]. To get a pan-cancer perspective we

analyse all samples together.

The crude division into two clusters separates the cancer genomes with low relative levels of

recurrent SIMs (e.g. Liver-HCC, Kidney-RCC and Lung-SCC) from those with high levels (e.g.

ColoRect-AdenoCA, Eso-AdenoCA, Lymph-BNHL and Panc-AdenoCA) (S1 Fig). At three

clusters, the relative level of recurrent SSMs splits off a group of mainly Skin-Melanoma sam-

ples from the two other clusters. This cluster largely remains unchanged when increasing the

number of clusters while the two other clusters continue to divide and become more specific

to a tumour type or a particular mutational process. At the level of six clusters, for example, we

Fig 1. Recurrence within each tumour type in absolute numbers and percentages. The tumour types are ordered from the lowest to

the highest number of samples. We labelled the top 10 ranking tumour types in terms of the following three values: (A) Absolute number

of recurrent mutations, where recurrence is defined by considering each tumour type separately (‘within tumour type’ recurrence). (B)

Percentage of recurrent mutations ‘within tumour type’. (C) Total number of mutations, counting recurrent mutations only once.

https://doi.org/10.1371/journal.pcbi.1007496.g001
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see a cluster split off that we can connect to microsatellite instability (MSI). We will discuss in

further detail the division into 16 clusters, chosen as a trade-off between too many clusters,

which would each be specific to just a handful of samples, and too few, which would result in

loss of meaningful information (Fig 4). There are nine clusters (A, B, C, G, H, I, L, M and P)

Fig 2. Spearman’s rank correlation between the 42 mutational features. The colour of the circles indicate positive (blue) and negative (red) correlations, colour intensity

represents correlation strength as measured by the Spearman’s rank correlation coefficient. The size of the circle indicates the adjusted p-value with larger circles

corresponding to lower p-values. The p-values were corrected for multiple testing using the Benjamini-Yekutieli method. Crosses indicate that the correlation is not

significant (adjusted p-value> 0.05).

https://doi.org/10.1371/journal.pcbi.1007496.g002
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for which at least half of the samples are from the same tumour type. For another two clusters

(O and N) samples from two tumour types constitute a majority. In the remaining five clusters

(D, E, F, J and K) three or more tumour types are required for this. For each tumour type the

percentage of samples in each of the 16 clusters is shown in S2 File. The association of each of

the 42 features with the clusters is shown in Fig 5. The key characteristics of each cluster are

shown in Fig 4. To facilitate a tight linkage of the clusters to mutational processes, we consider,

in addition to the mutational features of a cancer genome, also tumour type assignment,

microsatellite instability (MSI) status, immunoglobulin heavy-chain variable region gene

(IGHV) mutation status (Lymph-CLL only) and tobacco smoking history of the donor (where

available) (S3 Text). To provide further details on each cluster we integrate annotation based

on GENCODE [16], Oncotator [17], driver predictions [3, 18], replication time [19] and muta-

tional signatures [20]. A summary of this and further details are described in S3 Text. In the

Fig 3. Workflow of the recurrence-based approach to group cancer genomes. The 42 features are described in detail in S1 File (Step 1). We scale all features to zero

mean and unit variance to compensate for the differences between the ranges of the features (Step 2). The arrows in the PCA plot indicate the direction and level of

contribution of the features that contribute above average to the first two PCs (Step 3). Seven of these features are related to recurrence. An interactive 3D version of the

PCA plot is available here: https://plot.ly/~biomedicalGenomicsCNAG/1.embed. We take a subset of the PCs and consider the remaining PCs to capture noise (Step 4).

For the hierarchical clustering we use the Euclidean distance as a dissimilarity measure and Ward’s method as the linkage criterion (Step 5). The results of the hierarchical

clustering are used as a starting point for k-means clustering (Step 6). Some samples will in this step switch to a different cluster compared to the initial partition. This

consolidation step is repeated a maximum of 10 times. Further details on the annotation of the clusters (Step 7) are described in S3 Text.

https://doi.org/10.1371/journal.pcbi.1007496.g003
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following sections we will show how the level of recurrence can be indicative of the mutational

processes, often in combination with the general features. Moreover, we show that our recur-

rence-based approach groups cancer genomes in a novel way that complements current classi-

fication approaches and captures clinically actionable cancer phenotypes.

High levels of recurrent SSMs and low levels of recurrent SIMs characterize

exposure to UV light

A positive association with overall recurrence of SSMs and more specifically with recurrence

of C>T SSMs characterizes cluster G that mainly consists of Skin-Melanoma samples (Fig 5).

The association is negative with the recurrence of SIMs. We link this cluster to mutagenesis

induced by UV light (S3 Text). The samples assigned to cluster G account by themselves for

60.7% of the total number of recurrent C>T SSMs. The combination of the high total number

of SSMs per sample and the high percentage of C>T substitutions in this cluster is what con-

tributes to the high level of recurrence. The mechanisms inherent to UV-light exposure further

increase the probability of recurrence as it tends to result in C>T SSMs near energy sinks in

the genome. The energy from UV-light-exposed DNA usually travels along the DNA strand

Fig 4. Key characteristics of the 16 clusters. Tumour types that form together�50% of the cluster are listed. The legend for colours for the pie chart is provided in Fig 3.

The key characteristics are those features with the strongest significantly negative or positive association with the cluster. Only if the association with overall recurrence is

significant, the respective direction is indicated. 1Cluster has a low median number of SSMs (<200) and SIMs (<20).

https://doi.org/10.1371/journal.pcbi.1007496.g004
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until it arrives at the lowest energy point, a dT, particularly when it is next to a dC, which acts

as energy barrier [21]. In agreement with this, for C>T mutations that are recurrent within

this cluster there is a strong enrichment of a TTTCCT motif (the underlined C is mutated)

Fig 5. Overview of the 42 features and their association with each cluster. Red and green squares indicate statistically significant negative and positive associations,

respectively, where the gradient indicates the strength of the association. White coloured squares indicate no significant association (adjusted p-value> 0.05). For

deletions a ‘no homopolymer context’ means that the base next to the deleted one is not of the same type. For insertions this refers to a base inserted 5’ to either a base of a

different type or a single base of the same type. Note that we do not have to consider preceding bases as all SIM calls were left aligned. A short homopolymer context is

defined as a 2–4 bp mononucleotide repeat of the same type of base as the 1 bp SIM, midsize is 5–7 bp in length and long� 8 bp.

https://doi.org/10.1371/journal.pcbi.1007496.g005

Recurrent somatic mutations characterize mutagenesis in cancer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007496 November 25, 2019 9 / 27

https://doi.org/10.1371/journal.pcbi.1007496.g005
https://doi.org/10.1371/journal.pcbi.1007496


(see Methods). While the percentage of this motif in the genome is estimated to be only 0.4%

of all 6-mers with a C at the central position, 4.5% and 19.5% of the non-recurrent and recur-

rent C>T SSMs, respectively, within this cluster are at this motif (Fig 6). An enrichment of a

CTTCCG motif was found for frequently recurrent mutations in promoters in 38 melanoma

samples [22]. In another set of 184 melanoma samples a CTTCCGG motif was found at the

majority of ETS transcription factor binding sites (TFBSs) [23]. As the sequences are centred

at the core consensus ETS binding motif TTCC, instead of at a mutation, the underlined nucle-

otide is the most frequently mutated base. In a subset of highly mutable ETS TFBSs the second

C is the most mutated. These and our specific sequence motif help explain the observed high

level of recurrence. Furthermore, a decreased activity level of the nucleotide excision repair

pathway was detected in melanoma at active transcription factor binding sites and nucleosome

embedded DNA compared to the flanking sites [24]. This increases local mutation rates and

hence also increases the probability of recurrence.

High levels of recurrent SSMs characterize deregulated activity of POLE

A high level of recurrent SSMs also characterizes cluster H, specifically C>T and C>A SSMs.

This cluster captures samples that can be considered ultra-hypermutators and their mutations

are mainly caused by deregulated activity of POLE (S3 Text). These samples have a very high

total number of C>A SSMs (median: 297,750) and the median percentage of recurrent C>A

SSMs across the samples is 7.7%. Two thirds of all recurrent C>A SSMs in the entire cohort are

also recurrent within only this cluster. The C>A mutations that are recurrent within this cluster

are enriched for the motif TTCTTT, when considering only ungapped motifs (Fig 6, see Meth-

ods). Of the recurrent C>A SSMs 32.2% are at this motif, while for non-recurrent ones this is

true for only 13.7% (χ2 test: p<2.2e-16). In the genome, the estimated percentage of this motif of

all corresponding 6-mers (NNCNNN) is far smaller (0.6%), suggesting that effects of deregulated

activity of POLE are most likely dependent on a sequence context exceeding a single neighbour-

ing base on each side as also observed for whole-exome data by Martincorena et al. [25].

High levels of recurrent SIMs characterize microsatellite instability

The highest level of recurrent SIMs across all clusters is observed for cluster J, which could be

linked to a defective mismatch repair (MMR) pathway resulting in MSI (S3 Text). Of the

179,691 recurrent 1 bp SIMs in the entire cohort, almost half of them are recurrent when only

considering this cluster. The very high median number of SIMs (30,228) in this cluster may

play a role in the high level of recurrence. The key factor, however, is most likely the muta-

tional process behind MSI, which is slipping of the DNA polymerase during replication of

repetitive sequences and the lack of repair by the MMR pathway [26]. This not only explains

the elevated number of SIMs [27], but also the association of this cluster with all SIM subtypes

in the context of midsize-to-long homopolymers. As such homopolymers are scarce in the

genome, the shift towards specifically altering them increases the probability of recurrence

(Table F in S2 Text). Especially striking in this cluster is the proportion of 1 bp C/G deletions

that are in the context of a midsize homopolymer (median: 73.2% vs. 8.4% for the other clus-

ters combined, p = 1.2e-12). This translates to 6.0% recurrent 1 bp C/G deletions within this

cluster versus <0.7% for any other cluster (S3 Text).

Positive association with recurrence of SSMs and SIMs: Gastric-acid

exposure and hypermutation of immunoglobulin genes

Clusters L, M and N all positively associate with recurrence of both SSMs and SIMs. Cluster L,

which for >80% consists of Eso-AdenoCA and Stomach-AdenoCA samples, can potentially be
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linked to gastric-acid exposure (S3 Text). The T>G and T>C SSMs that are recurrent within

this cluster cover 45% and ~20%, respectively, of the total observed in the whole cohort. The

median percentage of SSMs falling in late-replicating regions (Table C and Fig A in S3 Text) is

significantly higher than in the rest of the clusters combined (75.2% vs. 61.0%, p<2.2e-16). In

general, the mutational load is expected to be higher in late-replicating regions as the MMR

pathway is said to be less efficient there [28]. However, the question is why the effect is so

strong in cluster L compared to the others (Fig B in S3 Text). It could be that transient single

strand-DNA at stalled replication forks, whose formation has been suggested to be more prev-

alent in late-replicating regions [29], is particularly vulnerable to the mutagenicity of acid-

exposure. Alternatively, if the oxidative stress induced by gastric-acid exposure leads to the

oxidation of dG in the dNTP pool [30], the use of error-prone DNA polymerases that incorpo-

rate the oxidized dG into the DNA [31] may be more frequent in late-replicating regions [32].

The strong shift towards late-replicating regions favours higher levels of recurrence. The same

holds for the enrichment of the specific sequence context ‘AACTT’ that we observe for T>G

mutations that are recurrent within this cluster (Fig 6, see Methods). Nearly 39% of the recur-

rent T>G SSMs are confined to this motif and ~12% of the non-recurrent ones (χ2 test:

p<2.2e-16), which is still far higher than the estimated percentage of this motif in the genome

(0.5% of all NNNTN 5-mers). For SIMs, the cluster has a positive association with recurrence

for three out of the four SIM subtypes as well as with the same subtypes in a midsize and/or

long homopolymer context. This suggests similar mechanisms as for cluster J. Finally, as

observed for SSMs in this cluster, SIMs also show a tendency to fall into late-replicating

regions (67.2%, Table C and Fig C in S3 Text). This may further add to the high level of recur-

rence for SIMs.

Cluster M, with mainly Lymph-BNHL and Lymph-CLL samples, is linked to the somatic

hypermutation of the immunoglobulin genes (S3 Text). In the aforementioned tumour types,

this process is indicative of memory B cells being the cell of origin as opposed to naïve B cells

[33]. The cluster has positive associations with the level of recurrence for all six SSM subtypes.

The association is particularly strong for C>G. Of all recurrent C>G SSMs, 10.7% can be

found in this cluster alone. The high level of recurrence may partially be explained by the

hypermutation observed in the limited area of the genome where the immunoglobulin genes

are located. For SIMs, the cluster has positive associations with the level of recurrence for all

four subtypes as well as with those subtypes in general when in a midsize and/or long homo-

polymer context. This cluster has the highest median percentage of SIMs in late-replicating

regions (67.5% vs. 57.8% for the other cluster combined, p<2.2e-16, Table C and Fig C in S3

Text), which may contribute to the high level of recurrence.

In cluster N, which consists of ~47% Panc-AdenoCA samples, the sources of mutagenesis

are less clear, even after the inclusion of all annotation layers (S3 Text). Except for C>G and

T>C SSMs, the cluster has positive associations with the recurrence of all other subtypes of

SSMs and every SIM subtype. This is especially noticeable as the median of the total number of

mutations across samples is intermediate. A high percentage of the recurrent mutations are

SIMs in this cluster with a median of 35.0%. This is far higher than for samples of the other

Fig 6. Enriched sequence motifs. The sequence logos represent the sequence context of ten bp 5’ and 3’ of the non-recurrent (left-side) or recurrent

(right-side) mutations of the indicated cluster and SSM subtype. Here recurrence is defined as a mutation at the same genomic location in two or

more samples from the same cluster. Each recurrent SSM is included only once to avoid giving extra weight to highly recurrent mutations. Relative

entropy is used as a measure of information content (see Methods). Setting a threshold of 0.25 for the relative entropy results in the motifs highlighted

in the rectangles. In the upper right corner of each sequence logo the number of mutations is indicated. To the right of the sequence logos are the

percentages in which the enriched motif found for the recurrent SSMs is present in context of the mutations in the cluster and the corresponding

k-mers in the genome (N = A, C, G or T). The enrichment for the motif for recurrent SSMs is in all four cases significantly higher than for the non-

recurrent SSMs (χ2 test: p<2.2e-16).

https://doi.org/10.1371/journal.pcbi.1007496.g006
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clusters combined (median: 15.5%, p<2.2e-16). The positive associations with all SIM sub-

types when in a midsize-to-long homopolymer context may point to a slippage-related mecha-

nism (see also cluster J).

Negative association with recurrence: Tobacco-smoke exposure, alcohol use

and increased activity of cytidine deaminases

There are also several mutagenic processes that are associated with low levels of recurrence

(Fig 5) including those represented by clusters A, B, C and E. Cluster A, of which 84% are lung

cancer samples, is linked to mutational processes induced by tobacco-smoke exposure (S3

Text). This cluster shows a positive association with the total number of SSMs and the percent-

age of C>A SSMs, the latter is a known consequence of tobacco-smoke exposure [34]. There

are several factors that increase the probability of recurrence in this cluster, including the high

total mutational load together with the high percentage of C>A SSMs and the enrichment of

mutations in late-replicating regions (S3 Text). Also, tobacco-smoke induced mutations have

been shown to be enriched in linker DNA (i.e. DNA not wrapped around a nucleosome) [10],

which constitute only between 10% and 25% of the genome in eukaryotes [35]. The key to

explaining the lack of recurrence seems to be that there is little tendency to favour a specific

sequence context for the C>A SSMs (Fig 6). This can also be observed in the ‘tobacco smoking

signature’ [11], which is present in nearly 90% of the samples in this cluster (S3 Text). Unlike

for several clusters mentioned above, there is a positive association with SIMs in short homo-

polymer contexts, which are more frequent in the genome than longer homopolymers, and the

resulting distribution is therefore also more random. Note that cluster A also has a strong asso-

ciation with the percentage of total 1 bp C/G deletions, which has not been described previ-

ously as a possible consequence of tobacco-smoke exposure (S3 Text and S4 Text).

Cluster B, consisting of 85% Liver-HCC samples, is likely to be linked to mutational pro-

cesses indirectly induced by excessive alcohol use (S3 Text). The level of recurrence is low

despite the high number of samples of the same tumour type (277) and the consistent pattern

of a high percentage of T>C SSMs (median: 31.7% vs. 14.6% in the other cluster combined,

p<2.2e-16). With regard to 1 bp SIMs, there is a positive association with a short homopoly-

mer context, as for cluster A, with the exception of 1 bp A/T insertions.

In cluster C, in which ~82% are Kidney-RCC and Kidney-ChRCC samples, the mutational

processes remain largely obscure except for a few samples that can be connected to aristo-

lochic-acid exposure (S3 Text). Unlike for clusters A and B, the median number of SSMs

across samples is relatively low. Furthermore, mutations are nearly equally spread between

early- and late-replicating regions as only 53.9% of the SSMs and 47.5% of SIMs are in late

(Table C, Figs B and C in S3 Text). SIMs are preferentially located in no or short homopolymer

context, similar to clusters A and B.

In cluster E nearly one third are Breast-AdenoCA samples and key mutational characteris-

tics point to the endogenous mutational process of increased activity of cytidine deaminases

(S3 Text). There is a general paucity of associations with characteristics of recurrence. In line

with this, the mutations in this cluster are nearly equally spread between early- and late-repli-

cating regions of the genome (Table C, Figs B and C in S3 Text). The most outstanding feature

of this cluster is the high percentage of C>G SSMs. This is the rarest substitution type, making

the detection of recurrence unlikely, particularly if not confined to specific genomic regions.

Interestingly though, the 655 C>G SSMs that are recurrent within this cluster are enriched for

the motif CTCW (W = A or T) (Fig 6, see Methods). Very similar motifs have been described

as being characteristic for deamination mediated by APOBEC3 [36]. The number of recurrent

mutations is much lower than for the other motifs discussed. The CTCW motif is also shorter,
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more general and therefore relatively frequent in the genome (5.4% of all NNCN 4-mers), all

possible causes for the lacking trend towards recurrence.

The added value of the recurrence-related features

The PCA shows that seven of the sixteen features that contribute above average to the first two

PCs are related to recurrence (Fig 3). In addition, all 16 clusters have a statistically significant

association with two or more recurrence-related features (Fig 5). The importance of the recur-

rence-related features is further demonstrated by the results of running the entire workflow

(Fig 3) using only the general features. In this case we are no longer able to separate all ultra-

hypermutator samples from the rest of the cohort (S2 Fig). Furthermore, the cluster linked to

hypermutation of the immunoglobulin genes (cluster M) is dissolved, and the cluster possibly

linked to gastric-acid exposure (cluster L) is less cancer-specific as it absorbs 90 samples of the

dissolved cluster M and thereby nearly doubles in size. Another key difference is that only

~55% of the Lymph-CLL samples without hypermutation of the immunoglobulin genes are

confined to a single cluster as opposed to ~86% when using all features.

Discussion

Only a very small percentage of the 1,057,935 recurrent SSMs and 186,576 recurrent SIMs in

the PCAWG cohort are expected to be purely by chance. We estimate based on simulations

that only around 0.47% of the SSMs would be recurrent if no biological factors would play a

role, which is less than one fifth of the observed 2.44%. Technical artefacts could contribute to

the level of recurrence, but although they can never be fully excluded, the PCAWG consortium

has made a great effort to minimise false positive calls. A consensus was taken of the individual

results from multiple somatic mutation callers, followed by the application of various filters to

remove, e.g., germline variants [12] (see Methods). This resulted in a conservative, but reliable

dataset of somatic mutations. Increasing the size of the cohort may change the percentage of

recurrent mutations, but in which direction depends on the tumour type of the additional

samples, their mutational burden and importantly the mutational processes underlying the

observed mutations.

Recurrence is considered an important indication that a mutation might be under selective

pressure in protein-coding regions [37, 38]. Hence, by focusing on recurrence we are inher-

ently not only looking at the mutational consequences of mutational and repair processes, but

also at positively selected mutations. One way that has been used to reduce the influence of the

latter is to count all recurrent mutations only once [39]. However, in our approach, as we

describe each individual cancer genome with the 42 features, this is not an option as we would

not know to which samples to add this single count for each recurrent mutation. Instead, we

would need to leave out all recurrent mutations, but this would even be more rigorous. In

either case, it also implies that over a million mutations are assumed to be under positive selec-

tion. Besides the fact that recurrence is not a sufficient condition for positive selection [37], it

may not even be a necessary one in a dataset of the size of our cohort [3, 38]. Another option is

to remove all predicted driver mutations. In total there are only 4,223 predicted driver muta-

tions that are either SSMs or SIMs, which constitutes just 0.009% of the total amount of muta-

tions. It is, therefore, unlikely that leaving them out will affect the general features. Their effect

on the percentage of overall recurrence is also negligible (-0.001% for SSMs and +0.002% for

SIMs), partly because only ~12% of the predicted driver mutations are recurrent within the

PCAWG cohort. Based on the overall statistics, removing the predicted driver mutations will

also hardly affect the recurrence-related features of individual cancer genomes and conse-

quently not result in any noticeable change in the uncovered clusters. As identifying the driver
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mutations is, in addition, far from unambiguous and a dynamic area of research [3, 18], it is of

limited practicality to our workflow to remove them. Of note, the impact of positive selection

might be greater when analyzing only the exome [39] as there are less mutations in total and

the large majority of drivers is found in protein-coding loci [3, 18].

Mutational load, enrichment of mutations in a specific sequence context or in specific parts

of the genome all impact on recurrence. However, none of these factors provide individually a

universal explanation for the observed levels of recurrence per cluster (Fig 7). For example, the

cluster linked to tobacco-smoke exposure has a very low percentage of recurrence, despite the

high mutational load, the enrichment of mutations in late-replicating regions and increased

mutation rate in linker DNA. The absence of a preferred sequence context likely plays a role in

Fig 7. Factors impacting on recurrence in the context of the clusters. None of the three key factors (middle panel) that impact on recurrence individually explain the

observed level of recurrence in the clusters. Whether a cluster has a relatively high or a comparatively lower mutational load is based on the median number of SSMs/SIMs

across its samples (Fig 4). The actual specific sequence contexts for SSMs are shown in Fig 6. For cluster M there is enrichment for a specific sequence context as well,

which is AGCT for C>G SSMs that are recurrent within this cluster (n = 949) (S3 Fig). For SIMs a homopolymer of A/T’s is used to represent any type of homopolymer.

Clusters A and C have a positive association to no and/or short homopolymer context for all types of 1 bp SIMs (red), while for clusters J, L and M this is the case for

midsize and/or long homopolymer context (green) (Fig 5). For the replication time region we compute the percentage of SSMs/SIMs that are in late-replicating regions (S3

Text). If this percentage is between 45–55%, then we consider the mutations to be nearly equally spread between early- and late-replicating regions of the genome. The

specific region that is enriched in cluster M refers to the immunoglobulin genes. The recurrence in clusters A and G is also likely to be positively impacted by an increased

mutation rate in a specific region as the majority of their samples are from a particular tumour type for which this has been reported. For lung cancer (cluster A) the

mutation rate is increased in linker DNA [10] and for Skin-Melanoma (cluster G) at active transcription factor binding sites [24].

https://doi.org/10.1371/journal.pcbi.1007496.g007
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this. The short and non-specific motif found in samples with increased activity of cytidine

deaminases (CTCW) is also not sufficient by itself to result in high levels of recurrence. For

causative agents like UV light and deregulated activity of POLE, however, the high total num-

ber of mutations combined with the observed 6 bp specific sequence context does lead to high

levels of recurrent SSMs. For the cluster linked to gastric-acid exposure, the number of SSMs is

much lower than for the clusters linked to those two agents or tobacco-smoke exposure. Nev-

ertheless, it has a high level of recurrence, likely because of the 5 bp sequence motif for T>G

SSMs and the three times higher occurrence of SSMs in late-replicating regions than in early.

One possible caveat here is that replication timing is a process with very high plasticity across

cell types [19], and taking the median timing across the available five cancer cell lines (S3 Text)

may individually lead to non-adequate interpretations. A typical example for the potential

impact of an elevated local mutation rate on the proportion of recurrence is the hypermutation

of the immunoglobulin genes in memory B cells. As mutations detected in several lymphoma

samples are largely confined to those genes, their modest total number of mutations still results

in a high relative level of recurrence. Finally, in the case of the MSI samples, the slippage of the

DNA polymerase during replication of repetitive sequences, combined with a lack of repair

capacity results in a high percentage of SIMs in a midsize-to-long homopolymer context. This

coincides with a high level of recurrence for SIMs, despite the relatively equal distribution of

SIMs between early- and late-replicating regions that we observe and that has been reported

before [28]. Associations with the much more frequent short homopolymers do not translate

into high level of SIM recurrence, not even in the case of a high number of total SIMs (e.g. as

observed in the ‘tobacco-smoke exposure’ cluster). The effect of the sequence context may be

stronger for SIMs than for SSMs. This would explain the ~3.6 fold higher percentage of recur-

rent SIMs (8.69%) versus SSMs (2.44%), despite the fact that there are 20 times more SSMs.

Unlike for SSMs, the actual position of an insertion/deletion in a homopolymer cannot be

determined, contributing to loss in resolution and a higher likelihood of recurrence. In sum-

mary, we infer that the non-randomness in the distribution of mutations strongly depends on

the causative agent. Consequently, recurrence is generally able to cluster the genomes in a way

that shows clear associations with tumour type assignments and mutational processes. For

SSMs 60.0% is only recurrent in one particular tumour type, while for SIMs this percentage is

10.7% (S2 Table). This suggests a higher resemblance of mutational patterns within tumour

types for SSMs than for SIMs. In contrast, 79.8% of the recurrent SIMs (versus 37.1% for

SSMs) can only be detected in a pan-cancer approach, pointing to shared mutational processes

which allow us to group samples in a more tumour type independent way. The recurrence-

related features based on these recurrent SSMs and SIMs are key to our ability to cluster the

cancer genomes into biologically relevant clusters. If we only use the general features we lose

important information about mutational processes (S2 Fig).

The simple general mutational features, the different types of annotation and the uncovered

sequence motifs do provide a deeper understanding of several mutational processes (S3 Text).

For instance, MSI samples (cluster J) have a particularly high percentage of 1 bp C/G deletions

in the context of midsize homopolymers. We also see a strong shift towards the presence of

SIMs compared to SSMs resulting in a high absolute and relative number of SIMs. Ultra-

hypermutators (cluster H) form a mirror image in this respect as we observe a shift in the

opposite direction, resulting instead in a high absolute and relative number of SSMs. Another

difference is that in cluster H there is a significantly higher percentage of mutations in late-rep-

licating regions than for cluster J (SSMs: 60.2% vs. 52.8%, p = 0.0011, SIMs: 66.7% vs. 51.3%,

p = 1.8e-06). The mutational processes induced by tobacco-smoke exposure (cluster A), whose

link to an increased percentage of C>A SSMs is well-known, are also associated with a high

percentage of 1 bp C/G deletions (S4 Text). A third example is the high percentage of 1 bp A/T

Recurrent somatic mutations characterize mutagenesis in cancer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007496 November 25, 2019 16 / 27

https://doi.org/10.1371/journal.pcbi.1007496


insertions in context of a short homopolymer observed for cluster C that mainly consists of

Kidney-RCC and Kidney-ChRCC samples. For this cluster there is also a nearly equal distribu-

tion of mutations between early and late-replicating regions, which is in contrast to what is

generally observed for cancer genomes [8] with the exception of MSI samples [28]. However,

unlike for MSI genomes, for cluster C a deficient MMR pathway can most likely not explain it.

Deficient translesion synthesis has been shown in yeast to also lead to a more equal distribu-

tion [40]. In the opposite direction, the cluster possibly linked to gastric-acid exposure (cluster

L) has an unexpectedly strong tendency of both SSMs and SIMs to be in late-replicating

regions compared to all other clusters, which could point to the extensive usage of error-prone

polymerases. The sequence motif (AACTT) found for the T>G SSMs recurrent within this

cluster (n = 38,399, 38.9% with the motif) provides another interesting characteristic (Fig 6).

Only 8.9% of the T>G SSMs recurrent in the 2,479 samples not in cluster L (n = 25,318) are

confined to this motif. An important contributor to the recurrent T>G SSMs not in cluster

L is the cluster linked to the deregulated activity of POLE (cluster H). The T>G SSMs that

are recurrent within cluster H (n = 11,553) are instead enriched for the sequence motif

AAATTTAT (S4 Fig). There are some interesting parallels between cluster H and L. First, for

both holds that the Eso-AdenoCA and ColoRect-AdenoCA samples that form the majority of

cluster L and H, respectively, have a higher median number of SSMs than samples from the

same tumour types not assigned to the respective clusters (Eso-AdenoCA: 29,302.5 vs. 11,404,

p = 1.3e-09, ColoRect-AdenoCA: 850,298 vs. 15,045, p = 1.5e-08). Second, changes to the

dNTP pool are in both cases likely linked to the observed mutations together with the more

frequent usage of alternative (error-prone) polymerases (cluster L) or a polymerase with a

deregulated activity (cluster H). Third, the sequence motifs found for both clusters exceed the

single neighbouring base. The latter is the case for all sequence motifs that we found (Fig 6)

and also none of them have the same number of bases on both sides of the mutated position.

These two observations and the motifs themselves are also important to take into account

when estimating the background mutation rate used in e.g. driver prediction [25, 37]. The

motifs point to an increased mutational probability of individual bases [22] that is context-spe-

cific and characteristic for certain mutational processes. This has primarily been shown and

taken into account for a sequence context of a single neighbouring base [37] or, less frequently,

for an equal number of several bases at both sides of the mutation [25]. As we extract these

motifs based on recurrent mutations there is a possibility that positive selection plays a role.

However, this is likely negligible as the number of recurrent, predicted driver mutations is

only 427 when considering all six SSM subtypes together.

Several of our clusters are linked to cancer phenotypes that are relevant for treatment and/

or have prognostic value. Our division into 16 clusters and their characteristics could, there-

fore, be valuable for complementing current classification schemes, which are mainly based on

histology and organ of origin. We can assign a new sample to one of our 16 clusters by first

projecting it onto the PCA space based on the PCAWG cohort. Next, we use the first 18 princi-

pal components to compute the Euclidean distance to the centroid of each of the 16 clusters

and assign the sample to the nearest one. If there are multiple clusters with a minimum differ-

ence in distance to the new sample, then to select one cluster we use the sequence motifs (Fig

6) and various layers of annotation (S3 Text) like replication time. Ideally, we would use only

the samples in the ‘reference set’, which currently is the PCAWG cohort, to compute the recur-

rence-related features for a new sample. However, ~90% and ~72% of the recurrent SSMs and

SIMs, respectively, in this set are only recurrent in two samples (Fig F in S2 Text). Therefore,

the recurrence-based features of the new sample might be underestimated in which case the

sample is also less likely to be assigned to clusters that have a positive association with recur-

rence. Instead we would need to include the new sample for computing recurrence, which
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could also affect the recurrence-related features for some samples in the reference set. This

might result in changes in the clustering, but the impact of a single sample is most likely mini-

mal. Of note, the interdependence of samples in terms of the recurrence-related features also

makes cross-validation difficult. The level of recurrence is not high enough to compute recur-

rence for the training and test set separately, and even a leave-one-out strategy would create

dependence between the two sets. We hypothesize that, by increasing the size of the reference

set, we will reach at a certain point a plateau in terms of recurrence. This would enable us to

compute the recurrence-based features for a new sample using only the reference set. A larger

dataset would also allow further insights into the non-randomness of mutational processes,

especially of those that are not active across a large set of samples or that are only observed in

specific tumour types for which the number of samples is currently limited. Efforts are, in fact,

already on their way to expand the PCAWG dataset with more whole-genome sequences from

ICGC and other consortia.

Given that incorporating whole-genome sequencing in a clinical setting is gaining traction

as evidenced by projects like Genomics England (www.genomicsengland.co.uk) and the Hart-

wig Medical Foundation (www.hartwigmedicalfoundation.nl), analyses making full use of this

kind of data are urgently needed. Ultimately, whole-genome sequencing can then replace mul-

tiple diagnostic tests currently in use and make diagnoses more accurate. One example illus-

trating the value of our clusters towards this goal is the MSI phenotype linked to cluster J. For

these patients, immunotherapy may be beneficial [41] while adjuvant chemotherapy may not

be needed [42]. To classify a cancer genome as MSI, we can use our 42 features to determine

whether or not a sample belongs to cluster J, as detailed above. A high percentage of 1 bp C/G

deletions in a midsize homopolymer is, however, even by itself already a strong indication for

MSI. The MSI phenotype cluster J captures, forms a possible alternative to either explicitly

identifying all microsatellite alterations between tumour and normal tissue [43] or using spe-

cific markers to detect alterations in five or seven of them like the Bethesda markers [44].

There are also 10 mutational signatures linked to a deficient MMR pathway of which seven are

based on single base substitutions, two on doublet base substitutions and one on small indels

[20]. Two more indel-based signatures (ID1 and ID2) that are found in nearly all cancer

genomes, are linked to a deficient MMR pathway if they contribute >10,000 indels. Signatures

look at mutational processes at mutation level rather than sample level. A non-zero contribu-

tion of an individual MSI-linked signature or a high contribution (>10,000) of ID1 and ID2 is

not sufficient to classify a sample as MSI given that this naïve approach would results in 368

possible candidates. Instead it requires a combination of signatures and/or thresholds on the

amount of mutations contributed to the sample to be able to use the signatures for MSI classifi-

cation. A second example of an actionable phenotype that we capture with one of our clusters

is ultra-hypermutation (cluster H), which has also been related to beneficial results from

immunotherapy [45, 46]. A third example is the somatic hypermutation of the immunoglobu-

lin genes, which identifies memory B-cells as the cell of origin in the case of lymphomas. This

has been linked to a less aggressive form of Lymph-CLL and more favourable prognosis [33],

which may in turn influence treatment selection. Without explicitly analysing the immuno-

globulin genes [47], we were largely able to separate the Lymph-CLL samples with somatic

hypermutation (cluster M) from those without (cluster D). The characteristics of the former

group include a high percentage of recurrent C>G SSMs and 1 bp A/T deletions. A final exam-

ple relates to those Eso-AdenoCA samples that are assigned to cluster L, which have a high per-

centage of T>C as well as T>G SSMs and a higher total mutational load than Eso-AdenoCA

samples not assigned to this cluster. Eso-AdenoCA samples with the characteristics of cluster L

have also been suggested to benefit from immunotherapy [48]. The same treatment option

may therefore be prioritized for the 22 Stomach-AdenoCA samples that are also in cluster L.

Recurrent somatic mutations characterize mutagenesis in cancer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007496 November 25, 2019 18 / 27

http://www.genomicsengland.co.uk/
http://www.hartwigmedicalfoundation.nl/
https://doi.org/10.1371/journal.pcbi.1007496


Similarly, a refined investigation of tumour samples that do not cluster with the vast majority

of its own kind may ideally point to differences in disease prognosis or treatment response and

even has the potential to define novel subtypes or reveal misclassification. Such an analysis

would be especially worthwhile for the ~20% or less samples from Kidney-RCC, Liver-HCC,

Lung-SCC or Lymph-BNHL that are not assigned to the main cluster. Another possible appli-

cation of our classification scheme is to assign a metastatic sample with unknown primary site

to a cluster to shed light on the possible tissue of origin or pan-cancer characteristics like MSI.

In conclusion, we provide here a comprehensive analysis of somatic mutations in cancer

genomes irrespective of tumour type using 42 features with a truly pan-cancer focus. This

allows us to include tumour types with very few samples for which individual analysis is little

informative. Moreover, information can be borrowed across the entire data set enabling the

detection of processes present in multiple tumour types. We let the genome prioritize what is

important by using position-specific recurrence and by considering features that do not

depend on the completeness and correctness of current genome annotations. This has enabled

us to delineate various mutational processes, uncover new mutational manifestations and

characterize several actionable clinical phenotypes in a novel way. Findings from this and simi-

lar analyses in the future will be of utmost importance for the goal to tailor treatment to the

individual patient.

Methods

PCAWG cohort – quality control

We used the cohort of cancer genomes assembled by the PCAWG project [12] of the ICGC

and TCGA. For every donor, whole-genome sequencing data was available for a normal-

tumour pair and all samples were analysed uniformly. A detailed description of the quality

control is provided in the PCAWG marker paper [12]. In short, 176 samples were excluded for

various reasons as part of the quality control, most commonly because of contamination with

RNA. Samples of another 75 donors were of borderline quality for various reasons, including a

high percentage of paired reads mapping to different chromosomes [12, 49]. We decided not

to include the samples of those donors, which left us with genomic data of 2,583 donors cover-

ing 37 tumour types (S1 Table). The distribution of the samples across the tumour types is also

indicated in S1 Table. In case there were multiple tumour samples for the same donor, we

selected a single sample following the decision made within the consortium. To make the deci-

sion five criteria were used as described by the PCAWG Drivers and Functional Interpretation

Group [18]. In order of importance, they prioritized the sample: 1) of a primary tumour over

metastatic and recurrent ones; 2) with a OxoG score over 40, which indicates low levels of oxi-

dative damage artefacts [50]; 3) with the highest quality according to the star rating system

[49]; 4) with RNA-Seq data available; 5) with the lowest level of contamination with foreign

DNA. If none of these criteria led to the selection of a single sample, a random selection was

made.

PCAWG cohort – mutation calls

The description of the procedure for the mutation calls is provided in the marker paper of the

PCAWG consortium [12]. In brief, the sequenced reads of the respective normal and tumour

sample pairs were aligned with BWA-MEM to the GRCh37/h19 genome. Four mutation call-

ing pipelines were run on the resulting BAM-files for each normal/tumour sample pair. The

pipelines used for calling SSMs were MuSE [51] and three in-house pipelines developed at the

Deutsches Krebsforschungszentrum (DKFZ) in collaboration with the European Molecular

Biology Laboratory (EMBL), Wellcome Sanger Institute and Broad Institute, respectively. A
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consensus set was built by keeping those calls on which two or more callers agreed. SIMs were

called by SMuFIN [52] and three pipelines developed by the same institutes as mentioned for

SSMs. The consensus was determined by stacked logistic regression instead, as the level of

agreement between the callers was lower than for SSMs. Furthermore, the SIM calls were left

aligned to make them comparable across samples. Several filters were applied to both the SSM

and SIM calls to remove, among other things, calls due to oxidative damage artefacts [50] and

germline variants. Great care was taken by the consortium to reduce the number of false posi-

tive mutation calls, resulting in a reliable dataset that is believed to be a conservative represen-

tation of the true set of mutations.

Definition of mutations

For SSMs there are 16 possible subtypes. However, we can neither detect substitutions with a

base of the same type (e.g. A>A) nor do we usually know on which strand the (pre-)mutagenic

event happened first (e.g. A>C is equivalent to T>G on the other strand). Therefore, we com-

bined the substitutions that are each other’s reverse complement and refer to them by the

pyrimidine of the mutated base pair: C>A, C>G, C>T, T>A, T>C and T>G. We regarded

substitutions directly next to each other (median number across samples: 25) as separate single

base events since, aside from the very limited numbers, in several cases the individual callers

only supported one single base event, and only the consensus resulted in a multiple base substi-

tution call. For 1 bp SIMs, these are the four subtypes A/T deletions, C/G deletions, A/T inser-

tions and C/G insertions, as analogously to SSMs, we cannot determine on which strand the

(pre-) mutagenic event happened first.

Features describing each cancer genome

We computed 29 general features and 13 related to recurrence (Table A in S1 File) to charac-

terize different aspects of the somatic mutations in a cancer genome. We used the vcfR package

in R to read in the VCF files [53]. The general features comprised the number of SSMs and

SIMs (two features), the percentage of SIMs with respect to the total number of mutations

(one feature), the distribution of SSMs and SIMs across the different subtypes (six and four

features, respectively), and the homopolymer context of 1 bp SIMs for each of the four sub-

types (four times four features). We used the BCFtools (version 1.5) to compute recurrence

using the VCF files as input. Recurrence was captured by the overall percentage of recurrent

SSMs and SIMs (two features), percentage of recurrent mutations of type SIM (one feature)

and recurrence per SSM and SIM subtype (six and four features, respectively). The homopoly-

mer context is not included in the recurrence features, as the number of recurrent SIMs is too

low to stratify into 16 additional features. Except for the number of SSMs and SIMs, all other

40 features were in percentages.

Principal Component Analysis and hierarchical clustering on Principal

Components

The R package FactoMineR (v1.41) was used for the PCA [14]. All input features for the PCA

were scaled to zero mean and unit variance to account for the differences between the ranges

of the features, especially with respect to the two features in absolute terms versus the ones in

terms of percentages. The first 18 PCs explained together over 80% of the variance of the data.

The remaining components were assumed to mostly represent noise in the data. The PCs were

used as input to the ‘hierarchical clustering on principal components’ (HCPC) function from

the FactoMineR package. The Euclidean distance was used as a measure of dissimilarity and

the Ward criterion for linkage. We cut the hierarchical clustering tree at various heights to see
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a more global down to a more specific division of the samples. The HCPC function includes a

consolidation step in the form of k-means clustering [15], which uses the centroids of the hier-

archical clustering as a starting point. This consolidation step was repeated a maximum of 10

times. The k-means clustering increased the variance between clusters from 17.5 to 18.9. Other

advantages of this hybrid approach are that it reduces the sensitivity of k-means clustering to

outliers and the initial centroids are selected in an informed way instead of at random. As a

consequence of this step, some samples were finally assigned to a different cluster than after

the hierarchical clustering. A ‘v test’, included in the FactoMineR package, was used to deter-

mine which features were significantly associated with each cluster. This test compares the

mean of a particular feature in a cluster to the overall mean in the dataset. We corrected the p-

values of all ‘v tests’ for multiple testing using the Benjamini-Yekutieli method. A feature is

considered to be significantly associated to a cluster if the adjusted p-value < 0.05.

Detection and enrichment of motifs

We collected for clusters A, E, G, H, L and M all SSMs of the subtype that is the most charac-

teristic. This is C>A for clusters A and H, C>G for cluster E and M, C>T for cluster G and

T>G for cluster L. In addition, we looked at T>G SSMs in cluster H to compare them to clus-

ter L. Next, we extracted from the reference genome (GRCh37/h19) the ten adjacent bases in

5’ and 3’ direction of the mutation using the Rsamtools package in R. We used the extracted

sequence context as input to construct two sequence logos per cluster: one for the mutations

that are recurrent within the cluster and one for those that are not. We include each recurrent

mutation only once to avoid giving extra weight to highly recurrent mutations. As a measure

of information content we used the relative entropy [54, 55], which is defined for position i by:

REi ¼
X

b2fA;C;G;Tg

f ðbiÞlog2

f ðbiÞ
PðbÞ

Here, f(bi) stands for the frequency of base b (A, C, G or T) in position i and P(b) stands for the

prior probability of base b as determined by the frequency in the human genome (GRCh37/

h19). The height of each base in the sequence plot is proportional to f bið Þlog2

f ðbiÞ
PðbÞ. A positive

value corresponds to an enrichment of the base with respect to the prior probability and a neg-

ative value to a depletion. The relative entropy (REi) is zero, if all four bases are observed with

the same frequency as the prior in position i. We set 0.25 as a threshold for REi to define the

enriched motif. Furthermore, we computed per cluster the percentages of all, non-recurrent

and recurrent SSMs that were in the sequence context that was found to be enriched in the

recurrent SSMs. To estimate the percentage of the respective motifs in the human genome, we

first slid a window of the same size (k) as the motif across the genome with a shift equal to the

length of the motif and counted all possible k-mers. Next, we added to this the counts retrieved

in the same way for the reverse complement of the reference sequence (corresponding to the

opposing strand), since we also combined the reverse complements for each of the SSM sub-

types. From this we computed the percentage of the enriched motif with respect to all k-mers

and to the k-mer with the base that is mutated in the enriched motif at the same position.

Statistical tests

The correlation between every possible pair of the 42 features was measured by the Spearman’s

rank correlation coefficient using the R package Hmisc (v4.1–1). Multiple testing correction of

the p-values of all correlation tests (including those in S2 Text) was done by the Benjamini-

Yekutieli method. For the other correlations mentioned we also used the Spearman’s rank cor-

relation coefficient.
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We used the Wilcoxon rank-sum test with continuity correction as the test of significance

for differences in features observed between clusters.

The different proportions of sequence motifs between recurrent and non-recurrent SSMs

were assessed by using χ2 tests.

Plots

Figs 1, 3, 5 and 6, the pie charts in Fig 4 and the plots in Supporting Information, except for S1,

were made using the R package ggplot2 (v3.0.0). Fig 6, S3 Fig and S4 Fig additionally required

ggseqlogo (v0.1) [56] and Fig 2 was made with the use of the R package corrplot (v0.84). Fig 7

was made using Microsoft PowerPoint and we also included images from the Servier Medical

Art website (http://smart.servier.com/). The ‘clustering tree’ in S1 Fig was made using the clus-

tree R package [57]. We have manually replaced the nodes in the tree with the pie diagram

showing the distribution of tumour types in each cluster. For the colours of the different

tumour types we have made use of the script provided by the PCAWG consortium, available

at: https://github.com/ICGC-TCGA-PanCancer/pcawg-colour-palette.

Supporting information

S1 Fig. Clustering tree showing tumour type distribution for 2 to 20 clusters. The clustering

tree shows how clusters evolve across different clustering resolutions ranging from 2 to 20

clusters. For example, cluster G splits off from the rest of the cohort at a resolution of three

clusters and remains largely unchanged in higher resolutions. We have marked for each of our

16 clusters the clustering resolutions across which they remain largely stable, i.e. the Jaccard

similarity index between a cluster at resolution 16 and one at a higher or lower resolution is at

least 0.85. The number under each cluster indicates the number of samples in that particular

cluster. The colour of an arrow indicates the number of samples the two connected clusters

have in common. The transparency of the arrow indicates the proportion of samples the two

connected clusters have in common with respect to the cluster at the higher resolution. Only

arrows representing a proportion of more than 0.1 are shown. Consequently, the number of

samples in a cluster at a certain clustering resolution may not match with the connected clus-

ter(s) at a higher resolution. Note that the clustering shown is the result after the k-means clus-

tering step.

(PDF)

S2 Fig. PCA and clustering with and without the recurrence-related features. When using

only the 29 general features for the PCA (A), the first two PCs explain less variance than when

using all 42 features for the PCA (B) (27.5% vs. 29.1%). The features indicated in the two PCA

plots are those that contribute above average to the first two PCs. The subsequent clustering

also differs as shown in (C) and (D). Without using the recurrence-related features, only five

of the eight samples linked to ultra-hypermutation (D – cluster H) are in a separate cluster

(C – cluster VIII). Also the cluster linked to hypermutation of the immunoglobulin genes

(D – cluster M) is dissolved as evidenced by the fact that the samples are spread across eight

clusters (C – clusters III, IV, VI, XI, XII, XIII, XIV and XV). One consequence of this is that

only 19 of the 40 the Lymph-CLL samples with hypermutation are in the same cluster as

opposed to 36 when using all features (E). In addition, the largest fraction of cluster M ends up

in a cluster with Eso-AdenoCA and Stomach-AdenoCA samples (C – cluster XII), making that

cluster less cancer-specific than when using all features (D – cluster L). The Lymph-CLL sam-

ples without hypermutation of the immunoglobulin genes are also no longer largely confined

to a single cluster (E). Moreover, the samples with and without hypermutation end up more
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often in the same cluster than when recurrence-related features are also used.

(PDF)

S3 Fig. Enriched sequence motifs for C>G SSMs in cluster M. The sequence logos represent

the sequence context of ten bp 5’ and 3’ of the non-recurrent (left-side) or recurrent (right-

side) C>G mutations of cluster M. Here recurrence is defined as a mutation at the same geno-

mic location in two or more samples from cluster M. Relative entropy is used as a measure of

information content (see Methods). Setting a threshold of 0.25 for the relative entropy results

in the motifs highlighted in the rectangles. In the upper right corner of both sequence logos

the number of mutations is indicated. To the right of the sequence logos are the percentages in

which the enriched motif found for the recurrent C>G SSMs is present in context of the muta-

tions in the cluster and the corresponding k-mers in the genome (N = A, C, G or T). The

enrichment for the motif for recurrent C>G SSMs is significantly higher than for the non-

recurrent C>G SSMs (χ2 test: p<2.2e-16).

(TIF)

S4 Fig. Enriched sequence motifs for T>G SSMs in cluster H. The sequence logos represent

the sequence context of ten bp 5’ and 3’ of the non-recurrent (left-side) or recurrent (right-

side) T>G mutations of cluster H. Here recurrence is defined as a mutation at the same geno-

mic location in two or more samples from cluster H. Relative entropy is used as a measure of

information content (see Methods). Setting a threshold of 0.25 for the relative entropy results

in the motifs highlighted in the rectangles. In the upper right corner of both sequence logos

the number of mutations is indicated. To the right of the sequence logos are the percentages in

which the enriched motif found for the recurrent T>G SSMs is present in context of the muta-

tions in the cluster and the corresponding k-mers in the genome (N = A, C, G or T). The

enrichment for the motif for recurrent T>G SSMs is significantly higher than for the non-

recurrent T>G SSMs (χ2 test: p<2.2e-16).

(TIF)

S1 Table. Tumour type abbreviation, full name and number of samples.

(PDF)

S2 Table. Recurrence in pan-cancer context and within tumour type(s).

(PDF)

S1 Text. Estimation of the levels of recurrence when purely driven by chance.

(PDF)

S2 Text. Recurrence versus general mutational characteristics.

(PDF)

S3 Text. Detailed cluster-specific descriptions.

(PDF)

S4 Text. Smoking history and related mutational subtypes.

(PDF)

S1 File. Characteristic plots summarising each of the 42 features.

(PDF)

S2 File. Sample distribution per tumour type across the 16 clusters.

(PDF)
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