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Developing a preoperative serum 
metabolome-based recurrence-
predicting nomogram for patients 
with resected pancreatic ductal 
adenocarcinoma
Seoung Yoon Rho   1,2, Sang-Guk Lee   3, Minsu Park4, Jinae Lee4, Sung Hwan Lee   1,5, 
Ho Kyoung Hwang1,2, Min Jung Lee6, Young-Ki Paik6, Woo Jung Lee1,2 & Chang Moo Kang1,2*

We investigated the potential application of preoperative serum metabolomes in predicting recurrence 
in patients with resected pancreatic cancer. From November 2012 to June 2014, patients who 
underwent potentially curative pancreatectomy for pancreatic ductal adenocarcinoma were examined. 
Among 57 patients, 32 were men; 42 had pancreatic head cancers. The 57 patients could be clearly 
categorized into two main clusters using 178 preoperative serum metabolomes. Patients within cluster 
2 showed earlier tumor recurrence, compared with those within cluster 1 (p = 0.034). A nomogram 
was developed for predicting the probability of early disease-free survival in patients with resected 
pancreatic cancer. Preoperative cancer antigen (CA) 19–9 levels and serum metabolomes PC.aa.C38_4, 
PC.ae.C42_5, and PC.ae.C38_6 were the most powerful preoperative clinical variables with which 
to predict 6-month and 1-year cancer recurrence-free survival after radical pancreatectomy, with a 
Harrell’s concordance index of 0.823 (95% CI: 0.750–0.891) and integrated area under the curve of 0.816 
(95% CI: 0.736–0.893). Patients with resected pancreatic cancer could be categorized according to their 
different metabolomes to predict early cancer recurrence. Preoperative detectable parameters, serum 
CA 19–9, PC.aa.C38_4, PC.ae.C42_5, and PC.ae.C38_6 were the most powerful predictors of early 
recurrence of pancreatic cancer.

Pancreatic cancer is one of the most lethal cancers arising from the gastrointestinal tract. It is estimated that 
pancreatic cancer will become the second highest cause of cancer-related death by 20301–3. Potentially curative 
pancreatectomy is regarded as the most effective monotherapy; however, only 15–20% of patients are candidates 
for radical operation at diagnosis. Most patients with resected pancreatic cancer experience cancer recurrence, 
especially to the liver, lung, and peritoneum. Thus, surgery followed by postoperative adjuvant chemotherapy is 
the standard of care, although this only provides long-term survival of less than 25–30%4.

Many studies have investigated the use of clinicopathological factors for predicting cancer recurrence in 
patients with resected pancreatic cancer and have suggested that lymph node metastasis5, perineural invasion6,7, 
lymphovascular invasion8, and incomplete resection9 are significantly associated with early tumor recurrence 
and poor survival outcomes after surgical intervention. However, having preoperatively detectable parameters 
with which to predict early cancer recurrence in resected pancreatic cancer would be more useful for patients, 
surgeons, and medical oncologists, helping them to decide whether to conduct surgical resection and consider the 
potential postoperative morbidity and mortality following radical pancreatectomy.
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Comprehensive investigation using genomics, transcriptomics, proteomics, and metabolomics is essential to 
understanding cancer biology. The metabolome represents the final stage in the “omics” cascade and is thought to 
be the closest phenotype to the biological behavior of cancer10. The metabolomes of cancer patients are affected 
not only by endogenous expression of the cancer itself but also by exogenous factors related to the cancer, such as 
the environment and diet. Therefore, investigating cancer metabolomes can be a useful approach for discovering 
effective biomarkers11,12 Research in recent years has shown that metabolic reprogramming is one of the hall-
marks of cancerous cells13 and metabolomic signatures have already been identified in pancreatic cancer, suggest-
ing a potential application in personalized therapy for pancreatic cancer14,15 by allowing earlier and more precise 
diagnostics, prognostics, and prediction of new therapeutic targets. However, recent studies have almost entirely 
focused on the early detection of pancreatic cancer, with only a few studies reporting the long-term prognostic 
role of metabolomes in pancreatic cancers16.

In this study, we investigated the potential clinical application of preoperative serum metabolomes in pre-
dicting cancer recurrence in patients with resected pancreatic cancer. Furthermore, we intended to develop a 
preoperative serum metabolome-based nomogram with which to predict early recurrence of resected pancreatic 
cancer.

Materials and Methods
Patient data.  From November 2012 to June 2014, among patients who underwent potentially curative pan-
createctomy for pancreatic ductal adenocarcinoma, those with available preoperative blood samples and long-
term follow up data were enrolled in this study. Medical records of the patients were retrospectively reviewed. 
Perioperative clinicopathological characteristics, such as age, sex, neoadjuvant treatment, jaundice, preopera-
tive laboratory findings including cancer antigen (CA) 19–9, tumor size, tumor location, operative procedure, 
pathological findings, American Joint Committee on Cancer (AJCC) cancer stage, and postoperative adjuvant 
chemotherapy, were investigated. All laboratory variables (glucose level, total bilirubin, serum protein, albumin, 
CA 19–9 level) were investigated preoperatively at least 1 week before surgery. Among them, glucose level was 
checked after 8 hours of fasting before surgery.

Ethical issues.  This study protocol was approved by the institutional review board of Severance Hospital 
(IRB No. 4-2017-0503). The need to obtain informed consent was waived, because the serum metabolomes used 
in this retrospective study were collected from patient blood stored in a tissue bank prior to surgery. Curative 
intended pancreatectomy for pancreatic duct adenocarcinoma was performed according to standard criteria for 
patient selection and surgical procedures that have obtained international consensus. In addition, the methods 
used for the analysis of metabolomes are also widely used internationally. All methods were performed in accord-
ance with the relevant guideline and regulation.

Detecting preoperative serum metabolomes.  In total, 188 metabolites were analyzed using a tar-
geted metabolomics approach and Absolute IDQTM p180 kits (Biocrates Life Sciences AG, Innsbruck, Austria; 
Supplementary 1). The kit consists of a single sample preparation procedure, although two separate mass spec-
trometry (MS) analytical runs, a combination of liquid chromatography (LC) and flow-injection analysis (FIA) 
coupled to tandem mass spectrometry (MS/MS), are conducted. The kit enables simultaneous quantification of 21 
amino acids, 21 biogenic amines, 40 acylcarnitines (Cx:y), 90 glycerophospholipids (14 lysophosphatidylcholines 
[lyso PCx:y] and 76 phosphatidylcholines [PC aa x:y or PC ae x:y]), 15 sphingolipids (SMx:y or SM [OH]x:y), and 
one hexose. Cx:y denotes the lipid side chain configuration, where x indicates the number of carbons in the side 
chain and y indicates the number of unsaturated chains. Of 188 metabolites analyzed, 42 metabolites were meas-
ured by LC-MS/MS and 146 metabolites by FIA-MS/MS. Amino acids and biogenic amines were analyzed quanti-
tatively by LC-MS/MS using external calibration standards at seven different concentrations and isotope-labelled 
internal standards. The acylcarnitines, glycerophospholipids, sphingolipids, and sum of hexoses were measured 
by FIA-MS/MS using one-point internal calibration with representative internal standards. The results of lipids 
were classified as semi-quantitative since specific standards were not commercially available and accuracy could 
not be determined over a full quantification range.

For lipid nomenclature, each metabolome is described in accordance with the official lipid nomenclature 
provided by Lipid Maps. Also, annotations for the potential isomers of each metabolomes and the corresponding 
lipid map IDs are provided in Supplementary 2.

Serum samples were processed in strict accordance with the instructions provided by the manufacturer. After 
the addition of 10 µL of the supplied internal standard solution to each well of a 96-well extraction plate, 10 µL of 
each serum sample was added to the appropriate well. The plate was then dried under a gentle stream of nitrogen. 
The samples were derivatized with phenyl isothiocyanate and eluted with 5 mM ammonium acetate in methanol. 
Samples were diluted with either 40% methanol in water for LC-MS/MS analysis (15:1) or running buffer pro-
vided by the kit (Biocrates Solvent I) for FIA-MS/MS (20:1).

The LC‐MS/MS system comprised an Agilent 1290 Infinity HPLC system (Agilent Technologies Inc., Santa 
Clara, CA, USA) coupled to a QTRAP 5500 mass spectrometer (Sciex, Woodlands Central, Singapore) in the elec-
trospray ionization mode. Amino acids and biogenic amines were analyzed via LC‐MS/MS in the positive mode. 
Five microliters of sample extract were injected onto an Agilent Zorbax Eclipse XDB C18 column (3.0 × 100 mm, 
3.5 μm) protected by a SecurityGuard pre‐column (C18, 4 × 3 mm) (Phenomenex, Torrance, CA, USA) at 50 °C 
using a 9.5-min solvent gradient employing 0.2% formic acid in water (mobile phase A) and 0.2% formic acid 
in acetonitrile (mobile phase B). Twenty microliters of sample extract were used for FIA-MS/MS in the positive 
mode to measure acylcarnitines, glycerophospholipids, and sphingolipids, while hexoses were monitored in a 
subsequent run in the negative mode. All FIA injections were carried out using the mobile phase prepared by 
Biocrates Solvent I in an isocratic mode. The LC and MS settings for LC‐MS/MS and FIA-MS/MS mode are 
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described in Supplementary 3. All metabolites were identified using multiple reaction monitoring as optimized 
and provided by Biocrates Life Sciences AG.

All measurements were made in a 96-well format. Analytical performance was monitored using three quality 
control (QC) samples (a low, medium, and high concentration). The three individual QC samples were placed 
at the beginning of an analytical run. Additional QC samples at the medium concentration were placed at the 
middle and end of each analytical run. Metabolite concentrations were calculated by employing a combination 
of AnalystTM (Sciex) and MetIDQTM (Biocrates) software. We confirmed that the accuracy of QC samples was 
within the tolerance limit provided by the manufacturers and validated the data using MetIDQTM software before 
data processing. Because we tested all samples in a single well plate, we did not normalize the data to correct for 
batch effects.

Ten metabolites were not included for analysis because they were not detected in the majority of samples.

Statistical analysis using hierarchical clustering.  For exploration of high-throughput data, cluster-
ing and heatmap analysis were considered. Also, hierarchical clusters were used to generate models that could 
comprehensively consider independent variables, such as a Cox proportional hazards model. To convert highly 
correlated preoperative serum metabolomes into a grouped variable in a hierarchical way and to visualize how 
clusters formed, hierarchical cluster analysis considered the Euclidean distance as a distance measure and the 
‘Ward.D2’ algorithm as a linkage method17.

Determining the number of preoperative serum metabolome-based clustering groups.  To 
properly determine the appropriate number of clustering groups, a hierarchical clustering algorithm based on the 
silhouette method was implemented in the R package factoextra.

Other statistics and testing.  Categorical variables are expressed as a frequency and percentage, and were 
analyzed by Fisher’s exact test. Continuous variables are described as a mean ± standard deviation when the 
normality assumption was satisfied and as a median (interquartile range) when it was not. When the normality 
assumption for continuous variables was violated, the Wilcoxon rank sum test was conducted instead of Student’s 
t-test.

Adjusted p-value for multiple comparisons.  P-values obtained from the comparison of two clusters 
were adjusted using the false discovery rate by the Benjamini-Hochberg procedure to counteract the problem 
of multiple comparisons. To appropriately reduce the number of variables used in the model, employing only 
larger differences between the clusters among the 178 metabolomes analyzed in this study, only variables with an 
adjusted p-value < 0.001 were used in the model.

Building survival models and comparing the predictive power of recurrence-predicting models.  
Based on covariate variables, such as age, sex, neoadjuvant chemotherapy, tumor size, preoperative CA 19–9, 
jaundice, and tumor location, the significant prognostic factors for predicting 1-year disease-free survival were 
preferentially selected by univariate Cox proportional hazards models. Multivariate Cox proportional hazards 
models were used to construct a model that added not only prognostic factors but also the clustering groups and 
instrumental metabolomes that could distinguish between clusters. The best model including metabolomes was 
finally established with normalization of metabolomic data and the constraint that the last set of covariates must 
have a variation inflation factor <10. This was implemented in the R package My.stepwise. The proportionality 
assumption for the Cox model was also confirmed. Harrell’s concordance (C)-index and Heagerty’s integrated 
time-dependent area under the curve (iAUC) for each of the 1000 bootstrap samples used to assess model perfor-
mance of established recurrence-predicting models18,19.

Establishing nomogram.  A nomogram for predicting the probability of 6- and 12-month disease-free sur-
vival for patients with resected pancreatic ductal adenocarcinoma was constructed on the basis of the Cox model 
that had the most predictive power among the considered models.

All statistical hypothesis tests were two-sided with a significance level of 0.05. All statistical analyses were 
implemented using R packages, version 3.4.0.

Results
General patient characteristics.  All 57 patients were confirmed to have pancreatic ductal adenocarci-
noma. In total, 32 patients (56.1%) were male and 25 were female, with an overall average age of 64.7 (±9.5) years. 
Pancreatic head cancers were found in 42 patients (73.7%) and pancreatic body and tail cancers in 15 patients 
(26.3%). Serum CA 19–9 at initial diagnosis was 1058.1 (U/mL) (±2474.4). Neoadjuvant chemoradiation therapy 
was provided for 12 patients (21.1%). Pancreaticoduodenectomy was performed in 41 patients, distal pancrea-
tectomy with splenectomy in 15 patients, and total pancreatectomy in 1 patient. Resected tumor size was 2.8 cm 
(±1.2) cm in diameter, and the number of metastatic lymph nodes was 1.8 (±2.5).

Preoperative serum metabolome-based clustering of patients with resected pancreatic cancer.  
The 57 patients could be clearly separated into two main clusters using 178 preoperative serum metabolomes. The 
hierarchical relationship among the resected pancreatic cancer patients with preoperative serum metabolomes is 
shown as a cluster dendrogram in Fig. 1.

Among the 178 detected metabolomes, the top 15 most differentiating metabolomes between two clustering 
groups are summarized in Table 1. Interestingly, all of the top 15 metabolomes were related to phosphatidylcho-
lines (PC), which are differentiated according to the presence of an ester (“a”) or an ether (”e”) binding to the glyc-
erol moiety. Among them, the “aa” (diacyl) form of PCs was found in 6 (40%) of the metabolomes, while 9 (60%) 
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were related to the “ae” (acyl-alkyl) form of PCs. The value of the PC derivatives related to the top 15 preoperative 
serum metabolomes were found to be significantly lower in patients of cluster 2, compared with cluster 1.

Cluster 1 is on the right (blue) and cluster 2 is on the left (red). The y-axis represents a measure of closeness 
of individual clusters.

Clinicopathological differences between preoperative serum metabolome-based clustering 
groups.  Comparing clinical and pathological characteristics between two preoperative metabolomic-based 
clustering groups, we found that patients in cluster 2 showed significantly higher preoperative serum glucose 
levels (122 [107, 180] vs. 180.5 [131.75, 324.5], p = 0.035). No other clinicopathological characteristics, including 
age, sex, CA 19–9, preoperative neoadjuvant treatment, tumor characteristics, laboratory, and pathological find-
ings, were statistically significant between the two clusters (p > 0.05, Table 2).

Long-term oncological outcomes according to preoperative serum metabolome-based clustering  
groups.  Disease-free survival differed significantly between the preoperative serum metabolome-based clus-
tering groups. Patients within cluster 2 showed earlier tumor recurrence than those within cluster 1 (median 8 
months [95% confidential interval (CI): 5.521–10.479] vs. median 15 months [95% CI: 8.375–21.625], p = 0.034). 
However, there was no statistical differences in terms of disease-specific survival between the two groups 
(p = 0.312) (Fig. 2).

Determining factors to predict 1-year disease-free survival in resected pancreatic cancer.  
Among clinicopathological characteristics, preoperative serum metabolome-based cluster 2 (hazard ratio 
[HR] = 2.839, p = 0.015), tumor size (HR = 1.433, p = 0.015), and preoperative CA 19–9 (HR = 1.0001, p = 0.043) 
were identified as independent 1-year predicting factors after radical pancreatectomy for pancreatic ductal 

Figure 1.  Cluster dendrogram according to the expression pattern of preoperative serum metabolomes.

Metabolomes Cluster 1 (N = 41) Cluster 2 (N = 16) p-value† SMD* Lower Upper

PC.ae.C36_4 12054 (10989–12858) 7225 (6699.8–8850) 4.40E-05 2.357 1.624 3.076

PC.ae.C38_4 7136 (6450–8166) 5068.5 (4220–5402.8) 5.90E-05 2.057 1.357 2.744

PC.ae.C40_5 2574 (2302–3137) 1727 (1578.2–2070.8) 5.90E-05 1.983 1.291 2.662

PC.ae.C38_5 12576 (11306–13565) 8770.5 (7702.5–9768.2) 7.10E-05 2.143 1.434 2.839

PC.ae.C40_4 1386 (1238–1630) 957.5 (857–1120) 1.10E-04 1.989 1.296 2.669

PC.ae.C42_4 468 (435–543) 353 (318–411.8) 1.50E-04 1.748 1.079 2.405

PC.ae.C36_5 10046 (8675–10712) 6391.5 (5230.2–7379) 1.60E-04 2.028 1.331 2.712

PC.ae.C42_5 1181 (1049–1301) 872.5 (805.8–974) 2.10E-04 1.881 1.199 2.551

PC.ae.C44_4 235 (223–246) 184.5 (171.8–194.2) 2.50E-04 1.902 1.218 2.574

PC.aa.C40_6 41083 (34973–49833) 25533.5 (21715.2–32665) 3.30E-04 1.76 1.089 2.418

PC.aa.C40_4 1941 (1743–2226) 1314 (1134.2–1543.8) 4.30E-04 1.738 1.07 2.394

PC.ae.C38_6 7616 (6387–8615) 5007 (3841.8–,5751.2) 4.70E-04 1.8 1.126 2.462

PC.aa.C38_4 76637 (65875–87120) 54081 (44843.5–60592.8) 5.10E-04 1.781 1.108 2.441

PC.ae.C40_1 758 (667–905) 532 (450.8–586.5) 7.20E-04 1.669 1.007 2.319

PC.aa.C38_0 3047 (2659–3710) 2126.5 (1755–2487.2) 7.90E-04 1.685 1.021 2.337

Table 1.  The 15 most significant metabolomes (adjusted p-value < 0.001) differentiating preoperative serum 
metabolome-based clustering groups (arranged in ascending order by adjusted p-values). †P-value from 
Wilcoxon rank sum test with false discovery rate by the Benjamini-Hochberg procedure. *Standardized mean 
differences.
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Demographics Total (N = 57) Cluster 1 (N = 41, 71.9%) Cluster 2 (N = 16, 28.1%) p-value Effect size 95%CI Lower 95% CI Upper

Age (years) 67 (58–72) 67 (57–73) 67 (60.75–69.25) 0.742 0.014 −0.564 0.592

Sex 0.255 0.364 −0.219 0.944

1 25 (43.9) 20 (48.8) 5 (31.2)

2 32 (56.1) 21 (51.2) 11 (68.8)

Neo-Tx 0.287 0.096 −0.482 0.674

No 45 (78.9) 34 (82.9) 11 (68.8)

Yes 12 (21.1) 7 (17.1) 5 (31.2)

Jaundice 0.771 0.096 −0.482 0.674

No 34 (59.6) 25 (61) 9 (56.2)

Yes 23 (40.4) 16 (39) 7 (43.8)

Glucose 129 (110–206) 122 (107–180) 180.5 (131.75–324.5) 0.035 0.592 0.001 1.178

Total bilirubin 6.9 (6.4–7) 7 (6.4–7.1) 6.8 (6.38–7) 0.252 0.154 −0.425 0.732

Protein 4 (3.8–4.2) 4 (3.8–4.1) 4 (3.8–4.23) 0.703 0.099 −0.479 0.677

Albumin 1.2 (0.6–8.1) 1.2 (0.5–8) 1.25 (0.95–8.67) 0.742 0.189 −0.391 0.767

CA 19–9 (U/mL) 157 (32–555.1) 98.1 (26.2–524.3) 178 (49.6–625.33) 0.689 0.074 −0.504 0.652

Tumor Size (cm) 2.5 (2–3.3) 2.3 (2–3) 3 (2.25–3.85) 0.092 0.44 −0.145 1.022

Tumor location >0.999 0.042 −0.536 0.62

Head 42 (73.7) 30 (73.2) 12 (75)

Body + Tail 15 (26.3) 11 (26.8) 4 (25)

Operative procedure >0.999 0.235 −0.345 0.813

PD 3 (5.3) 2 (4.9) 1 (6.2)

PPPD 38 (66.7) 27 (65.9) 11 (68.8)

DPS 15 (26.3) 11 (26.8) 4 (25)

TP 1 (1.8) 1 (2.4) 0 (0)

Differentiation 0.662 0.216 −0.364 0.794

Well & Moderate 50 (89.3) 35 (87.5) 15 (93.8)

Poor 6 (10.7) 5 (12.5) 1 (6.2)

Lymphatic Invasion 0.752 0.201 −0.379 0.779

No 39 (68.4) 27 (65.9) 12 (75)

Yes 18 (31.6) 14 (34.1) 4 (25)

Vascular Invasion 0.236 0.406 −0.178 0.987

No 35 (61.4) 23 (56.1) 12 (75)

Yes 22 (38.6) 18 (43.9) 4 (25)

Perineural Invasion 0.74 0.317 −0.442 0.715

No 13 (22.8) 10 (24.4) 3 (18.8)

Yes 44 (77.2) 31 (75.6) 13 (81.2)

Margin >0.999 0.044 −0.534 0.622

R0 47 (82.5) 34 (82.9) 13 (81.2)

R1 10 (17.5) 7 (17.1) 3 (18.8)

AJCC 8th T stage 0.669 0.304 −0.278 0.883

T1 16 (28.1) 13 (31.7) 3 (18.8)

T2 31 (54.4) 21 (51.2) 10 (62.5)

T3 10 (17.5) 7 (17.1) 3(18.8)

AJCC 8th N stage 0.666 0.279 −0.302 0.858

N0 27 (47.4) 21 (51.2) 6 (37.5)

N1 21 (36.8) 14 (34.1) 7 (43.8)

N2 9 (15.8) 6 (14.6) 3 (18.8)

#Retrieved LNs 16.93 ± 9.3 17.32 ± 9.86 15.9 ± 7.9 0.585 0.154 −0.425 0.732

#Positive LNs 1 (0–3) 0 (0–3) 1 (0–2) 0.858 0.114 −0.465 0.692

LNR 0.05 (0–0.15) 0 (0–0.15) 0.06 (0–0.13) 0.749 0.017 −0.561 0.595

Postoperative adj-CTx 0.129 −0.45 0.707

No 9 (15.7) 7 (17.0) 2 (12.5)

Yes 48 (84.3) 34 (83.0) 14 (87.5) 0.720

Table 2.  Clinicopathological characteristics according to preoperative serum metabolome-based clustering 
groups. Abbreviations: Neo-Tx, neoadjuvant therapy; PD, pancreaticoduodenectomy; PPPD, pylorus-
preserving pancreaticoduodenectomy; DPS, distal pancreatectomy with splenectomy; TP, total pancreatectomy; 
LN, lymph node; LNR, lymph node ratio; adj-CTx, adjuvant chemotherapy.
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adenocarcinoma (Table 3). Other preoperatively detectable parameters, such as age (HR = 0.985, p = 0.483), 
sex (HR = 2.1774, p = 0.07), neoadjuvant chemotherapy (HR = 0.6097, p = 0.365), jaundice (HR = 1.3349, 
p = 0.474), and tumor location (HR = 0.5803, p = 0.277), failed to show prognostic significance in predicting 
1-year disease-free survival.

Developing recurrence-predicting nomogram using preoperative serum metabolomes in 
resected pancreatic cancer.  Model performance was tested for accuracy in predicting the probability of 
early disease-free survival in resected pancreatic cancer (Table 4). We found that model 3, which considered 
preoperative CA 19–9 and three individual preoperative serum metabolomes (PC.aa.C38_4, PC.ae.C42_5, and 
PC.ae.C38_6), was the most powerful preoperative clinical model with which to predict 6-month or 1-year cancer 
recurrence-free survival after radical pancreatectomy, with a Harrell’s C-index of 0.823 (95% CI: 0.750–0.891) and 
an iAUC of 0.816 (95% CI: 0.736–0.893; Table 5).

Setting aside tumor size, which must be determined by a pathologist during the postoperative period, a nom-
ogram was developed considering only preoperative detectable parameters, such as preoperative CA 19–9 and 
three significant PC derivatives (Fig. 3).

Discussion
Our present study demonstrated that patients with resected pancreatic cancer can be categorized into two groups 
according to their preoperative serum metabolomes. Of these two groups, one (cluster 2) was significantly associ-
ated with earlier cancer recurrence. This suggests the potential clinical application of preoperative serum metab-
olomes in elucidating the tumor biology of resected pancreatic cancer.

Interestingly, only preoperative serum glucose was significantly higher in patients of cluster 2, when com-
paring clinicopathological characteristics according to the clustering of different metabolomes. There are 
several studies reporting a potential association between serum glucose level and oncological outcomes in 
pancreatic cancer20,21. Raghavan et al.22 performed a comprehensive review to address the impact of diabetes 
on the prognosis of pancreatic cancer. Based on 38,777 patients from 31 studies, they found that diabetic 
patients with pancreatic cancer had significantly lower overall survival than those without diabetes (14.4 vs. 
21.7 months; p < 0.001). Recently, Lv et al.23. also performed a meta-analysis to investigate the impact of dia-
betes on the clinical outcomes of resected pancreatic cancer. They found that new-onset diabetes conferred a 
negative impact on the survival of patients with resected pancreatic cancer. The observations that new-onset 
diabetes is strongly associated with pancreatic cancer24 and pancreatic resection in some cases can lead to 
improved serum glucose control suggest that pancreatic cancer may increase the level of serum glucose in 
patients and change their metabolomes. However, the underlying mechanism has not been elucidated yet. This 
potential correlation among serum glucose level, oncological outcome, and the metabolome is an interesting 
topic to be further investigated.

Figure 2.  Disease-free survival according to preoperative serum metabolome-based clustering.

Predicting 1-year disease-free survival

Univariate Multivariate

HR (95% CI) p-value HR (95% CI) p-value

Cluster 2 (ref. cluster 1) 2.874 (1.293–6.389) 0.01 2.839 (1.227–6.571) 0.015

Tumor Size 1.558 (1.18–2.057) 0.002 1.433 (1.073–1.912) 0.015

CA 19–9 1.0001 (1–1.0002) 0.054 1.0001 (1–1.0003) 0.043

Table 3.  Predicting perioperative factors for estimating 1-year disease-free survival.
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Most metabolomic studies have focused on the early diagnosis of pancreatic cancer25–28. Investigations of 
the potential relationship between metabolomes in pancreatic cancer patients and their prognoses are scarce. 
Fontana et al.29 developed a metabolites risk score (MRS) for predicting 1-year mortality risk in patients with 
pancreatic adenocarcinoma. They concluded that mass spectrometry-based metabolomic profiling of patients 
through their serum represented a valid tool for the identification of novel biomarkers with which to predict 
1-year mortality risk in pancreatic cancer patients. However, the study population comprised only 27 patients, 
and most cases (74.1%) were reported to be unresectable. Considering that margin-negative resection is known 
to be the most effective treatment modality, the question of the potential role of MRS in this population is arising, 
because a small proportion of the patients who undergo resection will survive longer than those without surgical 
resection. Without analyzing the MRS, 1-year mortality is highly expected, because survival is estimated to be less 
than 1 year for patients with unresected pancreatic cancer30,31. Battini et al.32 also investigated the use of tumor 
metabolism profiling for predicting the clinical outcomes of pancreatic cancer patients. Although they suggested 
that metabolomic profiling based on 1 H high-resolution magic angle spinning nuclear magnetic resonance spec-
troscopy could provide important information for the characterization of pancreatic cancer and also predict 
long-term survival, they needed intact tissue obtained during surgical procedure for this analysis. Moreover, 
although they did not specify exact survival outcomes, the median survival was approximately 1 year when eth-
anolamine concentration was <0.740 nmol/mg. According to this scenario, questions remain regarding whether 
surgery should be performed for these patients. For a tailored surgical approach for resectable pancreatic cancer, 
it would be more helpful if surgeons, medical oncologists, and patients are able to obtain additional information 
on potential survival probability prior to surgical intervention. One study sought to predict survival outcomes 
through specific metabolites in serum. C. Yuan et al.33 investigated 82 metabolites in prediagnostic plasma by 
liquid chromatography-mass spectrometry from 484 pancreatic cancer patients. Isocitrate and aconitate in the 
tricarboxylic acid cycle were statistically significantly associated with survival outcomes. Hazard ratios for death 

Model 1 Model 2 Model 3

HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value

CA 19–9 1.0001 (1–1.0002) 0.054 1.0001 (1–1.0003) 0.018 1.0001 (0.9999–1.0002) 0.205

Cluster 2 (ref. cluster 1) 3.303 (1.443–7.556) 0.005

PC.aa.C38_4 0.28 (0.134–0.587) <0.001

PC.ae.C42_5 2.43 (1.245–4.743) 0.009

PC.ae.C38_6 0.558 (0.324–0.963) 0.036

Table 4.  Clinically applicable model for predicting 1-year disease-free survival in resected pancreatic cancer. 
Model 1: CA 19–9; model 2: model 1 + cluster 2; model 3: model 1 + metabolomes.

Harrell’s C-index (95% CI) iAUC

Model 1 0.619 (0.487–0.733) 0.573 (0.507–0.653)

Model 2 0.695 (0.591–0.794) 0.684 (0.586–0.782)

Model 3 0.823 (0.75–0.891) 0.816 (0.736–0.893)

Model 1 vs. model 2 −0.076 (−0.209–0.021) −0.111 (−0.207–−0.022)

Model 1 vs. model 3 −0.204 (−0.349–−0.08) −0.243 (−0.346–−0.15)

Model 2 vs. model 3 −0.128 (−0.238–−0.04) −0.132 (−0.227–−0.045)

Table 5.  Comparison of predictive power among three survival models according to C-index and iAUC.

Figure 3.  Nomogram for predicting 6-month and 1-year disease-free survival in patients with resected 
pancreatic cancer.
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of 1.89 for isocitrate (95% CI 1.06–3.35, p < 0.001) and 2.54 for aconitate (95% CI 1.42–4.54, p < 0.001) were 
suggested. Moreover, Moore et al.34 reported enhanced metabolomics analysis identified metabolic pathways that 
may assist in differentiating pancreatic cancer stages that do not occur in a linear stepwise progression. Among 
the 215 measured plasma metabolites, five principal metabolic components were identified as exhibiting strong 
correlation with disease burden in pancreatic cancer. Specifically, pancreatic neuroendocrine tumor was associ-
ated with high uric acid, methionine, intraductal papillary mucinous neoplasm with high amino acids, locally 
advanced pancreatic cancer with both high fatty acids and high polyamines, and metastatic pancreatic ductal 
adenocarcinoma with high tricarboxylic acid cycle, while local pancreatic cancer showed no predominance of 
specific principal components.

Metabolite pathways are still uncertain. Many metabolites are currently being studied in pancreatic cancer, as 
there are many pathways to explain them. According to a recent review, alanine aspartate and glutamate metab-
olism, glycine serine and threonine metabolism, and taurine and hypotaurine metabolism are the three most 
prominent pathways35. From the study, a total of 132 potential metabolite-based biomarker candidates were 
selected. Among them, amino acids were the dominant biomarkers. Seven other pathways were also enriched, 
including arginine and prolene metabolism; aminoacryl-tRNA biosynthesis; methane metabolism; valine, leu-
cine, and isoleucine biosynthesis; nitrogen metabolism; cyanoamino acid metabolism; and synthesis and degra-
dation of ketone bodies.

In the present study, we successfully developed a preoperative serum metabolome-based nomogram with 
which to predict 1-year disease-free survival probability in patients with resected pancreatic cancer. Only pre-
operatively detectable parameters, including CA 19–9 and three PC derivatives (PC.aa.C38_4, PC.ae.C42_5, and 
PC.ae.C38_6), are needed. The accuracy and model performance were found to be acceptable. In clinical settings, 
potential candidates for surgical resection of resectable pancreatic cancer comprise the target clinical population 
for the application of this nomogram. If the values of preoperative serum CA 19–9 and the three PC derivatives are 
known, 6-month and 1-year disease-free survival probability after pancreatectomy can be easily estimated using 
the nomogram, even before surgery. Therefore, patients and their families will be able to gain additional infor-
mation on the potential prognostic benefit of surgical resection during the preoperative decision-making process 
for radical pancreatectomy. Surgeons and medical oncologists will be able to individualize the follow-up strategy 
according to the estimated disease-free survival probability after radical pancreatectomy. We are providing free 
on-line access to this nomogram that we developed (http://103.22.220.149:8080/service/kang/home2.jsp).

Recently, the potential oncological role of neoadjuvant treatment followed by surgery has been actively inves-
tigated in advanced pancreatic cancer36,37. Several studies on the clinical application of neoadjuvant treatment 
in resectable pancreatic cancer showed no oncological benefit of neoadjuvant treatment in resectable pancreatic 
cancer38. However, if the present nomogram estimated poor 6-month or 1-year survival following surgical resec-
tion (for example, less than 50%), the initial planned treatment strategy of surgical resection may be changed to 
include neoadjuvant treatment before surgical resection, even in patients with resectable pancreatic cancer, which 
redefines the concept of a patient-oriented surgical approach to “resectable” pancreatic cancer. The clinical value 
should be validated with well-designed prospective randomized control studies in the near future.

In order to eliminate selection bias, survival analysis was conducted by a statistician, not the researchers who 
performed the metabolite analysis, without knowing which patient’s preoperative metabolites was enrolled. 
However, several limitations should be considered when interpreting the present results: This study was retro-
spective in nature, with a limited number of patients. The current nomogram was established based on long-term 
oncological outcomes (recurrence) of patients with surgical resection; however, the preoperative clinical applica-
tion of this nomogram is based on the assumption that patients had already undergone pancreatectomy. Thus, it 
can be said that this study is limited to a “proof-of-concept.” However, the fact that a retrospective study involv-
ing a small number of patients can be overcome by the development of a practical nomogram based on clinical 
data like this study. Because of these reasons, the performance of this model may need to be re-validated in a 
large-volume prospective study.

In summary, patients with resected pancreatic cancer can be categorized according to their different metabo-
lomes in order to predict early cancer recurrence. Preoperative detectable parameters, including serum CA 19–9 
and the three PC derivatives PC.aa.C38_4, PC.ae.C42_5, and PC.ae.C38_6 were used to develop a model for pre-
operatively predicting early tumor recurrence in patients who underwent pancreatectomy for pancreatic cancer. 
The specific roles of the three individual PC derivatives also need to be carefully reevaluated. This model will be 
helpful in decision-making for surgery and establishing follow-up strategies for patients with resected pancreatic 
cancer. Further study is mandatory.
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