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Abstract

Computational design of binding sites in proteins remains difficult, in part due to limitations in our 

current ability to sample backbone conformations that enable precise and accurate geometric 

positioning of side chains during sequence design. Here we present a benchmark framework for 

comparison between flexible-backbone design methods applied to binding interactions. We 

quantify the ability of different flexible backbone design methods in the widely used protein 

design software Rosetta to recapitulate observed protein sequence profiles assumed to represent 

functional protein/protein and protein/small molecule binding interactions. The CoupledMoves 

method, which combines backbone flexibility and sequence exploration into a single acceptance 

step during the sampling trajectory, better recapitulates observed sequence profiles than the 

BackrubEnsemble and FastDesign methods, which separate backbone flexibility and sequence 

design into separate acceptance steps during the sampling trajectory. Flexible-backbone design 

with the CoupledMoves method is a powerful strategy for reducing sequence space to generate 

targeted libraries for experimental screening and selection.
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1 | INTRODUCTION

Computational protein design searches for sequences that adopt desired structures and 

functions. Most generally, computational design methods require (a) algorithms to 
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efficiently search the vast sequence and conformational space accessible to proteins, and (b) 

effective energy functions to rank the solutions. Both of these requirements necessitate 

approximations. Design energy functions are often simplified while considering atomic 

detail,1,2 and the search space of sequences and conformations is typically limited by 

reducing degrees of freedom in a design simulation. One early approximation was to leave 

the backbone fixed while sampling rotameric side chain conformations during sequence 

design.3,4 While the fixed backbone approximation is useful for computational efficiency, it 

is rarely sufficiently accurate as flexibility is a hallmark of naturally occurring functional 

proteins and backbones shift to accommodate side chain mutations arising during evolution 

or design.5–8 Highly stable, idealized folds can be designed de novo,9,10 but design of 

proteins with new functions remains challenging. In most cases where new functions have 

been designed computationally, the designed protein is modeled on natural “scaffold” 

proteins with minimal changes in backbone conformation,11–15 although there are recent 

notable exceptions of functions designed into de novo proteins.16,17 Moreover, attaining 

sufficiently high activities typically requires optimization of the desired function by directed 

evolution.14,15,18 Function often depends on hydrogen bonds, which require precise 

backbone and side chain geometry, which remains difficult to design19 especially when a 

novel function requires “reshaping” of an existing protein conformation.20

Various strategies have been proposed to model backbone flexibility in design, such as small 

random perturbations in torsional or Cartesian space,7,21–23 normal mode analysis,24 or 

“backrub” motions shown to underlie commonly observed protein structural heterogeneity in 

high resolution crystal structures6 that have proven useful to model structural changes in 

response to mutations.8,25,26 Several strategies have used protein backbone ensembles for 

design, which are typically generated computationally employing various sampling 

methods21,22,27 including backrub motions28–31 but can also be taken from crystal 

structures.23,28,31

Within the structure modeling and design program Rosetta,32 backbone flexibility has been 

treated in a number of ways. These include (a) generation of new protein backbones by 

assembly from peptide fragments which demonstrated success in ab initio structure 

prediction,33,34 (b) iterating between sequence design via Monte Carlo search and structure 

optimization via minimization,35,36 (c) a robotics-inspired kinematic closure (KIC) 

algorithm37 shown to model loop conformations with sub-Angstrom accuracy,38 and (d) the 

Backrub algorithm benchmarked on recapitulation of known sequences.28,30,39–41 Most 

flexible backbone design methods iterate between sequence design on a fixed backbone and 

structural optimization on a fixed sequence,35 which effectively uncouples sequence changes 

from direct influence on backbone structure. In contrast, the “CoupledMoves” method in 

Rosetta,42 combines side chain and backbone moves using Rosetta backrub sampling26 in a 

single design step.

While Rosetta flexible backbone design has been successfully applied to forward 

engineering of new functions,16,43,44 different methods have not been directly compared for 

accuracy using common benchmark datasets. Here, we describe such a benchmark 

comparison of three different flexible-backbone design methods in Rosetta: CoupledMoves,
42 BackrubEnsemble,39–41 and FastDesign, which combines sequence design with the 
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Rosetta FastRelax method45,46 to move the backbone. We focus on methods within the 

openly available Rosetta framework because they use the same energy function, which 

allows us to directly compare different methods of sampling backbone flexibility. We 

evaluate each of the methods on its ability to recapitulate “tolerated sequence space” for 

binding interactions. We define tolerated sequence space as experimentally selected or 

naturally occurring sequences consistent with a functional binding interaction with a small 

molecule or protein binding partner.

We find that CoupledMoves recapitulates tolerated sequence space and individual stabilizing 

mutations more accurately than FastDesign or BackrubEnsemble. We introduce an updated 

version of the CoupledMoves algorithm (CM-KIC) that uses KIC in place of the original 

backrub backbone mover, which leads to further small improvements in performance. The 

coupled algorithm allows subtle conformational shifts in backbone torsions, which 

accommodate favorable side chain rotamers, in turn leading to more accurate prediction of 

side chain interactions. We also analyze shortcomings of the design methods that highlight 

areas for improvement.

2 | MATERIALS AND METHODS

2.1 | Design methods

Design protocols used Rosetta revision number 60351 and energy function ref2015.1,47 For 

each method, we used standard parameters and settings previously reported in benchmarks 

or design applications, except for the new CoupledMoves (CM) methods (CM-FKIC and 

CM-WKIC, see below) reported here. Command lines for each method can be found in the 

supplement.

2.1.1 | FastDesign—FastDesign is based on the FastRelax protocol in Rosetta described 

in Reference 45 and 46. Briefly, FastRelax consists of inner cycles of rotamer repacking and 

backbone and side chain torsion minimization with progressively higher weight on the 

repulsive part of the van der Waals energy function component (from 2% to 100% of its total 

value). FastDesign uses an analogous protocol but allows side chain design in addition to 

repacking. During FastDesign, we used harmonic coordinate constraints to keep backbone 

heavy atoms close to their starting position, and the weight of the constraints was ramped 

down from 1.0 to 0.0 during the course of each inner simulated annealing cycle. Constraint 

and repulsive weights were ramped five times, during five outer cycles. For each input 

protein structure, 400 designs were generated in independent design trajectories. Command 

line arguments are provided in the Supplement.

2.1.2 | BackrubEnsemble—The BackrubEnsemble method is described in Reference 

40 and 41. Briefly, the method generates a structural ensemble with backbone 

conformational variation using the backrub algorithm implemented in Rosetta,26 and then 

carries out fixed-backbone side chain design on each member of the ensemble. 400 

ensemble members were generated using 10 000 backrub trials, a temperature of 1.2, and a 

backbone segment length of 3–12 residues. Command line arguments are shown in the 

Supplement.
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2.1.3 | Forced BackrubEnsemble design—“Forced” BackrubEnsemble design 

forces sequence design to choose the known consensus side chain at certain positions. 

Forced design was applied to Glutathione Reductase positions E50 and D331, and DIG10 

positions Y34, Y101, and Y115. For each protein, 100 forced simulations were run, using as 

input the first 100 members of the same BackrubEnsemble on which typical design was 

performed.

2.1.4 | CoupledMoves—The CoupledMoves method was used as described in 

Reference 42. Briefly, each coupled move had a 90% probability of being a backbone and 

side-chain move, and a 10% probability of being a ligand move. Each simulation was run for 

1000 moves and 400 simulations were run for each protein-ligand or protein-protein 

complex. All unique amino acid sequences accepted during each simulation were output into 

a FASTA file, and the resulting 400 FASTA files were pooled, including redundancy, for 

analysis. Command line arguments are provided in the Supplement.

2.1.5 | CoupledMoves with kinematic closure—Two different methods of modeling 

backbone flexibility are implemented in CoupledMoves. The first method uses the Backrub 

algorithm26 and was originally described in Reference 42. The second method uses KIC37,38 

and is implemented in CoupledMoves here. Kinematic closure in Rosetta38 generates 

conformations of backbone segments by sampling nonpivot torsions in the segment and then 

analytically determining values for six pivot torsions to close the loop. For the CM-FKIC 

(KIC using fragments) method, nonpivot torsions are sampled from peptide fragments34 

taken from the protein structure database (PDB). For the CM-WKIC (KIC using a “walking” 

perturbation) method, nonpivot torsions are adjusted by a random value from a Gaussian 

distribution centered around zero and with a SD of 3°. In each case, the remaining six pivot 

torsions are then solved analytically to close the loop. Command line arguments are 

provided in the Supplement.

2.1.6 | Ligand handling—Rosetta requires ligands to be described by a params file, 

which contains information defining the ligand’s atom types, bond geometry, and chemical 

connectivity. We generated params files from PDB structures using Rosetta’s 

molfile_to_params.py utility script. We did not model multiple ligand conformers except for 

DIG, for which the DIG ligand conformer library used during DIG10 design15 was obtained 

from the authors.

CoupledMoves samples ligand rigid-body translation and rotation in all cases. FastDesign 

minimizes ligand torsional degrees of freedom in addition to backbone torsion angles during 

its minimization step. BackrubEnsemble and FixBB do not sample ligand movement.

2.2 | Benchmark datasets

2.2.1 | Cofactor binding sites—This dataset is described in detail in Reference 42. 

Briefly, the dataset is comprised of seven protein families, each containing a conserved small 

molecule cofactor binding site (Table S1). The crystal structure with the highest resolution 

available was chosen as the starting point for design. As in Reference 42, positions with a 

side-chain heavy atom within 6 Å of any heavy atom in the cofactor ligand were allowed to 
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design to any amino acid identity, and positions that could clash with designable positions 

were allowed to repack (change conformation but not identity) (Table S2). Known profiles 

were obtained from natural sequences of these binding sites as described in Reference 42.

2.2.2 | Enzyme specificity—This dataset is described in detail in Reference 42. Briefly, 

the dataset is comprised of 10 enzymes for which there are experimentally validated 

specificity-altering mutations in the ligand binding sites (Table S3). As in Reference 42, 

design was carried out with either the native or the non-native substrate/substrate analog. 

Positions with heavy atoms within 4.5 Å of any ligand atoms differing between the native 

and non-native substrate were allowed to design to any amino acid identity, and positions 

that could clash with designable positions (as described in Reference 42) were allowed to 

repack (Table S4). Structures were prepared as described in Reference 42. Briefly, for each 

enzyme four types of structures were prepared: (a) the native enzyme with the native ligand, 

(b) the mutant enzyme(s) with the nonnative ligand, (c) the native enzyme with the non-

native ligand, and (d) the mutant enzyme with the native ligand.

2.2.3 | DIG10—The DIG10 dataset was taken from Reference 15. Briefly, DIG10 is a 

computationally designed protein that has been engineered to bind the small molecule 

digoxigenin (DIG).15 A computational design, DIG10, was subjected to selection by yeast 

surface display, first of a single-site saturation mutagenesis library, then of a combinatorial 

library of beneficial mutations identified in the first selection, yielding variant DIG10.1. 

DIG10.1 was then subjected to site saturation mutagenesis (SSM) and selections using yeast 

surface display to probe the effect of mutations, which our computational design protocol 

seeks to recapitulate. For input, we used the crystal structure of wild-type protein (PDB: 

1Z1S) on which DIG10 was designed, the sequence of DIG10.1 (which we placed onto the 

1Z1S scaffold using the Rosetta fixed backbone [FixBB] design protocol), and the 

digoxigenin conformation from the DIG10.2/digoxigenin complex (PDB: 4J8T), where 

DIG10.2 is a DIG10.1 variant containing additional mutations from the SSM selection). 

Digoxigenin was placed into the 1Z1S scaffold by using PyMOL to align 4J8T and 1Z1S, 

then combining the digoxigenin molecule from 4J8T and the protein structure from 1Z1S 

into a new PDB file. The known profile represents the frequency equivalent (Fequiv, 

described below) of the selection experiment on the DIG10.1 SSM library. The 39 positions 

selected for experimental site saturation in Reference 15 were allowed to design to only 

those amino acid identities with high enough sequencing counts to be included in the 

enrichment and depletion calculations in Reference 15 (Tables S5 and S6). We note that the 

experimental screen mutated 1–2 position at a time, whereas we design multiple positions 

simultaneously. In CoupledMoves design, 30 positions were allowed to repack based on the 

possibility of clashes with designed positions; in design by noncoupled methods 

(FastDesign, BackrubEnsemble, FixBB), all positions were allowed to repack (Table S5).

2.2.4 | Fen49—The Fen49 dataset was taken from Reference 48. Fen49 is a 

computationally designed protein that has been engineered to bind the small molecule 

fentanyl (Fen). The original computational design, Fen49, has an affinity of 6.9 μM for a 

fentanyl-bovine serum albumin conjugate. After four rounds of selection, starting from 

Fen49, a combination of two substitutions, A78V and A172I, was identified to produce a 
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variant with a 100-fold improved affinity of 64 nM. We used the wild-type protein (PDB: 

2QZ3), on which the sequence of Fen49 was modeled using Rosetta FixBB as input to our 

design simulations. The fentanyl conformation from designed fentanyl binder Fen49*/

fentanyl complex (PDB: 5TZO, where Fen49* is a Fen49 Y88A point mutant that was more 

suitable for complex structure determination48 was placed into the 2QZ3 scaffold using 

PyMOL. Fentanyl was placed into the 2QZ3 scaffold by using PyMOL to align 2QZ3 and 

5TZO, then combining the fentanyl molecule from 5TZO and the protein structure from 

2QZ3 into a new PDB file. While all positions of Fen49 were subjected to SSM, for our 

study we designed only the 18 residues defined as binding site in Reference 48 (Table S7). 

Design was allowed only to those amino acids with high enough sequencing counts to be 

included in the enrichment and depletion calculations in Reference 48 (Table S8). Finally, 

four positions (37, 64, 69, 71) in the input structure were set to alanine (using Rosetta’s 

FixBB protocol), because the wild-type residue was disallowed due to low counts (Table 

S8). In CoupledMoves design, 22 positions were allowed to repack based on the possibility 

of clashes with designed positions; in design by noncoupled methods, all positions were 

allowed to repack (Table S7). The known profile represents the frequency equivalent (Fequiv, 

described below) of the final round of selection (obtained from the authors). Note that the 

experimental screen mutated one position at a time, whereas we design multiple positions 

simultaneously.

2.2.5 | Frequency equivalent—Experimental data from the DIG10 and Fen49 datasets 

are deep sequencing counts before and after selection. To allow direct comparison between 

the experimental data and sequence profiles from Rosetta design for each mutation x at 

position i, we derived a frequency equivalent (Fequiv) from the experimental frequency data:

Fequiv  =

f i
x, sel

f i
x, unsel /

f i
orig, sel

f i
orig, unsel

∑
f i
x, sel

f i
x, unsel /

f i
orig, sel

f i
orig, unsel

where f i
X, Sel and f i

X, unsel are the frequency of that mutation, and f i
orig, sel and f i

orig, unsel are 

the frequency of the original amino acid identity, in the selected and unselected populations, 

respectively, and Fequiv is normalized by dividing over the sum across all amino acid 

identities found in the sequencing results. Fequiv is then used in comparison to Rosetta 

design results.

2.2.6 | hGH/hGHR—The hGH/hGHR dataset was taken from Reference 30. The protein-

protein interface between human growth hormone (hGH) and human growth hormone 

receptor (hGHR) is high affinity, with a KD reported as 0.9 nM49 and 1.56 nM50. As input 

for design, we used a crystal structure (PDB: 1A22). The known sequence profiles were 

taken from a phage display selection experiment, wherein 35 key residues from the ~1300Å2 

hGH/hGHR interface were divided into six combinatorial libraries of five or six positions.50 

To minimize potential cooperative interactions, positions were grouped into libraries that 
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maximized the three-dimensional distance between residues. Our computational workflow 

mimicked this strategy, using the same designable residues and running independent design 

trajectories for each of the six libraries. As in Reference 30, residues within 4 Å of designed 

residues were allowed to repack (Table S9).

2.2.7 | Herceptin-HER2—The Herceptin-HER2 dataset was taken from Reference 51. 

The protein-protein interface between therapeutic antibody Herceptin and its target, human 

epidermal growth factor 2 (HER2), is high affinity52 (KD = 0.35 nM. We used a crystal 

structure (PDB: 1N8Z) as input structure for design, truncated as in Reference 51 to include 

only chain A positions 1–106, chain B positions 1–119, and chain C positions 511–607. The 

known sequence profiles were taken from phage display selection experiments that used five 

combinatorial libraries containing five to seven positions each after four rounds of selection.
52 We mimicked the experimental strategy in our computation, with five separate design 

runs, one for each experimental library, and allowing repacking of residues within 4 Å of 

designed residues, as in Reference 51 (Table S10). Herceptin/HER2 sidechains were 

repacked from the crystal structure before design.

2.3 | Performance metrics

2.3.1 | Position profile similarity—Position profile similarity (PPS) was computed as 

described in Reference 42. Briefly, PPS represents the similarity in the side chain amino acid 

identity distributions between the predicted and known sequences at a given position:

 position pro f ile similarity  = 1 − DJS pknown, i, pdesign, i

where pknown,i and pdesisn,i are the probability distributions over the 20 amino acids for the 

known (natural or experimental) and designed sequences, respectively, at position i and 

DJS(x, y) is the Jensen-Shannon divergence between two distributions x and y, as in 

Reference 42.

2.3.2 | RankTop—For the profile datasets, mutations were ranked according to their 

frequency in the predicted and known (experimental/natural) sequence profile. RankTop is 

the rank, in the predicted profile, of the top ranked amino acid from the known profile. If the 

amino acid is not found, its rank is set to 20.

2.3.3 | Percent Enrichment—As in Reference 42, the percent enrichment (PE) for each 

specificity-altering mutation in the enzyme specificity dataset was calculated as follows:

PE(WT MUT) = %non − native  − %native

PE(MUT WT) = %native − %non − native

where %native is the percent occurrence of the mutation in sequences designed for the native 

ligand and %non - native is the percent occurrence of the mutation in sequences designed for 
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the non-native ligand. PE(WT → MUT) was used for predictions that start with the wild-

type structure and PE(MUT → WT) was used for predictions that start with the mutant 

structure. As in Reference 42, a prediction was considered correct if it obtained a positive 

percent enrichment value.

2.3.4 | Rank—For the enzyme specificity dataset, mutations were ranked by descending 

order of their percent enrichment values, as described in Reference 42.

2.3.5 | Sequence Entropy—The sequence entropy Hi was computed as in Reference 

42:

Hi = − ∑
x

Pxlog20Px

where Px is the percent of sequences with amino acid x at position i.

2.3.6 | Distance from input sequence—Distance from input sequence is a variation 

of the profile similarity metric, where distance is calculated as:

distance  = 1 − DJS pinput, i, pdesign, i

where pinput, i and pdesign, i are the probability distributions of the single input side chain and 

the designed sequence profiles, respectively, at position i.

3 | RESULTS

3.1 | Design methods

We set out to compare four flexible-backbone design methods (Figure 1, Methods) using a 

common set of benchmarks (described below): (a) FastDesign utilizing the Rosetta 

FastRelax method45,46 for backbone flexibility, (b) BackrubEnsemble Design,40,41 (c) 

CoupledMoves with backrub (CM-BR),42 and (d) the new CoupledMoves with kinematic 

closure (CM-KIC) method introduced here. We also compare to fixed-backbone design 

(FixBB) and a null model where all amino acid frequencies are set to 5%.

The main algorithmic differences between the methods are illustrated in Figure 1A. 

FastDesign (Figure 1A, left) iterates between two steps. In the first step (fixed-backbone 

sequence design), amino acid side chain identities and rotameric conformations are 

optimized using Monte-Carlo simulated annealing but the backbone is kept fixed. In the 

second step (fixed-sequence torsion minimization), the entire structure is minimized using 

backbone and side chain torsion degrees of freedom while keeping the sequence fixed. 

These steps are iterated through cycles of simulated annealing, during which the weight of 

the repulsive component of the Lennard-Jones potential is increased stepwise to enable 

amino acid changes that may introduce unfavorable clashes but can be subsequently relaxed 

in the minimization step. FastDesign has been used in a variety of application to design new 

functions.16,17,43
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The BackrubEnsemble method40,41 (Figure 1A, middle) also proceeds in two steps. The first 

step generates an ensemble of backbones through application of Backrub moves. Each 

Backrub move26 selects two pivot backbone Cα atoms and rotates the entire segment 

between them (2–11 residues) as a rigid body. Backrub moves are made throughout the 

protein structure (or a predefined region) by randomly selecting pivot points. The second 

step performs fixed-backbone sequence design on each member of the ensemble using 

Monte-Carlo simulated annealing. The BackrubEnsemble method in Rosetta has been shown 

to recapitulate protein conformational fluctuations28,29,53 and tolerated sequence 

space30,40,41 and has been successfully applied to the redesign of protein recognition 

specificity.44

In contrast to FastDesign and BackrubEnsemble that separate fixed-backbone sequence 

design from fixed-sequence backbone sampling, CoupledMoves combines backbone and 

side chain moves, which can include sequence changes, into a single “coupled” Monte-Carlo 

step (Figure 1A, right). In this fashion, the backbone can respond to a designed sequence 

change more directly than in the noncoupled FastDesign and BackrubEnsemble methods. 

However, coupling backbone and side chain moves could artificially collapse designed 

structures. Because replacing a larger with a smaller amino acid side chain is less likely to 

lead to clashes, the change is more likely to be accepted. In subsequent steps it is harder to 

recover from such a collapse, as the backbone will have moved to accommodate the smaller 

side chain. To alleviate this problem, each side chain move in CoupledMoves considers all 

rotamers for allowed amino acids and chooses a likely side-chain rotamer and identity based 

on its Boltzmann-weighted Rosetta score. This change led to a considerable decrease in the 

number of designed small side chains (alanine or glycine) .42 Finally, coupled moves can 

also be performed for the ligand, where rotation and translation of the ligand can be 

combined with ligand conformer changes. CoupledMoves has been shown to better 

recapitulate amino acid preferences in small molecule binding sites and mutations that 

switch enzyme specificity,42 but has not yet been tested in a forward-engineering 

application.

The original version of the CoupledMoves method uses Backrub moves to sample backbone 

degrees of freedom. Here we introduce an updated version of the CoupledMoves algorithm 

that performs backbone moves with the KIC algorithm38 (Figure 1B). KIC selects two pivot 

Cα atoms that define a segment, and a third pivot Cα atom within the segment. The 

algorithm next perturbs the backbone torsion angles around all nonpivot Cα atoms in the 

segment, breaking the loop. Finally, the torsion angles of the three pivot atoms are solved 

analytically to close the loop. The original implementation of KIC samples backbone phi/psi 

torsion angles at the nonpivot Cα atoms probabilistically from Ramachandran space.38 Our 

implementation here allows phi/psi sampling by substitution of peptide fragments derived 

from the protein structure databank (FKIC) or random “walk” perturbation of backbone 

torsion angles by values from a Gaussian distribution centered around zero with a SD of 3° 

(WKIC) (see Methods).
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3.2 | Benchmark datasets

We evaluate the performance of the different methods on six benchmark datasets (Table 1, 

Figure 2). Each benchmark contains information on functional sequence variants. We chose 

binding as a proxy for function because the engineering of binding interactions is a common 

task with many important applications. Moreover, the stability of a binding interaction is a 

functional constraint that can be more easily explicitly modeled and scored by Rosetta than 

for example requirements for efficient enzyme catalysis that are often incompletely 

understood. The datasets comprise both small molecule binding sites and protein-protein 

interaction interfaces.

Four of the datasets contain small molecule binding sites (Table 1, Figure 2). The first two 

datasets were taken from Reference 42. Dataset 1 comprises evolutionary sequence 

alignments for seven naturally occurring protein families (Figure 2A shows one structure as 

a representative) that each bind a specific cofactor (“cofactor” set, Tables S1 and S2). 

Dataset 2 was curated from experimentally-characterized substrate specificity-altering point 

mutations for ten different enzymes (“enzyme specificity” set, Figure 2B, Table S3 and S4). 

Datasets 3 and 4 were compiled from site saturation mutagenesis (SSM) experiments 

performed on two different proteins designed by Rosetta to bind small molecules (sets 

“DIG10” (digoxigenin),15 Figure 2C and Table S5 and S6, and “Fen49” (fentanyl),48 Figure 

2D and Table S7 and S8). The SSM libraries were screened for binding to the target small 

molecule (digoxigenin or fentanyl, respectively) using yeast display followed by deep 

sequencing of naive and selected populations.

The two protein-protein interface datasets contain sequences selected from combinatorial 

libraries (allowing all 20 naturally occurring amino acids at 5 to 7 sequence positions) by 

phage display and subsequent sequencing of individual clones (Table 1). Dataset 5 

comprises sequences from five phage display libraries of Herceptin (17 positions total) 

selected for binding to HER2 (“Herceptin/HER2” set,52 Figure 2E and Table S9). Dataset 6 

comprises sequences from six libraries of hGH (35 positions total) selected for binding to 

hGHR (“hGH/hGHR” set,50 Figure 2F and Table S10).

3.3 | Performance metrics

Five of the datasets contain sequences from either experimental selection (DIG10, Fen49, 

Herceptin-HER2, hGH/hGHR) or natural sequence alignments of evolutionary families 

(cofactor), reflecting the diversity of amino acids at each position compatible with the 

protein’s function (tolerated sequence space).30 We refer to this diversity as the “known 

sequence profile” for each position. We evaluate the ability of our design methods to 

recapitulate these known sequence profiles by quantifying two metrics used previously,40,42 

profile similarity and rank top, both calculated per position (see Methods). Position profile 

similarity (PPS) measures the similarity of the probability distribution of amino acid 

frequencies between the known profile and the profile generated by Rosetta design at each 

position. Rank top measures the rank, in the design profile, of the amino acid most 

frequently observed at a given position in the known profile.

Loshbaugh and Kortemme Page 10

Proteins. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The enzyme specificity benchmark42 contains individual point mutations (rather than 

sequence profiles) experimentally characterized to switch enzyme substrate specificity. In 

this case, in contrast to the analysis for the sequence profile datasets, we do not assume 

knowledge of positions mutated in the experiment. Instead, we evaluate how the 

experimentally characterized specificity switching mutation ranks across designed mutations 

at all positions in the vicinity of the changed substrate, to approximate an actual design 

project where it is not clear a priori which position should be mutated. In addition to the 

absolute rank we also evaluate the percentile,42 of the experimentally characterized mutation 

among all design predictions (see Methods).

Each metric has a different experimental interpretation. The tolerated sequence space 

captured by the PPS metric is useful for the design of libraries, which can be screened for 

criteria in addition to binding affinity and specificity, such as protein stability and solubility. 

RankTop is useful for cases where a few mutations or design sequences are selected for 

individual experimental tests. Percentile gives information on how many predictions would 

need to be tested in order to find a successful mutation when making predictions for a range 

of positions.

3.4 | CoupledMoves improves prediction of tolerated sequence space

We first evaluated the overall performance of each flexible backbone design method on the 

five sequence profile datasets. Figure 3A shows the distributions of position profile 

similarities across all designed positions in each benchmark, with the median indicated by a 

white dot. CoupledMoves attains higher median PPS values than FastDesign and FixBB for 

all datasets, and higher median PPS values than BackrubEnsemble for all datasets except 

Fen49 and DIG10 where CoupledMoves and BackrubEnsemble perform similarly. 

Somewhat surprisingly, using this global metric CoupledMoves is worse than the null model 

for the DIG10 set. Even more strikingly, FastDesign and FixBB do not attain a higher 

median PPS values than the null model for any of the datasets (except cofactor), and are 

considerably worse than the null model for the hGH/hGHR and DIG10 datasets. As 

discussed below, the comparatively poor overall PPS of all methods for the hGH/hGHR, 

DIG10, and Fen49 datasets is due to low similarity between the input sequence and the 

known profile. In these cases, the null model scores as well or better than the design 

methods; of the flexible-backbone design methods, CoupledMoves performs best.

We next evaluated the RankTop values for all five datasets (Figure 3B). Here, all flexible 

backbone methods (except FastDesign for the hGH/hGHR dataset) perform better than fixed 

backbone design, which in the majority of the cases misses the most frequent amino acid 

side chain from the known profiles (the null model by definition ranks all amino acids the 

same so is not relevant here). The rank top values are lowest (best) for the Herceptin/HER2 

and cofactor sets. CoupledMoves performs better than BackrubEnsemble and FastDesign for 

the Herceptin/HER2, hGH/hGHR and cofactor datasets, similar to FastDesign for the DIG10 

set and similar to BackrubEnsemble for the Fen49 set. Moreover, for several benchmarks 

(hGH/hGHR, Herceptin/HER2, Fen49), CM-WKIC leads to small but noticeable 

improvement in RankTop values over CM-BR. Taken together, when considering both PPS 
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and RankTop over all datasets, CoupledMoves and in particular CM-WKIC perform best 

overall.

We also considered PPS and RankTop for each protein family comprising the Cofactor 

dataset (Figure S1), and found that CoupledMoves outperforms FastDesign for all families, 

and outperforms BackrubEnsemble for six of the seven families, with the exceptions of the 

flavin binding site of Flavodoxins. Performance for individual libraries of the Herceptin/

HER2 (Figure S2) and hGH/hGHR (Figure S3) leads to similar conclusions.

To determine if methods were more predictive for different groups of positions, we plotted 

the PPS values for the different methods against each other (Figure 4A,B). CoupledMoves 

achieves similar or better PPS for nearly all positions when compared to the noncoupled 

methods (Figure 4A, CM-KIC shown as example). BackrubEnsemble achieves PPS values 

better or similar than FastDesign (Figure 4B, left), and better than FixBB (Figure 4B, 

middle), for almost all positions. FastDesign, compared to FixBB, achieves better PPS for 

some positions, but worse PPS for others (Figure 4B, right). Figure 4C quantifies the number 

of positions for which CoupledMoves is better, worse, or similar to the noncoupled methods. 

A prediction for a position is classified as “better” or “worse” by a given method relative to a 

comparison method when the difference in performance is above or below, respectively, a 

threshold of ±0.1 for PPS or ± 5 for RankTop. When the difference is within the threshold, 

the predictions are classified as “similar.” CoupledMoves achieves better PPS values than 

BackrubEnsemble for 65 ± 1 positions, better than FastDesign for 119 ± 2 positions, and 

better than FixBB for 143 ± 2 positions. The standard deviation (SD) represents the average 

across CM-BR, CM-FKIC, and CM-WKIC. CoupledMoves also achieves better RankTop 

for more positions than BackrubEnsemble, FastDesign, and FixBB (39 ± 3, 67 ± 3 and 126 

± 4 positions, respectively), (Figure 4C). Moreover, CoupledMoves performs worse than 

noncoupled methods for very few positions (Figure 4C, red bars).

3.5 | CoupledMoves outperforms the other methods at recapitulating key affinity-
determining side chains

We next sought to evaluate the ability of the different methods to predict amino acid 

preferences for the positions that are most functionally important in the five profile datasets. 

Sequence logo representations of the tolerated sequence space for each of our datasets 

(Figures S4–S8) indicated considerable differences in sequence entropies between individual 

positions, and we reasoned that conserved side chain residues at low sequence-entropy 

positions are more likely to be important for protein function than residues at position with 

higher entropy. We hence split the positions in each dataset into three sequence entropy 

groups (see Methods) and evaluated median PPS and RankTop for the cofactor and 

Herceptin/HER2 datasets, which have the most consensus positions (Figure 5, Figure S9). 

Positions with low (entropy ≤0.33) or medium (0.33 < entropy ≤0.67) entropy were defined 

as consensus positions. The top known side chain for these positions was defined as the 

consensus side chain. We find that CoupledMoves achieves better PPS than the null model 

for consensus positions in the Herceptin/HER2 and cofactor datasets. FastDesign is better 

than the null model for only low-entropy positions for both datasets. BackrubEnsemble is 

better than the null model for low entropy positions in the cofactor dataset, but not 
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Herceptin/HER2. In contrast, the null model has the highest PPS for the high entropy bin, 

which might be expected for positions with high mutational tolerance.

Similar to PPS, CoupledMoves achieves the best (lowest) RankTop values for consensus 

positions, predicting the correct amino acid residue with at least some frequency at most 

positions, as opposed to noncoupled methods which frequently do not identify the consensus 

side amino acid identity at all (rank of 20) (Figure 5). CoupledMoves predictions typically 

have the highest entropy (Figure S10), which leads on average to higher similarity at 

variable positions. Nevertheless, PPS and RankTop at low-entropy positions (Figure 5, 

Figure S9), and energetic rankings of consensus positions (see Discussion) indicate that 

CoupledMoves is the most accurate method for functionally relevant interactions.

In addition to low-entropy positions determined from known sequence profiles, we also 

considered experimentally-characterized affinity-improving mutations, which were available 

for the Herceptin/HER2, Fen49, and enzyme specificity datasets (the latter set is discussed 

below). For Herceptin, the most important affinity-improving mutation, D VH98 W, resulted 

in 3-fold improvement of binding affinity and was found in 23% of sequences resulting from 

phage display.52 Contrary to previous findings51 where BackrubEnsemble recapitulated D 

VH98 W as the top mutation, the noncoupled methods tested in this study did not identify 

tryptophan (Figure S7), but CoupledMoves methods selected the tryptophan mutation at low 

frequency (CM-BR 1.1%, CM-FKIC 1.3%, CM-WKIC 1.5%). We note that this position is 

surface exposed in the original structure, leading to high entropy in the design profiles where 

many side chains are tolerated. It is possible that a structural rearrangement in the D VH98 

W mutant adds additional interactions across the interface but that these structural changes 

are not correctly modeled in our simulations.

For the Fen49 dataset, the authors identified two key mutations, A78V and A172I, that led to 

~100-fold improvement in binding affinity to fentanyl, but none of the design methods tested 

here found both mutations (Figure S6). These two positions are located in the binding pocket 

and enriched in larger hydrophobic residues in the selection, presumably to provide 

additional surface complementarity with fentanyl.48 While all design methods did substitute 

larger hydrophobic side chains, only FastDesign ranked 172I highly, and only 

BackrubEnsemble ranked 78V highly. CoupledMoves selected 78V at a lower frequency. No 

method identified the combination of A78V and A172I. While there is no crystal structure 

with these mutations, we hypothesize that packing I172 against the phenyl ring of fentanyl 

may be inaccessible to the fentanyl conformer of Fen49, and modeling ligand flexibility 

might enable design to converge on I172. Unlike position 172, which is at a suitable distance 

for van der Waals interactions with fentanyl, there is an almost 6 Å distance between the 

closest heavy atoms of position 78 and the ligand, and the position has a relatively large 

solvent-accessible surface area. It is therefore unsurprising that Rosetta is unable to arrive at 

a consensus for this position. The inability of all methods to find the key mutations in Fen49 

may represent shortcomings in modeling ligand flexibility. In addition, the Fen49 deep 

sequencing results are incomplete due to experimental limitations (eg, the original Fen49 

side chains were present in the selection but did not have frequency counts48).
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3.6 | CoupledMoves improves prediction of substrate specificity-altering mutations

The enzyme specificity dataset provides an opportunity to analyze functionally important 

mutations, as the dataset is made up of pairs of structures where individual point mutations 

have been experimentally characterized that switch ligand-binding specificity between two 

ligands.42 To determine to what extent the different flexible backbone methods can 

recapitulate these experimentally characterized specificity-switching mutations, we carried 

out design simulations on structures with either the original or the new ligand in the binding 

pocket and designing positions in the vicinity of the ligand substructure change, as described 

previously42 (Tables S3 and S4). To design for mutations switching specificity to the new 

ligand, we prepared the input structure by computationally substituting the new ligand into 

the binding pocket of the wild-type protein crystal structure. For the inverse, we swapped the 

wild-type ligand into the binding pocket of the mutant crystal structure (see Methods).

Some enzymes in this dataset have multiple experimentally-characterized mutations, either a 

single position to multiple identities (Protein Data Bank (PDB) codes: 1 K70, 3KZO), or 

multiple positions (PDB: 1A80, 3HG5), for a total of 29 cases (12 wild-type and 17 mutant 

side chains). The CoupledMoves methods (CM-BR, CM-FKIC, CM-WKIC) correctly 

identify (positive percent enrichment, see Methods) 14, 11, and 12 specificity-determining 

mutations, respectively, while the noncoupled methods (FastDesign, BackrubEnsemble, 

FixBB) identify only 7, 7, and 5 mutations, respectively (Table 2). All CoupledMoves 

methods identify specificity-altering mutations with a better percentile and rank than the 

noncoupled methods (Tables 2 and 3), with the original CM-BR attaining the best median 

and quartile performance, and FastDesign and BackrubEnsemble performing similarly 

poorly.

3.7 | Noncoupled methods more frequently make incorrect predictions where correct side 
chain residues are lost, while CoupledMoves most frequently makes predictions where 
correct residues are gained

We next considered how the sequence of the input structure influences method performance. 

Only positions with low and medium entropy (≤ 0.67) in the known profile are considered. 

Three broad scenarios can be distinguished (Figure 6, top panels). In the first scenario 

(“loss”), the input side chain (the residue in the starting structure used for design) is present 

or even preferred in the known sequence profile but is depleted in the design simulations. In 

the second scenario (“gain”), the input side chain and the known position profile are 

dissimilar, but preferred side chains are enriched by design. The third scenario occurs when 

design results in little change of similarity to the known profile (“neutral”). When plotting 

the PPS values for each method as a function of profile similarity to the input, loss occurs 

more frequently for positions designed by BackrubEnsemble, FastDesign, and FixBB, 

whereas gain occurs more frequently for positions designed by CoupledMoves and 

BackrubEnsemble (Figure 6A, middle and bottom panels, Table S11).

We also performed a similar analysis for the RankTop values. We defined “loss” as the case 

where a correct starting amino acid side chain is ranked worse than 5 in the final profile and 

gain as the case when the known top amino acid side chain is not present in the starting 

sequence and design models it with a rank of 15 or better (Figure 6B, top panel). We only 
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observed loss for positions designed by BackrubEnsemble, FastDesign, and FixBB (Figure 

6B, middle and bottom panels). CoupledMoves achieves gain with the best median and 

quartile RankTop values (Figure 6B, middle panel), and for the greatest number of positions 

(Figure 6B, bottom panel). Positions are more likely to remain neutral than to experience 

gain or loss (Figure 6, bottom panels, Table S11), thus positions with near-correct input 

sequence tend to maintain higher PPS values. This observation offers an explanation for the 

comparatively poor PPS and RankTop values of all methods for the DIG10, Fen49 and hGH/

hGHR datasets (Figure 3), which are characterized by low similarity between each dataset’s 

input sequence and known profile (Figure S11).

We then asked which methods best predict side chains at positions deemed both functionally 

relevant (consensus) and difficult (requiring gain). We find that CoupledMoves is more 

likely than noncoupled methods to enrich for correct side chains not present in the input, 

with 1.2- and 1.5-fold increase in number of positions experiencing gain, compared to 

BackrubEnsemble and FastDesign, respectively (Table S11). In addition, CoupledMoves 

most consistently avoids loss (0.22- and 0.30-fold decrease in number of positions 

experiencing loss, compared to BackrubEnsemble and FastDesign, respectively), and 

retention of correct input side chains (neutral scenario) contributes to overall performance. 

Taken together, the overall best performance of CoupledMoves arises both from increasing 

the number of positions with gain and decreasing the number of positions experiencing loss.

We also classified positions as polar/charged or hydrophobic based on the most preferred 

side chain in the known sequence profile, and use this classification to evaluate performance 

in recapitulating polar contacts vs hydrophobic packing. CoupledMoves outperforms 

BackrubEnsemble and FastDesign in discovering and retaining correct side chains at both 

polar/charged and hydrophobic positions (Table S11).

3.8 | Selected structural examples

At the Herceptin/HER2 interface, arginine at position VH50 (RVH50) is one of four 

positions (the other three are YVH56, WVH95, and YVH100a) where CoupledMoves 

maintains a consensus side chain that is completely lost by one or more noncoupled methods 

(Figure S7). In the crystal structure, RVH50 forms a hydrogen bond network across the 

Herceptin/HER2 interface by interacting with Herceptin TVL94 and HER2 E273 and D275. 

CoupledMoves is able to retain RVH50, while FastDesign and BackrubEnsemble replace this 

residue with hydrophobic residues, predominantly methionine and glycine, respectively 

(Figure 7A).

Hydrogen bonds between digoxigenin and the designed protein are most frequently retained 

by CoupledMoves. In the crystal structure of DIG10.2 (the digoxigenin binder designed with 

knowledge from the results of the experimental library screen15), tyrosines 34, 101, and 115 

hydrogen bond with digoxigenin, as designed.15 CoupledMoves frequently chooses tyrosine 

at all three positions (Figure 7B, top), whereas FastDesign often models only one interaction 

correctly (Figure 7B, middle), and BackrubEnsemble models two (Figure 7B, bottom). At 

position 115, BackrubEnsemble most frequently models asparagine, which is too short to 

hydrogen bond with digoxigenin. FastDesign most frequently models leucine, not tyrosine, 

at position 115, and instead models tyrosine at nearby position 11 (alanine consensus in 
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experiment), forming an alternative hydrogen bond with the ester oxygen rather than 

carbonyl oxygen of the nearby digoxigenin ring.

A third structural example for loss is found in the binding site for cofactor flavin-adenine 

dinucleotide (FAD) in glutathione reductase (Figure 7C). The majority of natural glutathione 

reductases coordinate FAD with glutamate at position 50 (E50) and aspartate at position 331 

(D331). These side chains are frequently maintained by CoupledMoves, but not by 

FastDesign or BackrubEnsemble (Figure 7D). Models generated by CoupledMoves agree 

with the input crystal structure (3DK9), in which E50 forms a hydrogen bond network with 

two hydroxyl groups of the 3–4-dihydroxy-furan moiety of FAD. CoupledMoves also 

predicts a hydrogen bond between evolutionarily conserved residue D331 and a hydroxyl 

group of FAD. The noncoupled design methods frequently replace both polar side chains 

with apolar side chains, valine at position E50, and alanine or methionine at D331, 

eliminating the hydrogen bonds between the protein and the ligand.

3.9 | Computational time

We also evaluated the relative compute time for each of the different methods. We first 

analyzed how performance depended on the number of trajectories run (Figure S12). This 

analysis suggested that performance is optimal for Coupled Moves, BackrubEnsemble and 

FastDesign at 400, 200 and 100 trajectories, respectively, with slight variation between 

datasets (Figure S12). Since each BackrubEnsemble and FastDesign trajectory takes 

approximately 2-fold and 20-fold more time than CoupledMoves, respectively, 

CoupledMoves requires substantially less compute time than FastDesign and about equal 

compute time to BackrubEnsemble (Table S12).

4 | DISCUSSION

We demonstrate that CoupledMoves recapitulates known sequence profiles at designed 

positions more accurately than the FastDesign and BackrubEnsemble methods. We consider 

two conceptual categories of positions: (a) important for function and (b) difficult to design. 

For the first category, we classify positions as important for function (in this case binding) 

either by proxy of low sequence entropy in the known sequence profile, or if specific 

mutations have been experimentally determined to be important, as in the enzyme specificity 

dataset. CoupledMoves most accurately predicts low entropy consensus positions for all 

profile benchmarks (Figure 5) and outperforms the other methods in correctly identifying 

specificity-switching mutations in the enzyme specificity set (Tables 2 and 3). For the 

second category, we designate positions as difficult to design if the most frequent amino acid 

side chain in the known profile is not present in the structure used as input for design. 

Considering both low and medium entropy positions, CoupledMoves is more likely than 

BackrubEnsemble and FastDesign to correctly identify both charged/polar and hydrophobic 

side chain residues at higher frequency than in the input sequence (gain), while FastDesign 

is least likely to model a preferred side chain residue present in the input sequence (loss) 

(Figure 6, Table S11, Figure S11). We conclude that CoupledMoves is best able to predict 

both residues that are important for function and difficult to design in our datasets.
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To provide insights into why the different methods model consensus side chains with 

different frequencies, despite using the same energy function, we analyzed how the correct 

amino acid at these positions was ranked by energy for each of the different methods. Figure 

8A shows distributions of percentiles for predicted total Rosetta energy of instances where a 

method models the known top ranked amino acid side chain. These distributions are shifted 

towards higher percentiles for CoupledMoves compared to the other methods. CM-FKIC 

predicts the consensus side chain for 51 positions with total energy above the 75th 

percentile, while BackrubEnsemble and FastDesign predict 37 and 27 positions in the same 

category. CoupledMoves models the consensus side chain for a total of 132 designable 

positions in the datasets, compared to 111 and 95 positions for BackrubEnsemble and 

FastDesign, respectively. The high sequence entropy of CoupledMoves design compared to 

other methods (Figure S10) makes it even more remarkable that CoupledMoves ranks the 

energetics of consensus side chains so favorably among many options. We conclude that, for 

side chains modeled with >0.33 frequency and > 75th energy percentile, CoupledMoves 

predictions are likely correct.

In cases where the BackrubEnsemble method does model the consensus side chain during 

design, the energetics rank favorably (Figure 8A). One possible reason for the overall worse 

performance of BackrubEnsemble over CoupledMoves is that cases correctly predicted by 

BackrubEnsemble might be derived from only a subset of ensemble members whose 

backbone conformations are compatible with energetically favorable placement of the 

consensus side chain. In these cases, the input/consensus side chain is compatible with the 

ensemble, but during sequence design another amino acid side chain has more favorable 

Rosetta energy. Indeed, forcing the consensus side chains onto all ensemble members results 

in a greater proportion of models with unfavorable (positive) Rosetta energy, and a smaller 

proportion of models with highly favorable energy (Figure S13, shown are glutathione 

reductase and digoxigenin binder, which are examples of loss by the BackrubEnsemble 

method). This behavior suggests that ensemble members are not uniformly compatible with 

consensus sidechains, highlighting a limitation of the BackrubEnsemble method. Backbone 

moves are sampled only once, at the beginning of the trajectory during ensemble creation 

(Figure 1A). Sidechains are subsequently modeled onto each ensemble member by finding 

an energetically favorable rotamer for the pre-determined backbone conformation. In 

contrast, the CoupledMoves design trajectory cycles small backbone adjustments in response 

to sequence change moves, which allows switching from nonconsensus to consensus side 

chains. Without cycles of backbone and sidechain sampling, the BackrubEnsemble method 

is limited to snapshots of the allowed backbone conformational diversity defined by the 

initial ensemble members.

For CoupledMoves, the design frequency increases with energy percentile for consensus side 

chains (Figure 8B), which is expected-side chains with a higher (more favorable) energy 

percentile should be chosen more frequently. However, this trend is less pronounced for both 

BackrubEnsemble and FastDesign. For BackrubEnsemble, this behavior is possibly due to 

the limitations enforced by the backbone conformations of the ensemble. In the case of 

FastDesign, it is possible that the minimization step in FastDesign is prone to trapping the 

design simulations in local minima and hence that the frequency of chosen amino acids 

poorly reflect their actual fitness rank. This hypothesis is supported by the low entropy of 
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FastDesign design sequence profiles (Figure S10). FastDesign may be less likely to escape 

local minima than the other methods, despite the use of a reduced Lennard-Jones repulsive 

term in the early cycles of the simulation (Figure 1A).

In addition to limitations in sampling methods (as well as the energy function used to rank 

designs), there are potential limitations related to the benchmark datasets. While this work 

considers protein/protein and protein/small molecule interactions, the selection of 

benchmarks could be expanded to include protein/peptide interactions, such as those 

described in References 40, 54, and 55. There are also potential limitations inherent to some 

datasets included in this study. For example, in the case of the enzyme specificity dataset, we 

can only compare to the point mutations that were experimentally tested, but we do not have 

sequence profiles. The enzymes have not been subject to saturation mutagenesis, so it is 

unknown whether additional specificity-altering mutations could exist.

Sequence profiles in the cofactor dataset result from natural evolution, rather than 

experimental screening. Natural evolution includes selection pressures beyond affinity 

(catalysis, specificity, kinetics etc.), so that the sequence profiles for natural binding site 

positions may be influenced by factors beyond those modeled here. In addition, our analysis 

does not evaluate covariation between residue positions. However, evolutionary sequence 

profiles have the advantage of clearly identifying consensus binding positions, and we 

observe considerable agreement between Rosetta predicted and known sequence profiles for 

this set.

Finally, all methods tested perform most poorly at consensus positions in the deep 

sequencing datasets, DIG10 and Fen49, and the design methods perform worse than the null 

model on DIG10. Initiating design from the crystal structure corresponding to the result of 

the library selection (PDB: 4J8T) did not improve performance. It is possible that the 

selection experiments report on additional considerations such as expression and display on 

the yeast surface that are not considered in the design simulations, or that the sensitivity 

range of the selection is tuned to primarily differentiate between functional vs deleterious 

mutations but is less capable of quantitatively ranking binding affinity. Alternatively, critical 

adjustments of both backbones and the ligand, in addition to ligand strain and ligand 

flexibility, are not correctly captured in the Rosetta simulations.

Apart from suggesting individual point mutations such as in the enzyme specificity set, our 

results on recapitulating position-specific sequence profiles highlight the utility of 

CoupledMoves for generating libraries. CoupledMoves will be most useful in design cases 

where protein backbones are supplied with existing side chains, such as natural or 

previously-characterized designed proteins (rather than the de novo design of new 

structures). Computation has long been used to reduce the sequence space queried by library 

screens,56–58 and it is well established that flexible-backbone protein design can generate 

sequences similar to observed natural and experimental sequences.27,28,30,31,36,41,59,60 As 

the design results obtained with CoupledMoves most accurately reflect tolerated sequence 

space in comparison to other methods using the same energy function, CoupledMoves 

represents a powerful flexible backbone strategy for generating combinatorial libraries for 

screening and selection, and optimizing proteins for new and useful functions.
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Computational design of binding sites remains difficult, in part due to limitations in current 

ability to realistically sample backbone conformations that enable side chains to make 

realistic contacts during sequence design. The benchmarking framework presented here can 

be adapted to different types of design applications, such as sequence design on 

parametrically-generated rather than natural protein backbones, or de novo designed rather 

than reengineered binding sites.
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FIGURE 1. 
Design methods. A, Design method comparison. The FastDesign (left, blue) and 

BackrubEnsemble (middle, purple) methods separate sequence design steps (using a fixed 

backbone) from backbone optimization steps (using a fixed sequence). CoupledMoves 

(right, orange) evaluates combined moves that sample both backbone conformation and 

amino acid sequence (or, alternatively, combine ligand translations/rotations with changes of 

ligand conformers). FastDesign performs five outer (xSA,outer) simulated annealing cycles, 

during which the weight of the Lennard-Jones repulsive energy term is ramped from 2% to 

100%. For each ramped weight, an inner cycle (xSA,inner) consists of a complete round of 

sequence design with xSC steps on a fixed backbone, followed by a step that minimizes 

backbone, sidechain, and ligand torsion angles. BackrubEnsemble performs 10,000 (xBR) 
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Backrub moves to generate each ensemble member. For both FastDesign and 

BackrubEnsemble, xSC scales with the number of possible moves, and is equal to 10 times 

the number of possible rotamers at all designable or repackable positions. CoupledMoves 

performs 1,000 trials (xCM) per trajectory. B, Original and updated backbone mover in 

CoupledMoves. The original CoupledMoves method42 uses the Backrub algorithm to make 

backbone moves. A backrub move6,26 rotates a segment as a rigid body by displacement 

angle τdisp around an axis between two pivot Cα atoms 2–11 residues apart (shown is a 2-

residue move). In the updated versions of CoupledMoves introduced here, backbone moves 

are made using a Kinematic Closure algorithm.38 Backbone torsion angles for nonpivot Cα 
atoms are perturbed either using fragment insertion (FKIC) or by small perturbations away 

from the existing angles (WKIC), then the loop is closed by analytical determination of Φ 
and Ψ angles (red) at three pivot Cα atoms (gray). FKIC, Kinematic Closure using 

fragments; WKIC, Kinematic Closure using “walking” perturbation
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FIGURE 2. 
Benchmark dataset structures. Side chains at designed positions are highlighted in orange 

and shown as sticks. Ligands are colored light blue and shown in sphere representation. The 

structures shown are those used as input for design, as described in Methods. Nitrogen atoms 

are shown in dark blue, and oxygen atoms are shown in red. A, Representative structure 

from the cofactor dataset, alcohol dehydrogenase with cofactor NAP. Structures for other six 

protein families are not shown. B, Representative structure from the enzyme dataset, N-

acetylornithine carbamoyltransferase. The full structure of the mutant enzyme, with ligand 

N-(3-carboxypropanoyl-L-norvaline (SN0), is shown in the top panel. The middle panel 

shows the binding site. The bottom panel shows the binding site of the wild-type protein, 

with ligand N-acetyl-L-norvaline (AN0). The other nine enzymes are not shown. C, 
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DIG10.1, the designed digoxigenin binder on which the SSM library was generated and 

selected, with digoxigenin. D, The wild-type protein used for design of fentanyl binding 

protein, with fentanyl placed in the binding pocket. E, Herceptin/HER2. Designable 

positions on the Herceptin antibody light chain (light gray) and heavy chain (dark gray) 

interact with target HER2 (black). The combination of designable positions from all libraries 

is shown. F, hGH/hGHr. Designable positions on hGH (light gray) interact with target hGHr. 

The combination of designable positions from all libraries is shown
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FIGURE 3. 
Comparison of design method performance on sequence profile datasets. PPS (A) and 

RankTop (B) distributions. A RankTop of 1 means that the design method correctly 

identified the most frequent amino acid side chain observed in the experimental/natural 

profile, whereas a RankTop of 20 means that the side chain was observed with zero 

frequency, or that all other side chains were modeled with some frequency and the top 

known side chain was the least frequent. The median of the distributions is marked with a 

white dot. Second and third quartiles are marked by the thick black bar, and the thin bar 

marks 1.5 times the inter-quartile range. The width of the violins is determined by the 

number of observations in each bin, and bins are defined using Scott’s normal reference rule. 

The number of sequence positions in each set is described by n
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FIGURE 4. 
Method performance comparison for profile datasets by sequence position. Shown are the 

same data as in Figure 3, but plotting individual sequence positions instead of distributions. 

Colors indicate different datasets. A, Comparison between CM-FKIC and noncoupled 

methods. Points above the diagonal represent positions where CM-FKIC outperforms the 

noncoupled method. B, Comparison between noncoupled methods, where points above the 

diagonal represent positions where BackrubEnsemble outperforms FastDesign (left) or 

FixBB (middle), or where FastDesign outperforms FixBB (right). C, Summary of position 

counts classified by whether CoupledMoves (“Reference method”) performs better (green), 

worse (red) or similar (gray) compared to coupled methods (“Comparison method”). The 

CoupledMoves reference method is “better” or “worse” than the comparison method when 
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the difference in performance is above or below, respectively, a threshold of ±0.1 for PPS or 

± 5 for RankTop. When the difference is within the threshold, the methods are classified as 

“similar.” CM-FKIC, CoupledMoves with Kinematic Closure using fragments
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FIGURE 5. 
PPS and RankTop as a function of known sequence entropy. Each point represents one 

sequence position. Shown here are the Herceptin/HER2 (top) and Cofactor (bottom) 

datasets, which have the highest number of medium and low entropy positions. The 

remaining datasets are shown in Figure S9. For each dataset, PPS and RankTop are binned 

by entropy of the known sequence profile at each position (low: entropy ≤0.33, medium: 

0.33 < entropy ≤0.67, and high: entropy >0.67). The median is marked with a horizontal 

black line
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FIGURE 6. 
PPS and RankTop as a function of similarity to input. Gain (green) and loss (red) as defined 

in the main text. Only positions with low and medium entropy (≤ 0.67) are considered. This 

figure combines all datasets; individual datasets are shown in Figure S11. A, PPS as a 

function of similarity to the input sequence for all profile datasets. Top: Gain and loss zones 

are defined by a threshold of 0.1 difference between input-known PPS and design-known 

PPS. Middle: Each point represents one position in the protein sequence, colored by design 

method. CoupledMoves results (yellow, orange, red) are enriched in the gain zone and 

FastDesign (blue) and FixBB (gray) results are enriched in the loss zone. Bottom: 

Quantifications of number of designed sequence positions in gain, loss, and neutral zones for 

each method. B, RankTop as a function of similarity to the input sequence for all profile 

datasets, except Fen49, which is omitted because the fentanyl deep sequencing data do not 

include the input sequence. The top amino acid from the known profile is assigned a rank of 

1 if it is present in the input sequence, or a rank of 20 if it is not. Top: A threshold of 5 in the 

difference in RankTop between input and designed sequences defines the gain and loss 

zones. Middle: Box plots represent all positions in all datasets, except fentanyl. The median 
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of the distributions is marked with a horizontal line. Second and third quartiles are marked 

by the box, and the whiskers extend to 1.5 times the inter-quartile range. Bottom: 

Quantification of sequence positions in gain, loss, and neutral zones for RankTop values
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FIGURE 7. 
Examples of structural models generated by different design methods. Comparison of crystal 

structures used as input for design (gray) to models generated by CoupledMoves (top, 

orange), FastDesign (middle, blue), and BackrubEnsemble (bottom, purple). A, The crystal 

structure of Herceptin/HER2 (PDB: 1N8Z) shows a hydrogen bond network (black dashed 

lines) spanning the interface between Herceptin residues RVH50 (dark color) and TVL94 

(medium color), and HER2 residues E273 and D275 (light color). Key designable residue 

RVH50 is retained by CoupledMoves, which models a native-like hydrogen bond network 

(orange dashed lines). In contrast, FastDesign and BackrubEnsemble model reduced 

networks (blue and purple dashed lines, respectively). Hydrogen atoms for 1N8Z were 

added using Rosetta. B, Three tyrosines (Y34, Y101, Y115) form a hydrogen bond network 
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(black dashed lines) with digoxigenin (DIG) in the crystal structure of digoxigenin binder 

DIG10.2 (PDB: 4J8T). CoupledMoves most frequently retains all three tyrosines and forms 

a similar network (orange dashed lines). FastDesign frequently models leucines at positions 

101 and 115, and instead frequently models tyrosine at position 11, forming a hydrogen 

bond with the ester oxygen rather than carbonyl oxygen of the nearby digoxigenin ring (blue 

dashed line). BackrubEnsemble most frequently models asparagine at position 115, while 

retaining the other two contacts (purple dashed lines). C, In crystal structures, glutamate E50 

(left column, PDB: 3DK9) and aspartate D331 (right column, PDB: 6FTC) form a hydrogen 

bond network with flavin-adenine dinucleotide (FAD) (black dashed lines). CoupledMoves 

retains E50 and D331 in geometries that maintain the network (orange dashed lines). 

FastDesign and BackrubEnsemble frequently model hydrophobic residues at these positions, 

abolishing the network. Hydrogen atoms for 3DK9 were added using Rosetta. D, The 

frequencies of the top known side chain for each position as designed by the different 

methods. Values for CoupledMoves represent averages and standard deviations across CM-

BR, CM-FKIC, and CM-WKIC. CM-BR CoupledMoves with Backrub; CM-FKIC, 

CoupledMoves with Kinematic Closure using fragments; CM-WKIC, CoupledMoves with 

Kinematic Closure using “walking” perturbation
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FIGURE 8. 
Distribution of energy percentiles for correctly modeled positions. “Energy percentile” refers 

to the percentile of the average total Rosetta energy of the correctly modeled side chain 

compared to that of all other side chains modeled by the design method at that position. 

Energy percentile was calculated for consensus (entropy ≤0.67) positions for which a 

method modeled the consensus at least once. A, Distribution of energy percentiles. Count n 
indicates the number of positions for which each method modeled the consensus side chain 

at least once. B, Energy percentiles as a function of design frequency are shown as boxplots. 

Values from (A) are binned by design frequency (low: frequency ≤ 0.33, medium: 0.33 < 

frequency ≤ 0.67, and high: frequency > 0.67). The number of values in each bin is shown 

on each boxplot. The median of the distributions is marked with a horizontal line. Second 

and third quartiles are marked by the box, and the whiskers extend to 1.5 times the inter-

quartile range
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