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Abstract

Assigning functions to the vast array of proteins present in eukaryotic cells remains challenging. 

To identify relationships between proteins, and thereby enable functional annotations of proteins, 

we determined changes of abundance of 10,323 human proteins in response to 294 biological 

perturbations using isotope-labelling mass spectrometry. We applied the machine learning 

algorithm treeClust to reveal functional associations between co-regulated human proteins from 

ProteomeHD, a compilation of our own data and datasets from the Proteomics Identifications 

(PRIDE) database. This produced a co-regulation map of the human proteome. Co-regulation was 

able to capture relationships between proteins that do not physically interact or co-localize. For 

example, co-regulation of the peroxisomal membrane protein PEX11β with mitochondrial 

respiration factors led us to discover an organelle interface between peroxisomes and mitochondria 
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in mammalian cells. We also predicted the function of microproteins that are difficult to study with 

traditional methods. The co-regulation map can be explored at www.proteomeHD.net.

Functional genomics methods often use a “guilt-by-association” strategy to determine the 

functions of genes and proteins on a system-wide scale. For example, high-throughput 

measurements of protein-protein interactions 1–3 and subcellular localization 4–6 have 

delivered insights into proteome organisation. One limitation of these techniques is that 

using multiple methods and cross-reacting antibodies may introduce artifacts. Moreover, not 

all proteins that function in the same biological process also interact physically or co-

localize. Those types of relationships are identified using assays with phenotypic readouts, 

such as genetic interactions 7 or metabolic profiles 8, but have yet to be applied on a genome 

scale for human proteins.

One of the oldest functional genomics methods is gene expression profiling 9. Genes with 

correlated activity may participate in similar cellular functions, and coexpression with 

known genes can be exploited to infer functions of uncharacterized genes 10–12. However, 

predicting gene function from coexpression can result in inaccurate results 13,14. One reason 

for this is that gene activity is measured at the mRNA level, which neglects the contribution 

of protein synthesis and degradation to gene expression control. The precise extent to which 

protein levels depend on mRNA abundances may differ among genes 15. Further, 

fundamental differences between mRNA levels and protein expression have emerged. For 

example, many genes coexpress mRNAs due to their chromosomal proximity, rather than 

any functional similarity 13,16,17. This non-functional mRNA coexpression results from 

stochastic transitions between active and inactive chromatin that affect loci genome-wide 
16–18, and transcriptional interference from nearby genes 17,19. Importantly, coexpression of 

spatially close, but functionally unrelated genes, is buffered at the protein level 13,17. Genetic 

variation affects protein abundance far less than it affects mRNA levels 20, including 

variations in gene copy numbers 21,22. Therefore protein expression profiling is superior to 

mRNA expression profiling for prediction of gene function 13,14.

Proteome-level expression profiling underpins protein covariation analysis. For example, 

protein covariation can be used to infer the composition of protein complexes and organelles 
23–31. Most studies to date have focused on relatively small sets of proteins or a few 

biological conditions, or analysed specific cellular structures. In addition, the scale of 

coexpression analyses has been limited by the set of statistical tools available. Coexpressed 

genes are commonly identified using Pearson’s correlation, which is restricted to linear 

correlations and susceptible to outliers. Machine-learning may offer better sensitivity and 

specificity. Here we applied large scale quantitative proteomics and machine learning to 

produce a protein covariation dataset that will enable assignment of functions to human 

proteins.
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Results

ProteomeHD captures protein perturbations

To turn protein covariation analysis into a system-wide, generally applicable method, we 

created ProteomeHD. In contrast to previous drafts of the human proteome 5,6,32,33, 

ProteomeHD does not catalogue the proteome of specific tissues or subcellular 

compartments. Instead, ProteomeHD catalogues the transitions between different proteome 

states, i.e. changes in protein abundance or localization resulting from cellular perturbations. 

HD, or high-definition, refers to two aspects of the dataset. First, all experiments are 

quantified using SILAC (stable isotope labelling by amino acids in cell culture) 34. SILAC 

essentially eliminates sample processing artifacts and is especially accurate when 

quantifying small fold-changes. This is crucial to detect subtle, system-wide effects of a 

perturbation on the protein network. Second, HD refers to the number of observations 

(pixels) available for each protein. As more perturbations are analysed, regulatory patterns 

become more refined and can be detected more accurately.

To assemble ProteomeHD we processed the raw data from 5,288 individual mass-

spectrometry runs into one coherent data matrix, which covers 10,323 proteins (from 9,987 

genes) and 294 biological conditions (Supplementary Table 1). 80 of these conditions, 

including 43 previously unpublished experiments, were performed in our laboratory and the 

remaining data were collected from the Proteomics Identifications (PRIDE) 35 repository 

(Fig. 1a, see Supplementary Table 2 for a complete list of conditions and PRIDE identifiers). 

These data cover a wide array of quantitative proteomics experiments, such as perturbations 

with drugs and growth factors, genetic perturbations, cell differentiation studies and 

comparisons of cancer cell lines. All experiments are comparative studies using SILAC 34, 

which do not report absolute protein concentrations but report instead fold-changes in 

response to perturbation. About 60% of the experiments included in ProteomeHD analysed 

whole-cell samples. The remaining measurements were performed on samples that had been 

fractionated after perturbation, e.g. to enrich for chromatin-based or secreted proteins (Fig. 

1a). This allows for the detection of low-abundance proteins that may not be detected in 

whole-cell lysates.

Protein coverage in ProteomeHD

On average, each of the 10,323 human proteins in ProteomeHD was quantified on the basis 

of 28.4 peptides with a sequence coverage of 49% (Supplementary Fig. 1). Not every protein 

is quantified in every condition. The 294 input experiments quantify 3,928 proteins on 

average. Each protein is quantified in 112 biological conditions on average (Supplementary 

Fig. 1). Coexpression studies usually discard transcripts detected in less than half of the 

samples. However, because ProteomeHD is considerably larger than a typical coexpression 

analysis, we lowered this arbitrary cut-off to include proteins for downstream analysis if they 

were quantified in about a third of the conditions. We focused our co-regulation analysis on 

the 5,013 proteins that were quantified in at least 95 of the 294 perturbation experiments. 

These 5,013 proteins were quantified in at least 190 conditions; 43% were quantified in 

more than 200 conditions (Supplementary Fig. 1).
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Machine-learning captures protein associations

Proteins that function together have similar patterns of up- and down regulation across the 

many conditions and samples in ProteomeHD. For example, the patterns of proteins 

belonging to two well-known biological processes, oxidative phosphorylation and rRNA 

processing, can be clearly distinguished, even though most expression changes are below 2-

fold (Fig. 1b). Therefore, we reasoned that it should be possible to reveal the function of 

unknown proteins by associating their regulatory patterns with those of well-characterized 

proteins.

Pearson’s correlation coefficient (PCC) is applied to determine the extent of coexpression 

between two genes. Since PCC is very sensitive to outlier measurements, Spearman’s rank 

correlation (rho) or Biweight midcorrelation (bicor) are sometimes used as more robust 

alternatives. We calculated all three correlation coefficients for 12,562,578 pairwise 

combinations of the 5,013 protein subset of ProteomeHD. To assess which metric works best 

for ProteomeHD we performed a precision-recall analysis, using functional protein - protein 

associations from Reactome 36 as the gold standard. This showed no substantial differences 

between the correlation measures, although Spearman’s rho performs slightly better than the 

others (Fig. 1c).

Next we evaluated a coexpression measure based on unsupervised machine-learning. We 

used the treeClust algorithm developed by Buttrey and Whitaker, which infers dissimilarities 

based on decision trees 37,38. treeClust runs data through a set of decision trees, which it 

creates without explicitly provided training data, and essentially counts how often two 

proteins end up in the same leaves. This results in pairwise protein - protein dissimilarities 

(not clusters of proteins). Importantly, we found that treeClust dissimilarities were superior 

to PCC, rho and bicor for prediction of functional relationships between proteins in 

ProteomeHD (Fig. 1c).

Finally, we applied a topological overlap measure (TOM) 39,40 to the treeClust similarities, 

which further enhanced performance by approximately 10% as judged by the area under the 

precision-recall curve (Fig. 1c). The TOM is typically used to improve the robustness of 

correlation networks by re-weighting connections between two nodes according to how 

many shared neighbors they have. The TOM-optimised treeClust results form our “co-

regulation score”. This score is continuous and reflects how similar two proteins behave 

across ProteomeHD, i.e. the higher the score the more strongly co-regulated two proteins 

are. However, for some questions a simplified categorical interpretation is more 

straightforward. In these cases we arbitrarily consider the top-scoring 0.5% of proteins pairs 

as “co-regulated”. In this way, we identified 62,812 co-regulated protein pairs (Fig. 1d, 

Supplementary Table 3). Analysing the same data with Pearson’s correlation, and selecting 

the top 0.5% pairs would correspond to a cut-off of PCC > 0.69, which is generally 

considered a strong correlation.

We tested whether co-regulation corresponds to co-function. We found that co-regulated 

protein pairs are enriched for subunits of the same protein complex, enzymes catalysing 

linked metabolic reactions and proteins in the same subcellular compartments (Fig. 1e). 

Most proteins are co-regulated with at least one other protein, and about a third have more 
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than five co-regulation partners (Fig. 1f). For 99% of the tested proteins that had ≥ 10 co-

regulated pairs, the group of their co-regulation partners is enriched in at least one Gene 

Ontology 41 biological process (Fig. 1g).

treeClust improves protein co-regulation analysis

While decision trees are well-understood building blocks of many established machine-

learning algorithms, it was unclear which type of information treeClust was capturing from 

our dataset. For example, treeClust scores could reflect whether two proteins are detected in 

the same set of samples. Protein co-occurrence can be measured using the Jaccard similarity 

coefficient, which has previously been exploited to identify protein-protein associations 28. 

We compared treeClust scores to this Jaccard index (Supplementary Fig. 2). In addition, we 

forced treeClust to learn dissimilarities solely based on co-occurrence by using a “binary” 

version of ProteomeHD, in which all SILAC ratios were turned into ones and all missing 

values were turned into zeroes. We found that the Jaccard index and “binary” treeClust 

detect functionally related proteins equally well, but with much lower precision than 

standard treeClust (Supplementary Fig. 2). This suggests that protein co-regulation, that is 

coordinated changes in protein abundance, rather than solely co-detection underpins the 

superior performance of treeClust.

Nevertheless, it remained unclear which type of quantitative relationships treeClust can 

identify, and how it is affected by missing values, outliers and noise. To address this, we 

created a series of synthetic datasets that allowed us to systematically assess the properties 

of treeClust dissimilarities. For example, we created a synthetic dataset consisting of 100 

variables (“experiments”, “samples” or “biological conditions”) and 200 observations 

(“proteins”). The dataset is built in such a way that 99.5% of the resulting pairwise “protein - 

protein” associations are random, i.e. values for both proteins are random samples of a 

normal distribution (Fig. 2a). The remaining 0.5% pairs are designed to have a clearly 

defined, linear relationship across the 100 “experiments”. We modified various properties of 

such synthetic data and assessed how they affect treeClust. For example, we found that 

treeClust exclusively detects linearly correlated pairs, in contrast to correlation metrics 

which also detect exponential and logistic relationships (Supplementary Fig. 3a,b). 

Moreover, treeClust only partially separates anti-correlated from random associations, 

suggesting that low treeClust similarities indicate a lack of correlation rather than anti-

correlation (Supplementary Fig. 3c).

We found that treeClust requires a larger dataset than correlation metrics to reach optimal 

performance, including more experiments (Fig. 2b), more proteins and a higher proportion 

of defined relationships (Supplementary Fig. 4a-c). By randomly introducing missing values 

we showed that their impact on treeClust performance depends on the size of the dataset 

(Fig. 2c, Supplementary Fig. 4d-f). Importantly, the subset of ProteomeHD we used for co-

regulation analysis consists of 294 samples and 5,013 proteins, has 35% missing values, and 

is therefore well within the identified size margins of optimal treeClust performance. In 

addition, by increasing the dispersion of values around the linear associations 

(Supplementary Fig. 5a) we found that treeClust specifically detects very close-fitting linear 

associations, in contrast to correlation metrics (Fig. 2d). Finally, introducing outliers in 
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synthetic data (Supplementary Fig. 5b) showed that treeClust is exceptionally robust against 

outlier measurements (Fig. 2e).

We then tested which of these properties underpins treeClust’s superior performance on 

ProteomeHD. For this we analysed co-regulated protein pairs that were detected either by 

treeClust or by PCC, but not by both (Supplementary Fig. 6a). We observed that outlier 

measurements lead to PCC detecting many false-positive associations (Fig. 2f,g), while 

missing many true-positive ones (Supplementary Fig. 6d-f). However, the moderate number 

of outliers in ProteomeHD has a minor impact on rho and bicor coefficients (Supplementary 

Fig. 6b-f). Protein pairs that are exclusively detected by rho and bicor, which are largely 

false-positives (Supplementary Fig. 6a), tend to have a poor goodness-of-fit (Fig. 2h,i). This 

goodness-of-fit difference is not as pronounced between treeClust and PCC (Supplementary 

Fig. 7). Taken together, this suggests that treeClust outperforms PCC mainly due to superior 

outlier handling, whereas its improvement over rho and bicor is predominantly due to 

treeClust taking into account the “goodness-of-fit” of an association.

The selectivity of treeClust for strong linear relationships implies that it may miss 

potentially important non-linear associations in ProteomeHD. However, we failed to detect 

any exponential or logistic associations, suggesting that the vast majority of the interactions 

in ProteomeHD are of linear nature (Supplementary Fig. 8).

A co-regulation map of the human proteome

treeClust outputs how strongly or weakly each protein is co-regulated with any other protein. 

In principle, these outputs could be displayed as a scale-free protein interaction network 

with edges indicating co-regulation (Supplementary Fig. 9). However, such a graph would 

not be informative due to the size of our co-regulation data (62,812 top-scoring links 

between 5,013 proteins).

Instead we visualized the protein - protein co-regulation matrix using t-Distributed 

Stochastic Neighbor Embedding (t-SNE) 42. This produces a two-dimensional proteome co-

regulation map in which the distance between proteins indicates how similar they responded 

to the various perturbations in ProteomeHD (Fig. 1h, Supplementary Table 4). Notably, t-

SNE takes all pairwise co-regulation scores into account, rather than focussing on a small 

number of links above an arbitrary threshold.

Our t-SNE map shows that protein co-regulation is closely related to co-function. For 

instance, the map reflects the subcellular organization of the cell (Fig. 1i). It broadly 

separates organelles and separates the nucleolus from the nucleus. Zooming in, the five 

protein complexes of the respiratory chain are almost resolved (Fig. 1i, section 1). It is 

possible to discern the phosphate and ADP carriers that transport the substrates for ATP 

synthesis through the inner mitochondrial membrane, and ATPIF1 - a short-lived, post-

transcriptionally controlled key driver of oxidative phosphorylation in mammals 43. 

Similarly, cytoskeleton proteins such as actins and myosins are next to their regulators, 

including Rho GTPases and the Arp2/3 complex (Fig. 1i, section 2). Groups of proteins 

involved in RNA biology, from nucleolar rRNA processing to mRNA splicing and export 
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(Fig. 1i, section 3) are correctly together. This map is generated solely on the basis of protein 

abundance changes in ProteomeHD without any curated information.

Proteome map complements orthogonal genomics methods

We checked whether protein co-regulation can predict associations that are not detected by 

other methods by comparing co-regulation with four alternative large-scale resources: 

IntAct, BioGRID, STRING and BioPlex. The first three are meta-resources that compile 

curated sets of protein - protein interactions (PPIs) from the results of thousands of 

individual studies. Since meta-resources generally map interactions to gene loci rather than 

proteins, we disregarded protein isoforms for this comparison and focused on co-regulated 

genes.

Our co-regulation map covers fewer distinct genes than other resources, but only STRING 

captures on average more interactions per gene (Fig. 3a). Based on the 2,565 genes covered 

by both approaches, around 39% of the gene pairs identified as co-regulated had previously 

been linked in STRING (Fig. 3b). This suggests that co-regulation can confirm existing links 

and identify new links. Conversely, only 7% of STRING PPIs are co-regulated, which may 

reflect the diverse set of associations in STRING. Notably, the overlap between the 

resources depends on the stringency setting: considering fewer, more stringent STRING 

interactions decreases the number of co-regulated genes and increases STRING PPIs 

identified as co-regulated (Fig. 3b). An equivalent trend would be observed when 

modulating the co-regulation cut-off. STRING associations are based on multiple types of 

evidence, of which “mRNA coexpression” unsurprisingly shows the highest individual 

overlap with protein co-regulation results (Fig. 3c).

Next, we compared ProteomeHD-informed co-regulation with physical PPIs catalogued in 

IntAct and BioGRID. We find that 11% of co-regulated gene pairs have a documented 

physical protein-protein interaction in BioGRID, and 3% are found in the smaller IntAct 

database (Fig. 3b).

Finally, we compared our co-regulation approach to a functional genomics project named 

BioPlex 2.0, which is the most comprehensive affinity purification–mass spectrometry (AP-

MS) study reported to date 2. BioPlex reports 4,935 physical interactions between the 

proteins used in our study, of which 19% are also co-regulated (Fig. 3d). An additional 

43,759 potential links between these proteins are identified uniquely by co-regulation. These 

are strongly enriched for functional protein associations found in STRING, compared to a 

random set of protein pairs (Fig. 3d).

These comparisons indicate that protein co-regulation identifies protein - protein 

associations in a way that is reliable and complementary to existing functional genomics 

methods. Proteins can interact physically without being co-regulated, and vice versa. In 

summary, protein co-regulation complements other approaches by revealing additional 

associations and by providing independent evidence for previously detected associations.
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ProteomeHD contains difficult-to-characterise proteins

The co-regulation map contains 301 proteins that we defined as uncharacterized proteins 

because they have a UniProt 44 annotation score of 3 or less (Fig. 3e). Of these, 51% are co-

regulated with at least one fully characterized protein (a protein with a UniProt annotation 

score of 4 or 5) and a median of 9 (Fig. 3f), making it possible to predict their potential 

function in a “guilt by association” approach. We observed a similar number of fully 

characterised proteins as co-regulation partners for genes that cause cancer when mutated 

(listed in the cancer gene census 45), and for genes implicated in a broad range of human 

diseases (listed in DisGeNET 46) (Fig. 3f). Therefore, protein co-regulation may also be 

helpful for functional analysis of human disease genes.

Many uncharacterized proteins are small; proteins smaller than 15 kDa constitute 18% of 

uncharacterized versus 5% of characterized human proteins. 40% of proteins with a UniProt 

annotation score of 1 are smaller than 15 kDa (Fig. 3g). Of note, hundreds or thousands of 

these so-called microproteins have been overlooked by genome annotation efforts 47. 

Microproteins can regulate fundamental biological processes 48, but their size makes it 

difficult to identify interaction partners 47,49 or to target them in mutagenesis screens 47. 

Microprotein sequences also tend to be less conserved than those of longer protein-coding 

genes 50.

We reasoned that our perturbation proteomics approach might be less biased by protein size 

than methods involving extensive genetic or biochemical sample processing. Indeed, we find 

that 16% of the uncharacterized proteins in the co-regulation map are smaller than 15 kDa 

(Fig. 3h). This is a significant difference to BioPlex’s cutting-edge AP-MS data, in which 

microproteins drop to 6% (p < 2e-5 in a one-tailed Fisher’s Exact test).

The fact that microproteins are not underrepresented in ProteomeHD does not automatically 

mean that their detection and characterisation is as robust as that of larger proteins. However, 

the average microprotein in the co-regulation map has been identified by 12.2 peptides, 

many of which overlap and together result in an average sequence coverage of 76.4% 

(Supplementary Fig. 10a, d). While in a typical SILAC experiment proteins are considered 

to be quantifiable from upwards of two independent observations (SILAC ratio counts), 

microproteins in the co-regulation map are quantified with an average of 9 ratio counts per 

experiment, totalling a median of 671 ratio counts across ProteomeHD (Supplementary Fig. 

10b, c). This indicates that microprotein quantitation in ProteomeHD is robust. Surprisingly, 

we find that microproteins have more co-regulation partners than larger proteins, and the 

same is true for their connectivity in STRING (Supplementary Fig. 10f). Within STRING, 

the majority of microprotein interactions are derived from curated annotations rather than 

high-throughput efforts such as RNA coexpression and text mining (Supplementary Fig. 

10g). Note that, based on BioGRID, microproteins engage in fewer physical PPIs than larger 

proteins. This may be the result of an experimental bias (microproteins may dissociate more 

easily during purification and are more difficult to detect) or reflect a biological property 

(microproteins may have fewer physical interaction partners). In either case, co-regulation 

offers itself as a powerful alternative approach to study microprotein functions in a 

systematic way.
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Functional annotation of proteins by co-regulation

We created the website www.proteomeHD.net to enable users to search for a protein of 

interest, showing its position in the co-regulation map together with any co-regulation 

partners (Supplementary Fig. 11). The online map is interactive and zoomable, making it 

easy to explore the neighborhood of a query protein. The co-regulation score cut-off can be 

adjusted and statistical enrichment of Gene Ontology 41 terms among the co-regulated 

proteins is automatically calculated.

For example, protein co-regulation can be used to predict the potential function of 

uncharacterized microproteins such as the mitochondrial proteolipid MP68. MP68 is co-

regulated with subunits of the ATP synthase complex, suggesting a function in ATP 

production (Fig. 1i, section 1). Despite being only 6.8 kDa small, its presence in the co-

regulation map is documented by 8 distinct peptides that were observed a total of 398 times 

across 142 experiments (Supplementary Fig. 10e). Intriguingly, MP68 co-purifies 

biochemically with the ATP synthase complex, but only in buffers containing specific 

phospholipids 51,52, and knockdown of MP68 decreases ATP synthesis in HeLa cells 53.

Virtually nothing is known about the 12 kDa microprotein TMEM256, although sequence 

analysis suggests it may be a membrane protein. Its position in the co-regulation map (Fig. 

3i) and GO analysis of its co-regulation partners indicates that it likely localizes to the inner 

mitochondrial membrane (GO:0005743, Bonferroni adj. p < 5e-40), where it may participate 

in oxidative phosphorylation (GO:0006119, p < 3e-35).

Some proteins have no co-regulation partners above the default score cut-off, but can still be 

functionally annotated through the co-regulation map. The uncharacterized 224 kDa protein 

HEATR5B, for example, is located in an area related to vesicle biology (Fig. 3i). Its 

immediate neighbours are five subunits of the HOPS complex, which mediates the fusion of 

late endosome to lysosomes. The position in the map shows that the HOPS complex is the 

closest fit to HEATR5B’s regulation pattern, but they are not as similar as the top-scoring 

pairs in our overall analysis. If the co-regulation score cut-off is lowered, HOPS subunits 

and other endolysosomal proteins are eventually identified as co-regulated with HEATR5B, 

with concomitant enrichment of the related GO terms. This suggests that HEATR5B may 

not itself be a HOPS subunit, but could have a related vesicle-based function. Notably, a 

biochemical fractionation profiling approach also predicted HEATR5B to be a vesicle 

protein 54.

Multifunctional proteins appear to fall into two categories in terms of co-regulation behavior. 

Prohibitin, for example, functions both as a mitochondrial scaffold protein and a nuclear 

transcription factor 55. However, only the mitochondrial function is represented in the co-

regulation map (Fig. 3j). This could indicate that its nuclear activity is not relevant in the 

biological conditions covered by ProteomeHD, or that only a small intracellular pool of 

prohibitin is nuclear, so that changes in its nuclear abundance are insignificant in comparison 

to the mitochondrial pool. In contrast, the helicase DDX3X shuttles between nucleus and 

cytoplasm, functioning both as nuclear mRNA processing factor and cytoplasmic regulator 

of translation 56. In the co-regulation map, DDX3X sits between the areas related to these 

two activities and is significantly co-regulated both with proteins involved in nuclear RNA 
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biology and with translation factors (Fig. 3j). Therefore, DDX3X is a multifunctional protein 

whose separate activities result in a mixed regulatory pattern.

The protein co-regulation data presented here has been integrated into the recently released 

11th version of STRING 57 (https://string-db.org/). In STRING’s human protein - protein 

association network, links between proteins inferred from co-regulation in ProteomeHD are 

shown as network edges of the “coexpression” type (Supplementary Fig. 12). Therefore, 

STRING is an alternative source for users wishing to explore protein co-regulation in 

conjunction with other types of association evidence.

PEX11β and peroxisome-mitochondria interactions

Some well-characterized proteins have unexpected co-regulation partners. For example, 

PEX11β is a key regulator of peroxisomal membrane dynamics and division 58. However, 

PEX11β’s co-regulation partners are not peroxisomal proteins but subunits of the 

mitochondrial ATP synthase and other components of the electron transport chain (Fig. 1i, 

section 1). These proteins are located to the inner mitochondrial membrane, making a 

physical interaction with PEX11β unlikely. However, peroxisomes and mitochondria in 

mammals are intimately linked cooperating in fatty acid β-oxidation and ROS homeostasis 
59. How these organelles communicate or mediate metabolite flux has been elusive. Live cell 

imaging revealed that expression of PEX11β-EGFP in mammalian cells induced the 

formation of peroxisomal membrane protrusions, which interact with mitochondria (Fig. 4, 

Supplementary movies 1-3). Interactions of elongated peroxisomes with mitochondria were 

more frequent than those of spherical organelles, but both interactions were long-lasting 

(Fig. 4n,o). This indicates that peroxisome elongation can facilitate organelle interaction, but 

once organelles are tethered, the duration of contacts is similar between different 

morphological forms. Miro1 (RHOT1), a membrane adaptor for the microtubule-dependent 

motors kinesin and dynein 60, is also co-regulated with PEX11β (Fig. 1i, section 1). We and 

others recently showed that Miro1 distributes to mitochondria and peroxisomes 61,62 

indicating that it coordinates mitochondrial and peroxisomal dynamics with local energy 

turnover. Peroxisome-targeted Miro1 (Myc-Miro-PO) can be used as a tool to exert pulling 

forces at peroxisomal membranes, which results in the formation of membrane protrusions 

in certain cell types 63 (Supplementary Fig. 13). We show here that silencing of PEX11β 
inhibits membrane elongation by Myc-Miro-PO, confirming that PEX11β is required for the 

formation of peroxisomal membrane protrusions (Supplementary Fig. 13). These findings 

are in agreement with studies in plants, where AtPEX11a has been reported to mediate the 

formation of peroxisomal membrane extensions in response to ROS 64. In yeast, 

peroxisome-mitochondria contact sites are established by ScPex11 and ScMdm34, a 

component of the ERMES complex 65. Additional tethering functions for the yeast mitofusin 

Fzo1 and ScPex34 in peroxisome–mitochondria contacts have recently been revealed 66. 

Importantly, the study also demonstrated a physiological role for peroxisome–mitochondria 

contact sites in linking peroxisomal β-oxidation and mitochondrial ATP generation by the 

citric acid cycle 66. We conclude that PEX11β and Miro1 contribute to peroxisome 

membrane protrusions, which present a new mechanism of interaction between peroxisomes 

and mitochondria in mammals. They likely function in the metabolic cooperation and 

crosstalk between both organelles, and may facilitate transfer of metabolites such as acetyl-
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CoA and/or ROS homeostasis during mitochondrial ATP production. These findings now 

enable future studies on the precise functions of peroxisome membrane protrusions in 

mammalian cells and the role of PEX11β.

Proteomics for expression profiling

To compare the impact of mRNA and protein abundances on expression profiling we first 

focussed on 59 SILAC ratios in ProteomeHD that measured abundance changes across a 

panel of lymphoblastoid cell lines 20. For these samples, corresponding mRNA abundance 

changes have been determined using RNA-sequencing 67. Repeating treeClust learning on 

the basis of these data, we observed that protein coexpression predicts functional 

associations with far higher precision than mRNA coexpression (Fig. 5a). Similar results 

have recently been reported for a panel of human cancer samples 13.

Such analyses show that in a direct gene-by-gene, sample-by-sample comparison, protein 

expression levels are better indicators for gene function than mRNA expression. However, 

the amount of transcriptomics data published to date vastly exceeds that of proteomics 

studies. For example, the NCBI GEO repository currently holds mRNA expression profiling 

data from more than one million human samples 68. This raises the possibility that the sheer 

quantity of available transcriptomics data could overcome their reduced reflection of 

functional links and, in combined form, perform better than protein-based measurements. To 

test this we compared the ProteomeHD co-regulation score with Pearson correlation 

coefficients obtained by STRING, which leverages the vast amount of mRNA expression 

experiments deposited in GEO 69. Remarkably, precision-recall analysis shows that the 

protein co-regulation score still outperforms mRNA coexpression, despite being based on 

only 294 SILAC ratios (Fig. 5b). Much of this improvement is due to the robustness of 

treeClust machine-learning, as Pearson’s correlation coefficients derived from the same 

ProteomeHD data work only moderately better than mRNA correlation (Fig. 5b). While only 

gene pairs with both mRNA and protein expression measurements were considered for the 

precision-recall analysis, the transcriptomics and proteomics datasets individually covered 

17,436 and 4,976 genes, respectively (Fig. 5b). Therefore, mRNA profiling outperforms 

protein profiling in terms of gene coverage. In addition, transcriptomics remains the only 

expression profiling approach suitable for non-coding RNAs.

TreeClust for TMT-based proteomics data

We assessed if treeClust could also improve co-regulation analysis of other isotope-labelled 

proteomics approaches. For this we applied treeClust to a dataset from Lapek et al 14, which 

used TMT-based proteomics to monitor protein abundance changes across 41 cancer cell 

lines. Indeed, we found treeClust to outperform correlation metrics (Supplementary Fig. 

14a). Moreover, a t-SNE co-regulation map obtained for Lapek et al’s cancer proteomics 

dataset contains the complete set of ~6,200 proteins, rather than the 3,024 proteins that 

correlated with another protein above the author-specified cut-off (Supplementary Fig. 14b).
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Discussion

ProteomeHD combined with machine learning adds big-data protein co-regulation analyses 

to the repertoire of functional genomics methods. A key difference between our approach 

and previous gene coexpression studies is the application of two machine-learning 

algorithms, treeClust 37 and t-SNE 42. Inferring protein associations through treeClust 

learning is more robust and more sensitive than a traditional correlation-based approach, 

enabling an increase in accuracy with which functionally relevant interactions can be 

identified from the same dataset. Protein-protein associations visualized by t-SNE can be 

explored in a hierarchical manner, with larger distances indicating weaker co-regulation. 

This may be useful for studying connections between related protein complexes (Fig. 1i) or 

to reveal broad functional clues for uncharacterized proteins for which no detailed 

predictions are available, such as the HEATR5B protein assigned to the vesicle area of the 

co-regulation map (Fig. 3i). Our web application at www.proteomeHD.net is designed to 

support researchers in exploring co-regulation data at multiple scales, to validate existing 

hypotheses or create new ones.

Only 300 quantitative proteomics measurements sufficed in conjunction with machine 

learning to establish functional connections between many human genes, which may be of 

considerable interest for proteome annotation in less studied or difficult to study organisms. 

Accuracy and coverage could be increased further by adding additional proteomics data. To 

test this we randomly removed 5%, 10% or 15% of the data points in ProteomeHD. This 

decreases performance proportionally to the amount of removed data (Supplementary Fig. 

15), suggesting that ProteomeHD has not reached saturation and expanding it will further 

enhance its performance. One possibility would be to incorporate other types of proteomics 

experiments, such as affinity-purifications or indeed the entire PRIDE 35 repository. 

However, there is a benefit of restricting ProteomeHD to perturbation experiments. It 

supports a biological interpretation of protein associations derived from it: two co-regulated 

proteins are part of the same cellular response to changing biological conditions, even 

though the precise molecular nature of the connection remains unknown. In this way, protein 

co-regulation analysis is analogous to genetic interaction screening. This also sets protein 

co-regulation apart from indiscriminate protein covariation or co-occurrence analyses, which 

find protein links in a mix of proteomics data and therefore give no insight into the possible 

biological connection.

In conclusion, protein coexpression analysis identifies functional connections between 

proteins with an accuracy and sensitivity that is substantially higher than traditional mRNA 

coexpression analysis. This may be particularly important for constitutively active genes, 

which constitute about half of human genes 33 and are primarily controlled at the protein 

level 70. With an ever increasing amount of protein expression data being made available, 

protein coexpression analysis has huge potential for gene function annotation.
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Online Methods

Data selection for ProteomeHD

MS raw data were produced in-house or downloaded from the PRIDE repository 35. Only 

experiments fulfilling the following inclusion criteria were considered:

(1) Comparative proteomics experiments, i.e. relative protein quantitations of two or more 

biological states. For example, cells treated with an inhibitor vs. mock control. (2) 

Biological - not biochemical - comparisons, i.e. fold-changes must have been brought about 

in vivo, not by differential biochemical purification. For example, SILAC-labelled cells were 

treated with inhibitor or mock control, harvested and combined, and chromatin was enriched 

on the combined sample. In such cases any observed fold-change reflects the response to the 

inhibitor in the living cell, for example a protein re-localising from cytoplasm onto 

chromatin. We did not consider experiments that compared, for example, a whole-cell lysate 

with a chromatin-enriched fraction, as this would measure the impact of the biochemical 

enrichment rather than a biological event. (3) Quantitation by “stable isotope labeling by 

amino acids in cell culture” (SILAC) 34. (4) Samples of human origin.

In addition to these conceptual considerations, the following restrictions were imposed by 

the data processing pipeline: (5) The SILAC mass shift introduced by heavy arginine must 

be distinct from heavy lysine. (6) Raw data acquired on an Orbitrap mass spectrometer. (7) 

Samples alkylated with iodoacetamide, resulting in carbamidomethylation of cysteines.

In total, we considered 294 experiments (SILAC ratios) from 31 projects. A full list of these 

is provided in Supplementary Table 2, which also includes the PRIDE identifiers of all 

previously published datasets.

In-house data collection

80 experiments were performed in-house and analyzed chromatin-enriched samples. Of 

these, 65 measured the effect of growth factors, radiation and other perturbations on 

interphase chromatin, which was prepared using Chromatin Enrichment for Proteomics 

(ChEP) 71. About half of these experiments had previously been published 24. Another 15 

experiments documented perturbations specifically on freshly replicated chromatin, which 

was prepared using Nascent Chromatin Capture (NCC) 72. All mass spectrometry raw files 

generated in-house have been deposited to the ProteomeXchange Consortium (http://

proteomecentral.proteomexchange.org) via the PRIDE partner repository 35 with the dataset 

identifier PXD008888.

MS raw data processing

The 5,288 MS raw files were processed using MaxQuant 1.5.2.8 73 on a Dell PowerEdge 

R920 server. The following default MaxQuant search parameters were used: MS1 tolerance 

for the first Andromeda search: 20 ppm, MS1 tolerance for the main Andromeda search: 4.5 

ppm, FTMS MS2 match tolerance: 20 ppm, ITMS MS2 match tolerance: 0.5 Da, Variable 

modifications: acetylation of protein N-termini, oxidation of methionine, Fixed 

modifications: carbamidomethylation of cysteine, Decoy mode set to reverse, Minimum 
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peptide length: 7 and Max missed cleavages set to 2. The following non-default settings 

were used: In group-specific parameters, match type was set to “No matching”. In global 

parameters, “Re-quantify” was enabled, minimum ratio count was set to 1 and “Discard 

unmodified counterpart peptide” was disabled. Also in global parameters, writing of large 

tables was disabled. SILAC labels were set as group-specific parameters as indicated in 

Supplementary Table 2. Canonical and isoform protein sequences were downloaded from 

UniProt 44 on 28th May 2015, considering only reviewed SwissProt entries that were part of 

the human proteome. Unprocessed MaxQuant result tables, including peptide evidence data, 

have been deposited into the PRIDE repository PXD008888.

Protein fold-changes were extracted from the MaxQuant proteinGroups file returned by 

MaxQuant. Non-normalized SILAC ratios were considered for downstream analysis, log2 

transformed and median-normalised. From triple labelling experiments, the heavy/light and 

medium/light ratios - but not the heavy/medium ratios - were considered. Proteins detected 

in less than 4 experiments were discarded, as were proteins labeled as contaminants, reverse 

hits and those only identified by a modification site. The resulting data matrix, ProteomeHD, 

can be downloaded as Supplementary Table 1.

Calculation of treeClust dissimilarities

It is common in gene coexpression studies to remove genes that were detected in less than 

half of the samples from the analysis. However, given the unusually large size of 

ProteomeHD we chose a different arbitrary cut-off, excluding proteins that were detected in 

less than 95 (about a third) of the 294 experiments. For the remaining 5,013 proteins in 

ProteomeHD we used the treeClust 37 R package to calculate all 12,562,578 pairwise 

dissimilarities. Note that treeClust was designed not only to measure inter-point 

dissimilarities but also to perform clustering 37,38. However, in this study we use it only to 

calculate dissimilarities, via the treeClust.dist function. The dissimilarity specifier was set to 

d.num = 2, so that dissimilarities are weighted according to tree quality. We optimised two 

hyperparameters of treeClust and rpart, which is the routine treeClust uses to create decision 

trees. These were treeClust’s serule argument, which defines to extent to which trees are 

pruned, and rpart’s complexity (cp) parameter, which describes the improved fit required to 

attempt a split. A grid search was performed against the Reactome gold standard (see below) 

and the area under precision - recall curves was used to identify optimal parameter settings. 

They were determined to be serule = 1.8 and cp = 0.105, providing approximately a 10% 

performance improvement over treeClust’s default settings.

Protein co-regulation scores

To calculate the final pairwise co-regulation scores, treeClust dissimilarities were 

transformed further. First, they were turned into similarities, i.e. 1 - treeClust dissimilarity. 

Using the WGCNA 74,75 R package, we then performed a sigmoid transformation of these 

treeClust similarities, creating an adjacency matrix. The settings of parameters mu and alpha 

for this transformation were optimised in a grid search against the Reactome gold standard, 

using the area under precision - recall curves as readout. In a third step, the adjacency matrix 

was transformed into a topological overlap matrix using WGCNA’s TOMsimilarity 

function, with the TOMDenom parameter set to “mean”. These TOM similarities are the co-
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regulation scores used throughout our analysis. Co-regulation scores for all of our 

12,562,578 protein pairs can be downloaded from the PRIDE repository PXD008888.

While the co-regulation score is continuous, some analyses benefitted from a simplified 

categorical approach. For these cases we arbitrarily defined the highest-scoring 0.5% of 

protein pairs as “co-regulated pairs” and the remaining 99.5% of pairs as “not co-regulated 

pairs”. A list of all 62,812 co-regulated protein pairs is available as Supplementary Table 3. 

A network of the top 0.5% co-regulated protein pairs can be explored interactively on NDEx 
76 (DOI: http://doi.org/10.18119/N9N30Q).

Reactome gold standard

A gold standard set of reference proteins was defined using Reactome 36. Bona fide 

functionally associated protein pairs (true positives) were defined as protein pairs found in 

the same “detailed” Reactome pathway. This was inferred from the file 

UniProt2Reactome.txt (available at https://reactome.org/download-data), where each protein 

is annotated to the lowest level subset of Reactome pathways. To make sure that only closely 

related protein pairs were assigned the “true positive” label, we excluded two pathways that 

were composed of > 200 proteins. We defined protein pairs that are not functionally 

associated (false positives) as proteins that are never in the same Reactome pathway, at any 

annotation level. This was inferred from UniProt2Reactome_All_Levels.txt (also available at 

https://reactome.org/download-data), a file that maps proteins to all levels of the Reactome 

pathway hierarchy. A copy of this gold standard is available in the Github repository noted 

above.

Comparison of treeClust and correlation metrics

Pearson’s correlation coefficients (PCC) and Spearman’s rank correlation coefficients (rho) 

were obtained using the cor function in R, for the same protein pairs covered by the 

treeClust analysis. Biweight mid-correlation coefficients (bicor) were calculated with default 

settings using the R package WGCNA 75,77. Changing the maxPOutliers parameter of the 

bicor function did not improve performance. Precision - recall (PR) analysis was performed 

with the ROCR package 78 using true and false positive pairs compiled from annotation in 

Reactome (see paragraph Reactome gold standard). The random classifier was created by 

scrambling co-regulation scores. AU insert a callout to datasets used and outputs 

(Supplementary Note?)

Generation of synthetic datasets

Synthetic datasets were generated using a custom function in R (available in our GitHub 

repository, https://github.com/Rappsilber-Laboratory/treeClust-benchmarking). The function 

populates a table with values that are randomly sampled from a normal distribution, but 

includes a user-specified number of observations that have a defined linear relationship with 

each other. The following properties of the thus created datasets can be manipulated: number 

of variables (i.e. samples or experiments), number of observations (i.e. proteins), percentage 

of protein pairs that should have a linear relationship, percentage of outlier data, percentage 

of missing values and the extent of scatter around the regression line (i.e. biological or 

measurement noise). Outlier data points are created by random sampling from a broader 

Kustatscher et al. Page 15

Nat Biotechnol. Author manuscript; available in PMC 2020 May 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://dx.doi.org/10.18119/N9N30Q
https://reactome.org/download-data
https://reactome.org/download-data
https://github.com/Rappsilber-Laboratory/treeClust-benchmarking


normal distribution than the rest of the data. In addition to positive linear relationships (y ~ 

x), we tested relationships that were exponential (y ~ ex), logistic (y ~ 4 / (1 + e-5x)) and 

quadratic (y ~ x2), as well as linearly anti-correlated (y ~ -x).

Performance evaluation using synthetic data

PR analyses were performed for synthetic data as described for ProteomeHD data above, 

except that true positive (linear or nonlinear) and false positive (random) associations were 

known for synthetic data without the need for a gold standard. To test the impact of various 

data characteristics, synthetic datasets were generated in triplicate and the results were 

shown as the average area under the PR curves, with error bars indicating the standard error 

of the mean. No replicates were used for the combinatorial testing of two dataset 

characteristics.

Model fitting on ProteomeHD data

Base R functions were used to fit and analyse linear models for pairs of proteins in 

ProteomeHD. Fold-changes of each protein pair were rescaled to fall between 0 and 1 before 

fitting the model. Outliers were defined as data points with absolute studentized residuals or 

a Mahalanobis distance larger than 2. Non-linear models were fit using nonlinear least 

squares. Exponential models (y ~ a + exp(b)x) and logistic models (y ~ a / (1 + e-b(x-c))) 

were said to outperform the corresponding linear model (y ~ a + bx) if their residual sum of 

squares (RSS) was at least 10% smaller.

t-SNE visualization

To visualize ProteomeHD as a 2D co-regulation map, co-regulation scores were subjected to 

t-Distributed Stochastic Neighbor Embedding (t-SNE) 42 using the Rtsne 79 package for R. 

The theta parameter was set to zero to calculate the exact embedding. The perplexity 

parameter was set to 50, up from the default of 30, to account for the large size of the co-

regulation dataset. 1,500 iterations were performed. However, visual comparison of the t-

SNE maps showed that these parameter adaptations provided only a marginal improvement 

over the default settings. Organelles were labelled based on subcellular locations assigned by 

UniProt 44 to these proteins, zoom regions were annotated manually based on available 

literature. Plot coordinates and annotations are available as Supplementary Table 4.

Network visualizations

In addition to t-SNE, the protein co-regulation matrix was also visualized as an undirected, 

weighted network using the igraph 80 and GGally 81 packages in R. The network contains 

the same 5,013 proteins as the co-regulation map, but only considers links above the 

arbitrary co-regulation threshold, i.e. between the top-scoring 0.5% of protein pairs. For 

these pairs, the network edges are weighted by the co-regulation score. A set of common 

network layout algorithms were deployed through the sna (social network analysis) 82 R 

package.
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Testing for co-functionality among of co-regulated proteins

To test if protein co-regulation reflects co-function we defined three sets of “functionally 

related” protein pairs (subunits of the same protein complexes, enzymes catalyzing 

consecutive metabolic reactions and proteins with identical subcellular localization) as 

previously described 17.

To test larger groups (not pairs) of co-regulated proteins for functional enrichment, we 

analyzed enrichment of Gene Ontology terms using the topGO 83 R package. For each 

protein we tested the group of its co-regulation partners for GO term enrichment. Because 

some proteins are co-regulated with no or very few other proteins, we restricted the analysis 

to proteins that are co-regulated with at least 10 proteins. The three aspects (Biological 

process, Molecular function, Cellular component) of GO were downloaded from QuickGO 
84 with taxon set to human and qualifier to null. Rather than the whole proteome, only 

proteins that were included in the treeClust analysis and had GO annotations were used as 

the gene “universe” or background for the topGO analysis. Enrichment of GO terms among 

protein co-regulation groups was tested considering GO graph structure and using a Fisher’s 

exact test.

Annotation of the co-regulation map

Proteins localizing to specific subcellular compartments were downloaded from UniProt 44 

using the following tags: Nucleus (SL-0191), Nucleolus (SL-0188), Endoplasmic reticulum 

(SL-0095), Mitochondrion (SL-0173), Cytoplasm (SL-0086), Secreted (SL-0243). Proteins 

and protein complexes in zoom regions (Fig. 1i) were annotated individually based on the 

available literature.

Creating the www.proteomeHD.net framework

The ProteomeHD online application was written in Python Flask web framework. The 

interactive plots are generated using Bokeh visualization library for Python (https://

github.com/bokeh/bokeh). The Gene Ontology and KEGG enrichment statistics are obtained 

from a STRING 69 server using an API call with maximally top 100 proteins co-regulated 

with the query. Only significantly enriched terms (hypergeometric test, Bonferroni adjusted 

P value < 0.1) are displayed.

Comparison to orthogonal methods

Physical protein-protein-interactions (PPIs) detected by a comprehensive range of small- and 

large-scale methods were assessed using BioGRID 85, version 3.4.152. Data from IntAct 86 

were used as a smaller but curated resource of physical PPIs. Functional protein associations 

mapped by a large range of methods and publications were inferred from STRING 69, 

version 10.5. Note that the protein co-regulation scores described here are only used by 

STRING starting with version 11 57. BioPlex 2.0 2 served as an example for physical 

interactions mapped by a single project.
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Annotation of uncharacterized and disease genes

Proteins were defined as “uncharacterized” on the basis of having an annotation score ≤ 3 in 

UniProt 44. The UniProt annotation score is a heuristic measure of the annotation state of a 

protein, expressed as a 5-point system (www.uniprot.org/help/annotation_score). The score 

combines various types and layers of UniProt annotation, and weights manually curated 

evidence higher than automated annotation. It may not always agree with the state of 

“characterization” that field experts would assign to the same protein. However, as an 

unbiased, data-driven approach we believe the UniProt annotation score is better suited to 

systematically identify uncharacterized proteins than manual annotation could be. Even with 

a systematic way of measuring the degree of annotation, the definition of what constitutes an 

“uncharacterised” protein is an arbitrary one. We chose “3 points or less” as the 

“uncharacterized” cut-off, because the available information for such proteins tends to be 

very vague, e.g. a sequence-based prediction as “multi-pass membrane protein”. In contrast, 

we found that the biological function of most 4-star proteins could be established reasonably 

well from the available literature.

The Cancer Gene Census, i.e. genes that can cause cancer when mutated, was curated by 

COSMIC (Catalogue Of Somatic Mutations In Cancer, version 81) 45. DisGeNET was used 

as a comprehensive, curated list of human gene - disease associations 46.

Comparison of mRNA and protein expression profiling

For the comparison of matched samples and proteins we considered mRNA and protein 

expression changes across 59 lymphoblastoid cell lines (Fig. 5a). The protein fold-changes 

are part of ProteomeHD and were originally published by Battle and colleagues 20. RNA-

sequencing data for the same cell lines and proteins were also previously reported 67. We 

used the RNA-sequencing data to calculate mRNA fold-changes relative to a 60th cell line, 

which was the same cell line used as a SILAC reference for the protein expression data. The 

combined mRNA and protein dataset has been described in more detail elsewhere 17. Fold-

changes for genes covered by both the transcriptomics and proteomics analysis were 

subjected to treeClust learning (default parameters) and PR curves were obtained as 

described above.

For a more comprehensive comparison we considered protein associations predicted using 

treeClust learning or PCC on the basis of all 294 SILAC ratios in ProteomeHD (Fig. 5b). 

This was compared to mRNA associations inferred by PCC on the basis of all human mRNA 

expression data processed by STRING. STRING’s state-of-the-art mRNA coexpression 

analysis pipeline considers all microarray and RNA-sequencing data deposited in the GEO 

repository 68, resulting in one of the largest mRNA coexpression analyses available to date 
69,87. Note that for this comparison we did not use the STRING coexpression score, which is 

calibrated against the KEGG database, but the original uncalibrated Pearson’s correlations, 

which were kindly provided by Damian Szklarczyk. STRING PCCs are calculated 

separately for one- and two-channel microarrays and RNA-sequencing experiments. We 

used the average of these for the precision - recall analysis, which performed better than any 

individual experiment type.
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Validation of treeClust and t-SNE on the cancer proteomics dataset

Lapek et al measured the abundances for 6,911 proteins in 41 different breast cancer cell 

lines 14. These data are available as Supplementary Table 2 (tab 3) of their report. As 

described by Lapek et al, we converted the protein intensities into log2 fold-changes over the 

median intensity measured for each protein across all cell lines. We then calculated 

Pearson’s, Spearman’s rank and bicor correlations for all possible protein pairs, as for 

ProteomeHD. The Spearman’s correlation coefficients obtained in this way are identical to 

the ones obtained by Lapek et al using the cor.prob function (Supplementary Table 6 in their 

report 14). We also determined treeClust co-regulation scores for all protein pairs. However, 

treeClust can only grow one decision tree per input variable, i.e. 41 in this dataset, which 

would be too few for it to perform properly. To circumvent this, we forced treeClust to 

generate 1,000 decision trees by applying it iteratively. We created 100 treeClust forests, 

each generated with a random subset of 10 of the 41 variables, and used the average co-

regulation score for downstream analysis. Precision-recall analysis using a Reactome gold 

standard and t-SNE visualization were performed as described above. The CORUM protein 

complexes displayed in Lapek et al’s Figure 2, reported in their Supplementary Table 7 14, 

were color-coded in the co-regulation map.

Comparison of protein co-regulation and co-occurrence

Two different approaches were used to measure protein co-occurrence in ProteomeHD. First, 

the Jaccard / Tanimoto similarity coefficient 88 was calculated using the Jaccard package for 

R. Second, a binary version of ProteomeHD was created, where all SILAC ratios were 

represented by 1s (“protein quantified”) and all missing values were turned to 0s (“protein 

not quantified”). Subsequently, treeClust dissimilarities were re-calculated based on this 

binary version of ProteomeHD. The performance of these different metrics was assessed by 

a precision - recall analysis as described above.

Plasmids, siRNA, and antibodies

For cloning of peroxisome-targeted Miro1, the C-terminal TMD and tail of Myc-Miro1 

(kindly provided by P. Aspenström, Karolinska Institute, Sweden) was exchanged by a 

PEX26/ALDP fragment previously shown to target proteins to the peroxisome membrane 63. 

PEX11β-EGFP was kindly provided by G. Dodt (Univ. of Tuebingen, Germany). PEX11β 
siRNA (AUU AGG GUG AGA AUA GAC AGG AUGG) (Eurofins) was previously verified 
89. Control siRNA (si-GENOME nontargeting siRNA pool #2) was obtained from GE 

Healthcare (D-001206-14-05). Antibodies used were as follows: rabbit polyclonal antibody 

against PEX14 (1:1400, kindly provided by D. Crane, Griffith University, Australia); mouse 

monoclonal antibody 9E10 against the Myc epitope (1:200, Santa Cruz Biotechnology, Inc., 

sc-40), rabbit monoclonal antibody against PEX11β (1:1000, Abcam, ab181066); rabbit 

polyclonal antibody against GAPDH (1:2000, ProSci3783). Secondary anti-IgG antibodies 

against rabbit (Alexa 594, 1:1000, Molec. Probes/Life Technol. A21207) and mouse (Alexa 

488, 1:400, Molec. Probes/Life Technol. A21202) were obtained from ThermoFisher 

Scientific. HRP-coupled donkey polyclonal antibody against rabbit IgG (1:5000) was 

obtained from Biorad (172-1013).
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Cell culture and transfection

COS-7 cells (African green monkey kidney cells; ATCC CRL-1651), and PEX5 deficient 

fibroblasts (kindly provided by H. Waterham, AMC, University of Amsterdam, NL) were 

cultured in DMEM (high glucose, 4.5 g/L) supplemented with 10% FBS, 100 U/ml 

penicillin and 100 μg/ml streptomycin at 37°C (5% CO2, 95% humidity) (HERACell 240i 

CO2 incubator). COS-7 cells were transfected using diethylaminoethyl-dextran (Sigma-

Aldrich). dPEX5 fibroblasts have enlarged peroxisomes, which facilitates the visualization 

of membrane extensions. For transfection of dPEX5 fibroblasts, the Neon® Transfection 

System (Thermo Fisher Scientific) was used following the manufacturer’s protocol. Briefly, 

cells (seeded 24h before transfection) were washed once with PBS and trypsinized using 

TrypLE Express. Trypsinized cells were resuspended in complete medium, pelleted by 

centrifugation, and washed with PBS. The cells were once again centrifuged and carefully 

resuspended in 110 μl buffer R. For each condition, 4 × 105 cells were mixed with the DNA 

construct (5 μg) or with 100 nM siRNA. Cells were microporated using a 100 μl Neon tip 

with the following settings: 1400 V, 20 ms, one pulse. Microporated cells were immediately 

seeded into plates with prewarmed complete medium (without antibiotics) and incubated at 

37°C with 5% CO2 and 95% humidity. The efficiency of silencing was monitored by 

immunoblotting of cell lysates and confirmed as previously reported 89.

Immunofluorescence and microscopy

Cells grown on glass coverslips were processed for immunofluorescence 24h after 

transfection. Cells were fixed for 20 min with 4% paraformaldehyde in PBS (pH 7.4), 

permeabilized with 0.2% Triton X-100, and blocked with 1% BSA, each for 10 min. 

Incubation with primary and secondary antibodies took place for 1h each in a humid 

chamber. Coverslips were washed with ddH2O to remove PBS and mounted with Mowiol 

medium on glass slides. All immunofluorescence steps were performed at room temperature 

and cells were washed three times with PBS between each individual step. Cell imaging was 

performed using an IX81 microscope (Olympus) equipped with an UPlanSApo 100×/1.40 

oil objective (Olympus). Digital images were taken with a CoolSNAP HQ2 CCD camera 

and adjusted for contrast and brightness using the Olympus Soft Imaging Viewer software 

and MetaMorph 7 (Molecular Devices). For live-cell imaging, COS-7 cells were plated in 

3.5 cm diameter glass bottom dishes (Cellvis). MitoTracker Red CMXRos (Life 

Technologies) at 100 nM was used for visualisation of mitochondria. Live-cell imaging data 

was collected using an Olympus IX81 microscope equipped with a Yokogawa CSUX1 

spinning disk head, CoolSNAP HQ2 CCD camera, 60 x/1.35 oil objective. Digital images 

were taken and processed using VisiView software (Visitron Systems, Germany). Prior to 

image acquisition, a controlled temperature chamber was set-up on the microscope stage at 

37ºC, as well as an objective warmer. During image acquisition, cells were kept at 37ºC and 

in CO2–independent medium (HEPES buffered). 200 stacks of 9 planes (0.5 µm thickness, 

100 ms exposure) were taken in a continuous stream. All conditions and laser intensities 

were kept between experiments.
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Quantification and statistical analysis of peroxisome morphology and interaction

Analysis of statistical significance was performed using GraphPad Prism 5 software. A two-

tailed unpaired t test was used to determine statistical difference against the indicated group. 

*P < 0.05, **P < 0.01, ***P < 0.001. For analysis of peroxisome morphology, a minimum of 

150 cells were examined per condition, and organelle parameters (e.g. membrane 

protrusions) were microscopically assessed in at least three independent experiments. The 

analysis was made blind and in different areas of the coverslip. Organelle interaction and 

contact time were analysed manually from live-cell imaging data using MetaMorph 7 

(Molecular Devices). A region of interest (ROI) was drawn in different areas of the cell. 

Spherical and elongated peroxisomes within the ROI were tracked over the whole time 

course, and the frequency and duration of contacts monitored. Multiple interactions of the 

same peroxisome with mitochondria were treated as separate events. Data are presented as 

mean ± SD.

Statistics

Statistical analyses were performed using R and Prism 5 (GraphPad Software, Inc.). 

Statistical significance of GO term enrichment was calculated using the topGO 83 R 

package. Error bars show the standard error of the mean or the standard deviation as 

indicated in the figure legends. One-sided Fisher’s Exact tests and two-tailed unpaired t-tests 

were used as indicated in the figure legends.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Co-regulation map shows associations between human proteins.
(a) Assembly of ProteomeHD, which quantifies the protein response to 294 perturbations 

using SILAC 34. Most measurements document protein abundance changes in whole-cell 

samples, but in some cases subcellular fractions were enriched to detect low-abundance 

proteins. Data were collected from PRIDE 35 and produced in-house. (b) A random set of 

experiments from ProteomeHD, showing that groups of proteins with related functions, e.g. 

Gene Ontology 41 (GO) biological processes, display similar expression changes. Note that 

the fold-changes are often very small. (c) Precision - recall analysis showing that the 

treeClust 37,38 algorithm outperforms three correlation-based coexpression measures. 

Applying the topological overlap measure (TOM) improves performance further. 
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Annotations in Reactome 36 were used as gold standard. (d) Co-regulation scores for all 

protein pairs are obtained by combining treeClust with TOM. The score distribution is 

highly skewed. Where an arbitrary threshold is required, the highest-scoring 0.5% of pairs 

(N = 62,812) are considered “co-regulated”. (e) Co-regulated protein pairs are strongly 

enriched for subunits of the same protein complex, enzymes catalysing consecutive 

metabolic reactions and proteins with identical subcellular localization. (f) Most proteins are 

co-regulated with no or few other proteins, but many have more than 5 co-regulated partners. 

(g) Considering proteins that are co-regulated with ≥10 proteins, these groups of co-

regulated proteins are almost always enriched in one or more GO terms. (h) The global co-

regulation map of ProteomeHD created using t-Distributed Stochastic Neighbor Embedding 

(t-SNE). Distances between proteins indicate how similar their expression patterns are. See 

www.proteomeHD.net for an interactive version of the map. n = 5,013 proteins. (i) The co-

regulation map broadly corresponds to subcellular compartments, and more detailed 

functional associations can be observed at higher resolution, as exemplified in subpanels 

1-3.
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Figure 2. treeClust improves co-regulation analysis through robust selectivity for close linear 
relationships.
(a) To benchmark treeClust we created a series of synthetic datasets with defined properties. 

For example, one dataset contains 100 variables and 200 proteins, designed such that out of 

all possible 19,900 combinations between these proteins, 0.5% have a defined linear 

relationship, while the remaining 99.5% of pairs have not. We modify the properties of the 

synthetic data and assess their effect using Precision-Recall (PR) analysis. (b) Impact of 

sample number on treeClust, Pearson (PCC), Spearman (rho) or Biweight Midcorrelation 

(bicor). Shown is the average area under the PR curve (AUPRC) of three replicates, error 

bars indicate the standard error of the mean. n = 500 synthetic proteins. (c) Combinatorial 

impact of sample number and missing values on treeClust performance. n = 1,000 synthetic 

proteins. (d) Impact of lowering the goodness-of-fit by increasing the difference between 

variables (jitter; see Supplementary Fig. 5a for example scatter plots). n = 50 synthetic 

samples, 500 proteins. (e) Impact of increasing the percentage of outlier measurements. n = 

100 synthetic samples, 500 proteins. (f) Real protein pair in ProteomeHD with outliers 

detected via their Mahalanobis distance. Note in this example outliers drive high PCC even 
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though no general correlation exists. Fold-changes have been scaled to lie between 0 and 1. 

(g) Co-regulated protein pairs across ProteomeHD were divided into those detected only by 

treeClust (n = 8,786) or only by PCC (n = 9,593). The latter group contains more outliers. 

Removing these outliers decreases the PCC of PCC-specific pairs, suggesting their original 

high PCC was driven by the outliers. Lower and upper hinges correspond to the first and 

third quartiles, and lower and upper whiskers extend to the smallest or largest value no 

further than 1.5 interquartile ranges from the hinge, respectively. (h) Two examples pairs 

from ProteomeHD to illustrate different goodness-of-fit, quantified via the mean absolute 

error (MAE). Note that only the left pair represents a genuine interaction. (i) Systematic 

comparison of MAEs across ProteomeHD, from co-regulated pairs detected by treeClust but 

not rho or bicor (magenta), or by rho or bicor but not treeClust (green and blue, 

respectively).
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Figure 3. Protein co-regulation predicts functions of unknown proteins.
(a) Coverage of protein - protein interactions (PPIs) in comparison to other resources. Top 

barchart shows the number of genes covered, i.e. having at least one PPI above cut-off. 

STRING cut-off used: medium (400). Bottom chart shows the average number of PPIs of 

covered genes. The co-regulation map (ProHD) covers fewer genes than STRING, 

BioGRID, IntAct and BioPlex 2, but covers many associations between those genes. (b) 

Overlap between PPIs discovered by protein co-regulation and PPIs already present in large-

scale annotation resources that cover both physical (BioGrid and IntAct) and functional 

(STRING 69) associations. Multiple association score cut-offs were considered for STRING. 

These three resources integrate data from many small and large-scale studies. (c) Coverage 

of co-regulated protein pairs in BioGRID and STRING broken down by the type of 

functional genomics evidence available in each resource. (d) Number of co-regulation links 

compared to PPIs found for the same set of genes by BioPlex 2.0 2, one of the largest PPI 

datasets reported to date by a single study. Associations unique to co-regulation are strongly 

enriched for links in STRING, compared to random gene pairs. (e) Out of the 5,013 proteins 

in the co-regulation map, 301 have a UniProt annotation score ≤3 and are thus defined as 

uncharacterized. (f) Connectivity of either uncharacterized proteins or proteins encoded by 

disease genes to well-characterized proteins (annotation score ≥4). 51% of uncharacterized 

proteins have at least one co-regulation partner, 32% have more than five. (g) Barchart 

showing the percentage of all 20,408 human UniProt (SwissProt) proteins that are 

microproteins, i.e. have a molecular weight < 15 kDa. Note that microproteins are heavily 

enriched among less well-characterized proteins. (h) 18% of 5,187 uncharacterized proteins 

in UniProt are microproteins, compared to 16% of the 153 uncharacterized proteins in the 

co-regulation map and 6% of 1,422 uncharacterized proteins in state-of-the-art AP-MS 

experiments, represented by BioPlex. P-values are from one-sided Fisher’s Exact test. (i) 

Kustatscher et al. Page 30

Nat Biotechnol. Author manuscript; available in PMC 2020 May 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



The uncharacterized microprotein TMEM256 has many co-regulation partners (n = 130), 

which are enriched for GO term “mitochondrial inner membrane” (n = 42) among others. 

Bonferroni-adjusted P-value is from a hypergeometric test. The uncharacterized HEATR5B 

protein has no co-regulation partners above the default threshold, but its position in the map 

nevertheless indicates a potential function. (j) For multifunctional proteins, co-regulation 

can reveal a mix of their functions (DDX3X; n = 14 of 81 co-regulated proteins annotated 

with GO term “mRNA splicing, via spliceosome, n = 27 with GO term “cytosolic 

ribosome”), or their main function only (prohibitin, PHB; n = 9 of 11 co-regulated proteins 

annotated as “mitochondrial inner membrane”). Three representative GO terms are shown.
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Figure 4. PEX11β and peroxisomal membrane interactions with mitochondria.
(a-m) COS-7 cells were transfected with PEX11β-EGFP, mitochondria were stained with 

Mitotracker (red) and cells observed live using a spinning disc microscope. PEX11β, a 

membrane shaping protein, induces the formation of tubular membrane protrusions from 

globular peroxisomes. We show here that those membrane protrusions can interact with 

mitochondria. Results are representative of three independent experiments. (a-f) shows a 

peroxisome which interacts with a mitochondrion via its membrane protrusion (arrowhead), 

and follows it, occasionally detaching and re-establishing contact before interacting with 
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another mitochondrion (see Supplementary Movie 1). (g-m) shows a mitochondrion 

(arrowhead) which interacts with a peroxisome via a peroxisomal membrane protrusion. It 

then detaches and moves away to interact with another peroxisome, which wraps its 

protrusion around it, before interacting with another mitochondrion (see Supplementary 

Movie 2). (n) Quantification of interactions between spherical or elongated peroxisomes 

(PO) with mitochondria (MITO). The average result of 3 independent experiments is shown, 

error bars indicate the mean +/- standard deviation. (o) Quantification of contact time. Note 

that elongated PO interact more frequently with MITO than spherical PO, but for similar 

time periods. PO-MITO interactions are generally long-lasting (see Supplementary Movie 3) 

(n=200 peroxisomes from 5 different cells). Dotted line indicates the mean, error bars 

indicate standard deviation. *** P = 0.0003 from a two-tailed unpaired t test; Time 

(min:sec). Scale bars, 5 µm.
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Figure 5. Protein co-regulation enables higher precision but lower coverage than mRNA 
coexpression.
(a) Precision-recall analysis of treeClust machine-learning on a subset of ProteomeHD, that 

is 59 samples for which matching RNA-seq data were available from a separate study 67.

Reactome pathways were used as gold standard for true functional associations (proteins 

found in same pathway) and false associations (never found in same pathway). Only 

annotated genes covered by both datasets were considered for PR analysis (n = 2,901). (b) 

Venn diagram showing number of genes covered by each analysis. (c) Barchart showing 
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number of experiments the curves are based on. (d) Similar precision-recall analysis of 

treeClust machine-learning on the full ProteomeHD database, in comparison to Pearson 

correlation obtained by STRING 69 on the basis of one million human mRNA profiling 

samples deposited in the NCBI Gene Expression Omnibus 68 ("mRNA / PCC"). Protein co-

regulation outperforms mRNA correlation despite being based on orders-of-magnitude less 

data. This is partially due to the use of machine-learning, as predicting associations from 

ProteomeHD using PCC decreases performance markably ("protein / PCC"). Only annotated 

genes covered by both datasets were considered for the PR analysis (n = 2,743). (e, f) same 

as (b, c).
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