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Cytokine macrophage migration inhibitory factor-2 (MIF-2
or D-dopachrome tautomerase) is a recently characterized sec-
ond member of the MIF cytokine superfamily in mammalian
genomes. MIF-2 shares pro-inflammatory and tumorigenic
properties with the clinical target MIF (MIF-1), but the precise
contribution of MIF-2 to immune physiology or pathology is
unclear. Like MIF-1, MIF-2 has intrinsic keto-enol tautomerase
activity and mediates biological functions by engaging the cog-
nate, common MIF family receptor CD74. Evidence that the cat-
alytic site of MIF family cytokines has a structural role in recep-
tor binding has prompted exploration of tautomerase inhibitors
as potential biological antagonists and therapeutic agents,
although few catalytic inhibitors inhibit receptor activation.
Here we describe the discovery and biochemical characteriza-
tion of a selective small-molecule inhibitor of MIF-2. An in silico
screen of 1.6 million compounds targeting the MIF-2 tautomer-
ase site yielded several hits for potential catalytic inhibitors of
MIF-2 and identified 4-(3-carboxyphenyl)-2,5-pyridinedicar-
boxylic acid (4-CPPC) as the most functionally potent com-
pound. We found that 4-CPPC has an enzymatic IC50 of 27 �M

and 17-fold selectivity for MIF-2 versus MIF-1. An in vitro bind-
ing assay for MIF-1/MIF-2 to the CD74 ectodomain (sCD74)
indicated that 4-CPPC inhibits MIF-2–CD74 binding in a dose-
dependent manner (0.01–10 �M) without influencing MIF-1–
CD74 binding. Notably, 4-CPPC inhibited MIF-2–mediated
activation of CD74 and reduced CD74-dependent signal trans-
duction. These results open opportunities for development of
more potent and pharmacologically auspicious MIF-2 inhibi-
tors to investigate the distinct functions of this MIF family mem-
ber in vivo.

Macrophage migration inhibitory factor (MIF or MIF-1)2 is a
widely expressed multifunctional cytokine that mediates the
immune response to infection, contributes to the development
of autoimmune disorders, and has role in the inflammatory
pathogenesis of cancer. MIF-1’s pathogenic role is supported by
both experimental and clinical studies, including human
genetic findings that link a commonly occurring, functional
promoter polymorphism with different autoimmune disorders
(1–3), infectious conditions (4 –6) and tumors (7). The three-
dimensional X-ray crystal structure of MIF-1 was elucidated in
1996 and led to the description of a new structural superfamily
with MIF-1 as its defining member (8, 9). A second family mem-
ber, D-dopachrome tautomerase (D-DT or MIF-2), with 34%
sequence identity and a three-dimensional structure nearly
identical to MIF-1, was defined structurally by Sugimoto et al.
(10) and recently characterized biologically (11, 12). Both
MIF-1 and MIF-2 are released from activated monocytes/
macrophages and signal through the surface receptor CD74,
leading to recruitment of CD44 into a signaling complex and
subsequently initiating the ERK1/2 mitogen-activated protein
kinase pathway (13, 14). In addition, MIF-1 exerts chemokine-
like functions through interaction with the noncognate recep-
tors CXCR2 and CXCR4, leading to immune cell recruitment.
This function is mediated by a pseudo-(E)LR motif present in
MIF-1 but absent in MIF-2 (15, 16).

Like MIF-1, MIF-2 is overexpressed in systemic inflamma-
tory conditions and in malignancy, and immunoneutralization
of MIF-2 protects from lethal systemic inflammation and inva-
sive cancer (11, 17). Gene knockdown studies suggest that the
two proteins may have cooperative deleterious actions in onco-
genesis, with MIF-2 potentially exerting a more potent pro-
tumorigenic effect than MIF-1 (18 –21). An important similar-
ity between MIF-1 and MIF-2 is that both proteins catalyze
the keto-enol tautomerization of model substrates such as
D-dopachrome or 4-(hydroxyphenyl)pyruvate (HPP) using a
canonical N-terminal proline (Pro-1) as a catalytic base (22, 23).
Previous studies report that Pro-1 mutation, chemical modifi-
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cation, or occupancy of the substrate binding pocket by selected
compounds reduces MIF-1 binding to the common MIF family
receptor CD74 (24), suggesting that structural or dynamic fea-
tures in the N-terminal tautomerase region are essential for
receptor binding and activation of downstream signal trans-
duction (25–28). These observations prompted pharmacologic
targeting of Pro-1 and the MIF-1 substrate binding pocket as an
approach to develop small-molecule biologic antagonists of
CD74 for clinical use (29 –34). MIF-1 is a validated clinical tar-
get, and an anti-MIF-1 antibody and a small-molecule MIF-1
antagonist are in advanced clinical testing (35–37). However,
relatively little is known about the specific contribution of
MIF-2, which is expressed in response to many of the same
stimuli and circumstances as MIF-1, suggesting that the effec-
tiveness of MIF-1– directed therapies may be limited. We
recently reported cocrystallization of 4-(3-carboxyphenyl)-2,5-
pyridinedicarboxylic acid (4-CPPC) with human MIF-2 (38).
We now report the complete in silico screening strategy that led
to the identification of this compound and the biochemical and
functional validation of 4-CPPC as a MIF-2 selective inhibitor.

Results

Virtual screening of small molecules

Two energy-minimized structures of apo-MIF-2 having
Arg-36 in distinct conformations were investigated. In the first
structure, residue Arg-36 adopts the original conformation
observed in the crystal structure of apo-MIF-2 (referred to as
the “native” conformation). In the second energy-minimized
structure of MIF-2, residue Arg-36 is in a rotameric conforma-
tion (referred to as the “rotamer Arg-36” conformation). The
N-terminal proline (Pro-1) in the MIF family of proteins is
unprotonated at physiological pH and functions as a catalytic
base (39). Therefore, Pro-1 of MIF-2 was maintained unproto-
nated in both conformations of Arg-36 during virtual screen-
ing. After several filtering steps of the initially chosen �3.1 mil-
lion compounds, a total of �1.6 million compounds were
prepared for docking calculations (Fig. 1). Energy-minimized
structures of human MIF-2 with the two different conforma-
tions of Arg-36 were employed for docking studies (Fig. 2A).
Interestingly, the rotameric state of Arg-36 was observed in the
MIF-2/tartrate crystal structure (PDB code 4Q3F). Although
rotation of Arg-36 does not add volume to the active site, it
modifies the shape of the pocket’s opening, with a potential
impact on compound binding (Fig. 2, B and C).

The results of the virtual screening obtained for the native
and rotameric Arg-36 conformations were refined to retain
compounds with the following molecular features: total charge
�2 or more (under physiological conditions), molecular mass
150 – 400 Da, Glide XP docking score less than �6.0, and a
rotational bond number of 10 or less. This process resulted in
3633 and 8273 compounds docked to the native and rotameric
Arg-36 conformation, respectively. These two groups were
compared with identify compounds that bind to both confor-
mations or exclusively to the native (Fig. 3A) or rotameric
Arg-36 (Fig. 3B). A total of 1821 compounds bind to both MIF-2
conformations, whereas 1812 and 6452 compounds bind exclu-
sively to the native and Arg-36 rotameric conformation, respec-

tively. A hierarchical clustering algorithm was also applied to
reduce the number of compounds in each group (40). The dis-
tribution of Glide XP docking scores for the native and Arg-36
rotamer was produced. Notably, all compounds (n � 190) with
a docking score of less than �9.47 were negatively charged at
pH 7.4, which may be expected given the strong positive charge
environment of the MIF-2 binding pocket.

Candidate MIF-2 inhibitors

A total of 176 compounds were obtained for screening in the
MIF-2 tautomerase assay, which was performed by single-point
testing at 100 �M and 50 �M. The inhibition potencies of the
best seven compounds were explored further with multiple
concentrations and compared with inhibition by 4-iodo-6-phe-
nylpyrimidine (4-IPP) (Fig. 4). Although 4-IPP was not an opti-
mal control, as it modifies Pro-1 covalently, it is the only known
MIF-2 inhibitor (28). The high IC50 value for 4-IPP is probably
related to the slow rate of covalent bond formation (Fig. 4, A
and C) (28). Only one compound, UEC-0167 (4-CPPC), showed
more than 50% inhibition of tautomerase activity at 50 �M (Fig.

Figure 1. Diagram describing the workflow for identification of 4-CPPC.
After several filtering steps for the �3.1 million compounds, the derived �1.6
million compounds were prepared for docking calculations. This number of
compounds increased to �2.7 million compounds because of addition of up
to four lowest-energy isomers per compound. High-throughput virtual
screening (HTVS) of the �2.7 million compounds, followed by SP, XP, and
MM-GBSA protocols, yielded several candidates that were examined
kinetically.
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4, B and C). The chemical structure of 4-CPPC and the other six
“hits” that could be pharmacophores are shown in Fig. 5A. To
better characterize 4-CPPC, we compared inhibition of HPP
tautomerization for both MIF-1 and MIF-2. We found that
4-CPPC inhibits MIF-1 and MIF-2 at an enzymatic IC50 of
4.5 � 10�4 and IC50 of 2.7 � 10�5 respectively, showing a
17-fold selectivity for MIF-2 (Fig. 5B). This contrasts with the
nonselectivity of the irreversible inhibitor 4-IPP, which forms a
covalent 6-phenylpyrimidine adduct with Pro-1 of MIF-1 and
MIF-2 (28). Taken together, these data support the conclusion
that 4-CPPC is the first selective inhibitor for MIF-2 with a
competitive mode of binding.

MIF-1/MIF-2–induced activation of CD74
Both MIF-1 and MIF-2 engagement of CD74 leads to cyto-

plasmic phosphorylation of extracellular signal–regulated
kinase 1/2 (ERK-1/2). To further quantify the functional selec-
tivity of 4-CPPC, we stimulated primary human fibroblasts with
MIF-1 or MIF-2 in the presence or absence of the MIF-1 inhib-
itor MIF098 (41) or 4-CPPC. We verified the selectivity of
MIF098 for MIF-1 versus MIF-2 in HPP tautomerization and
observed 1250-fold greater inhibition of MIF-1 than MIF-2
(Fig. 6A). To examine 4-CPPC selectivity for MIF-2 in a biolog-
ically relevant assay, 4-CPPC and MIF098 were assayed for
inhibition of MIF-1 or MIF-2 binding to the recombinant CD74

Figure 2. Conformations of Arg-36 and their impact in the shape of MIF-2 catalytic site opening. A, the two conformations of Arg-36, derived from the
crystal structures of apo-MIF-2 (magenta) and MIF-2/tartrate (cyan). The two structures were superimposed in PyMOL, utilizing PDB codes 1DPT and 4Q3F for
apo-MIF-2 and MIF-2/tartrate, respectively. Pro-1 and Arg-36 are shown as sticks. B, the shape of the catalytic pocket of the native MIF-2 has Arg-36 in the
predominant conformation. C, the shape of the catalytic pocket of MIF-2, with Arg-36 in a rotameric state.

Figure 3. Distribution of MIF-2 candidate inhibitors according to their Glide XP docking scores. A and B, for the Glide XP docking scores shown above,
Arg-36 was in the native (A) and rotameric (B) conformation, respectively. Docking studies were carried out using the two energy-minimized structures of MIF-2,
as illustrated in Fig. 2.
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ectodomain (sCD74) in an in vitro competitive binding assay.
Anti-MIF-1 and anti-MIF-2 antibodies and unreactive immu-
noglobin G antibodies were included as controls. As expected,
the anti-MIF-1 antibody potently and selectively blocked
MIF-1 binding to sCD74, and the anti-MIF-2 antibody potently
and selectively blocked the MIF-2–sCD74 interaction (Fig. 6, B
and C). 4-CPPC selectively inhibited MIF-2–CD74 interaction
by 30% at the highest concentration tested (30% at 10 �M),
whereas MIF098 only blocked MIF-1–CD74 binding (40% at 1
�M). A similar selectivity was observed by testing for inhibition
of MIF-1– or MIF-2– dependent signal transduction in CD74-
expressing human fibroblasts. MIF098 inhibited the phosphor-
ylation of ERK-1/2 stimulated by MIF-1 but not MIF-2, and
4-CPPC selectively inhibited the MIF-2–induced phosphoryla-
tion of ERK-1/2 (Fig. 6, D and E). These findings collectively
support the efficacy and relative selectivity of 4-CPPC as a
small-molecule inhibitor of MIF-2.

Discussion

Initial observations that CD74 signaling is more impaired in
Cd74�/� than in Mif�/� cells led to the functional definition of
MIF-2 as a second ligand for the common MIF family receptor
CD74 (11). MIF-2 and MIF-1 show 35% identity in their coding
regions and share the MIF superfamily three-dimensional
structure (10). Both proteins are released from activated mono-
cytes/macrophages and bind CD74 with high affinity (MIF-2/
CD74, KD � 5.4 nM; MIF-1/CD74, KD � 1.4 nM), leading to
ERK1/2 activation (11). Like MIF-1, MIF-2 is overexpressed in
malignancy and in inflammatory diseases, and circulating
levels correlate with APACHE II (Acute Physiology, Age,
Chronic Health Evaluation II) disease severity scores in
patients with shock (11). Recent data suggest that, although
both proteins activate CD74, MIF-1 may predominantly
exert upstream activation and stress response functions,
whereas MIF-2 may have a more selective role in cell and

tissue protection (12). Notably, relative MIF-1 expression is
governed by a functionally polymorphic promoter that
occurs commonly in the human population (1–7). The
MIF-2 locus (DDT), in contrast, lacks common polymor-
phisms. MIF-2 is also distinguished from MIF-1 by the
absence of a pseudo-(E)LR motif, which may render it less
inflammatory with respect to recruitment of neutrophils
that express the (E)LR motif requiring chemokine receptors
such as CXCR2 (11, 15). Recent reports also suggest distinct
biologic actions for MIF-2 versus MIF-1. Although MIF-1
has been characterized as an inflammatory and prosurvival
factor, MIF-2 may function predominantly in metabolic and
tissue protection via signaling through the common MIF
family receptor CD74. For example, MIF-2 does not show
the negative inotropic action of MIF-1 during cardiac ische-
mia (12), which may be related to its inability to activate
cardiomyocyte CXCR2 receptors. Because MIF-1 and MIF-2
appear to be coordinately expressed in some (11) but not all
(42) pathologic conditions, MIF-2–selective inhibitors may
prove useful in isolating MIF-1– dependent actions in vivo.

In the case of MIF-1, the fortuitous apposition of structural
features shared by nonphysiologic enzymatic activity with
those required for CD74 interaction (43) has prompted multi-
ple efforts to identify tautomerase inhibitors that also block
receptor activation (29, 31, 32). Several compounds have shown
auspicious activity in preclinical models, including ISO-1 (27,
44), MIF098 (45–47), and others (32, 34, 48). One small-mole-
cule MIF antagonist that has advanced into clinical develop-
ment is ibudilast, which was originally developed as a phospho-
diesterase inhibitor but was discovered to inhibit MIF
allosterically (49). Ibudilast has shown efficacy in a phase II
study of multiple sclerosis (37), an autoimmune disease in
which a high-expression MIF-1 genotype confers risk for pro-
gressive disease (50).

Figure 4. MIF-2 tautomerase inhibition data against the top seven candidates identified by virtual screening. A–C, single-point inhibition assays against
176 MIF-2 candidate inhibitors as well as inhibition plots against the seven most promising compounds revealed UEC-0167 (4-CPPC) as an MIF-2 tautomerase
inhibitor. Shown are HPP tautomerase assays with three candidates and 4-IPP (MIF-2 covalent inhibitor) (A) and the remaining four inhibitor candidates (B).
Results are summarized in C. n.a., not applicable. No results are displayed for 4-IPP because this is an irreversible covalent inhibitor.
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The MIF-1 small-molecule inhibitors used in this study
include MIF098 and 4-IPP, with 4-IPP also being the first dual
MIF-1/MIF-2 inhibitor (28, 51). The prototypical MIF-1 antag-
onist S,R-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic
acid methyl ester (ISO-1), which is the first well-characterized
MIF-1 small-molecule inhibitor, has proven to be a useful tool
in elucidating the role of MIF-1 in cancer and inflammation
(52). ISO-1 is a competitive inhibitor of MIF-1 tautomerase
activity and binds at the same position as the model tautomer-
ase substrate HPP. In 2010, the benzoxazol-2-one class of
MIF-1 antagonists was reported, with MIF098 showing an IC50
of 0.010 �M (41). This orally bioavailable small-molecule inhib-
itor was further reported to block MIF-1 binding to the extra-
cellular domain of CD74 to attenuate recruitment of the CD74
signaling coreceptor CD44, reduce downstream ERK1/2 phos-
phorylation (46), and inhibit MIF-dependent lung injury (45)
and liver disease (47). The small-molecule 4-IPP, which acts a
suicide substrate to covalently modify Pro-1 and inhibit MIF-1,

has been reported recently to also react with Pro-1 of MIF-2 to
inhibit MIF-2 tautomerization and biological activity (28).
Covalent ligation of proteins is an impediment for further phar-
macologic development, as the neoepitopes are potentially
immunogenic. This limitation with translational development,
together with the desire to identify a MIF-2–specific inhibitor
for research investigations, prompted this study. We further
considered that, in some clinical circumstances, selective
blockade of MIF-1 or MIF-2 may prove to be therapeutically
advantageous by greater target selectivity or less toxicity.

Of the initially �3.1 million unique compounds, �1.6 mil-
lion compounds were prepared for docking calculations, result-
ing in 176 potential MIF-2 inhibitors, which were then screened
in an MIF-2 tautomerase assay. The inhibition potencies of
candidate inhibitors were compared with inhibition by 4-IPP,
and in this assay 4-CPPC was identified as a promising MIF-2
inhibitor with more than 50% inhibition of MIF-2 tautomerase
activity. Despite sharing similar substrates, human MIF-1 and

Figure 5. MIF-2 candidate inhibitors and 4-CPPC selectivity for MIF-2. A, chemical structures of the top seven hits identified by virtual screening of
candidate MIF-2 inhibitors. B, the HPP tautomerization assay was performed with increasing concentrations of 4-CPPC for both MIF-1 (left panel) and MIF-2
(right panel), showing 17-fold selectivity at the point of 50% inhibition.
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human MIF-2 differ when comparing enzymatic activity, with
MIF-1 showing 10 times higher activity than MIF-2, which may
be related to the differences in the electrostatic potential of the

surrounding area of the active pocket (8 –10). MIF-1’s active
pocket and the surrounding area are positively charged,
whereas MIF-2 is positively charged in the active-site pocket,
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but the surrounding area is negatively charged (10). The tricar-
boxylic acid functionalities of 4-CPPC are favored by the
intensely positive electrostatic potential of MIF-2.

A MIF-2/4-CPPC cocrystal has been reported recently,
revealing the pyridine-2,5-dicarboxylic acid moiety of 4-CPPC
to lie buried in the N-terminal pocket of MIF-2, with two car-
boxylate groups binding electrostatically with Lys-32, Arg-36,
and Lys-109 and strong hydrogen bond interactions with Pro-1,
Ser-63, Ile-64, and Lys-109 (38). The remaining carboxylate
group is exposed to solvent. 4-CPPC appears to bind by an
induced fit mechanism requiring a significant conformational
change in the MIF-2 C-terminal region to occur to accommo-
date binding within the N-terminal pocket.

Structural differences between MIF-1 and MIF-2 have been
suggested to result in distinct modes of receptor engagement
because of a short amino acid sequence insertion in MIF-2,
leading to dissimilarity in stoichiometry (53, 54). Although one
MIF-2 homotrimer may be limited to binding only one CD74
molecule per trimer, the MIF-1 homotrimers may bind three
separate CD74 molecules (54). MIF-1 interacts with disor-
dered residues at the N- and C-terminal end of the CD74
ectodomain through contacts close to the MIF-1 C terminus.
Modeling studies further suggest that the MIF-1 and MIF-2
homologs may utilize the same amino acid residues to bind
to CD74 (53). The binding of 4-CPPC to MIF-2 and ensuing
conformational change in the MIF-2 C-terminal region
reduces MIF-2/CD74 interaction and presumably abrogates
productive signal transduction.

The relative selectivity of 4-CPPC was confirmed function-
ally in CD74 binding assays in which 4-CPPC did not alter the
MIF-1–CD74 binding but only affected MIF-2–CD74 interac-
tion. Additionally, we observed 4-CPPC to only inhibit MIF-2
but not MIF-1–induced phosphorylation of ERK-1/2. Although
4-CPPC may exhibit a low inhibition potency, its selectivity for
MIF-2 makes it attractive for in vitro studies, whereas assess-
ment of in vivo efficacy must await study in preclinical mouse
models. 4-CPPC or more potent follow-on MIF-2 antagonists
will be especially useful in evaluating specific MIF-2 actions in
immunopathology not approachable by gene deletion. Conclu-
sions from gene knockout models are necessarily limited
because compensatory pathways may develop in the absence of
the gene that are not expressed or dominant under the WT
condition.

This study, together with the structural information afforded
by 4-CPPC/MIF-2 cocrystallization (38), will facilitate the
design and optimization of more potent and selective MIF-2
antagonists. Defining the actions of MIF-2 by these means is
essential in the face of ongoing clinical testing of MIF-1 antag-
onists, either small-molecule (37) or antibody-based (35),
because these do not block MIF-2, which complicates interpre-
tation of their clinical efficacy. For follow-on clinical develop-
ment, small-molecule inhibitors also are preferred because of

the limitations of therapeutic antibodies with respect to pro-
duction cost, parenteral administration, and the reduced effi-
cacy that occurs with anti-idiotype responses.

Materials and methods

Target structure preparation for virtual screening

A 1.54 Å resolution X-ray crystal structure of human apo-
MIF-2 (PDB code 1DPT) was used as the target structure for
virtual screening, which was performed using the hierarchical
docking protocol Glide program (55) in collaboration with Sel-
vita S.A. (Krakow, Poland). Two energy-minimized structures
of apo-MIF-2 were investigated, with Arg-36 in distinct confor-
mations. Both structures were prepared for docking calcula-
tions, which involved assigning bond orders, predicting correct
states of ionizable side chains, assigning tautomeric states of
histidine residues, constraining minimization to relieve steric
clashes, and generation of docking grids.

Virtual libraries and compound selection

A virtual database of small molecules was compiled from the
following sources: Asinex (439,946 compounds), ChemBridge
(476,917 compounds), ChemDiv (676,211 compounds), Enam-
ine (1,2990,705 compounds), Key Organics (42,800 com-
pounds), and Life Chemicals (341,188 compounds). All com-
pounds were pooled, and duplicates were removed, resulting in
3,135,563 unique compounds. This pool was further filtered to
retain compounds with a molecular mass in the range of 150 –
500 Da containing only elements C, H, N, O, S, F, Cl, and Br and
fewer than 30 nonhydrogen atoms (to accommodate a small
binding site), fulfilling the Lipinsky rule of five (56) and not
containing any reactive groups as defined in the Schrödinger
reactive group filters (57). The remaining compounds (n �
1,614,057) were prepared for docking calculations, which
involved generation of three-dimensional structures and
energy minimization. All possible ionization states at pH 7.4 �
1 and all tautomeric states were predicted, and high-energy
states were removed. All stereoisomers were generated, and up
to four lowest-energy isomers were retained. At the end of the
ligand preparation stage, 2,779,982 three-dimensional mole-
cules were retained for docking.

Docking protocol

All 2,779,982 small molecules were docked to the native
Arg-36 structure of MIF-2 using the Glide high-throughput
virtual screening mode (55), which rapidly filters out obvious
nonbinding compounds. The top 250,000 compounds sorted
by docking score were docked to both Arg-36 conformations of
the MIF-2 structure (native and rotamer Arg-36) using the stan-
dard precision (SP) mode of the Glide docking program
(Schrödinger) (55). At the end of the SP stage, and for each
protein conformation, 50,000 compounds were selected for

Figure 6. Functional inhibition of MIF-1 and MIF-2 by MIF098 and 4-CPPC. A, MIF098 selectively inhibits MIF-1 tautomerase activity compared with MIF-2
measured by HPP tautomerization. B and C, MIF-2–CD74 (B) and MIF-1–CD74 (C) binding assay using biotinylated human MIF-2 or biotinylated human MIF-1
and immobilized recombinant sCD74. Anti-MIF-1 antibody, anti-MIF-2 antibody, human MIF-1 (hMIF-1), human MIF-2 (hMIF-2), 4-CPPC, and MIF098 were
added at increasing concentrations, and biotinylated MIF-2 binding/MIF-1 binding to sCD74 was revealed by detection of streptavidin-conjugated alkaline
phosphatase. Nonreactive IgG served as a negative control. D and E, selective inhibition by 4-CPPC or MIF098 of MIF-2 (D) and MIF-1 (E) stimulated phosphor-
ylation of ERK1/2 in cultured human fibroblasts.
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docking pose refinement, using a more detailed Glide extra pre-
cision (XP) scoring function (55) that includes solvent contri-
butions and is more suitable for the open-type binding site of
MIF-2.

To improve selection of the most promising compounds, the
10,000 docking results were further rescored using the general-
ized born/surface area continuum solvation (MM-GBSA) pro-
tocol (58). This protocol involves minimization of the docked
ligand in the field of the protein and estimation of the free
energy of binding (�G) as the difference in the free energy of the
complex and the free energy of the isolated protein and ligand
molecules. �GBIND � �EMM � �Gsolv � �Gnp, where �EMM is
the difference in the force field energies of complex, ligand, and
protein molecules; �Gsolv is the difference in the generalized
born electrostatic part of solvation energy of complex, ligand,
and protein molecules; and �Gnp is the nonpolar part of solva-
tion energy approximated by the loss of the solvent-accessible
surface area on ligand binding. The internal strain energy of the
ligand is included in �EMM, penalizing compounds that need to
adopt a strained conformation to bind MIF-2. The main advan-
tage of the MM-GBSA protocol is fast and accurate inclusion of
solvation effects, and it has been shown to better correlate with
experimental pIC50 (negative log of the IC50 value in molar)
than the Glide XP docking score and free energy methods.

Expression and purification of MIF-1 and MIF-2

Expression and purification of MIF-1 and MIF-2 proteins
were performed as described previously (11, 59). Briefly, human
MIF-1 and MIF-2 were expressed in Escherichia coli and puri-
fied by anion exchange chromatography (Q-Sepharose col-
umn) followed by reverse-phase chromatography (C18 col-
umn) and acetonitrile gradient elution. The eluted proteins
were lyophilized, refolded using an established protocol, and
confirmed to have very low endotoxin content (	0.05 enzyme
units/�g of protein) (60).

Tautomerase assays

For measurement of MIF-1– or MIF-2– dependent keto-
enol tautomerization, 18 mg of HPP was dissolved in 50 mM

ammonium acetate (pH 6.0) and incubated overnight at 4 °C to
favor the equilibrium formation of the keto substrate. Compet-
itive inhibition assays of MIF-2-dependent tautomerization
were performed in a 96-well format by monitoring the increase
in absorbance at 306 nm produced by complexation of the HPP
enol product with solution borate (31).

In vitro binding assay

The in vitro binding assay for MIF-1 and MIF-2 with CD74
was performed following methodologies described previously
(11, 31). Briefly, 96-well plates were coated with 60 �l/well
of purified soluble recombinant human CD74 ectodomain
(sCD74, CD7473–232), incubated overnight, washed four times,
and blocked with Superblock (Thermo Fisher Scientific, Wal-
tham, MA). The plate was incubated at 4 °C overnight. The test
compounds 4-CPPC and MIF098 as well as polyclonal rabbit
anti-human MIF-1 antibody, polyclonal rabbit anti-human
MIF-2 antibody, and IgG1 isotypic controls were preincubated
with biotinylated human MIF-1 (2 ng/�l) or human MIF-2 (2

ng/�l) for 1 h at room temperature in the dark. The Superblock
was removed from each well, and the compound/MIF-1 or
compound/MIF-2 mixtures were added to each well for over-
night incubation at 4 °C. The wells were washed four times, and
streptavidin-conjugated alkaline phosphatase (R&D Systems)
was added to each well for 1 h of incubation at room tempera-
ture in the dark. After additional washes, p-nitrophenyl phos-
phate (Sigma) substrate was added. Absorbance at 405 nm was
plotted as percentage A405 relative to wells containing biotiny-
lated MIF-1 or MIF-2 alone.

Signal transduction studies

Primary human skin fibroblasts (1 � 105/well in 6 well plates)
were maintained in DMEM containing 10% FBS. Prior to stim-
ulation with MIF-1 or MIF-2, the cells were rendered quiescent
by overnight incubation in 0.1% FBS (61). To test the candidate
inhibitors, 4-CPPC and MIF098 (a MIF-1 inhibitor (46)), MIF-1
and MIF-2 (each at 50 ng/ml) were preincubated with each
compound for 30 min prior to addition of cells for 2 h. The cells
then were washed and lysed in radioimmune precipitation
assay buffer (50 mM Tris (pH 7.4), 150 mM NaCl, 1% Nonidet
P-40, 0.5% sodium deoxycholate, 0.1% SDS, 2 mM EDTA, and
protease inhibitors). Lysates were electrophoresed on 4%–12%
BisTris NuPage gels (Invitrogen) and transferred onto a PVDF
membrane. Immunoblotting was conducted with antibodies
directed against total ERK-1/2 and phospho-ERK-1/2 (Cell
Signaling, Beverly, MA) according to the manufacturer’s
instructions.
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