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Abstract

Ribosome profiling (Ribo-seq) can potentially provide detailed information about ribosome 

position on transcripts and estimates of protein translation levels in-vivo. Hsp90 chaperones, 

which play a critical role in stress tolerance, have characteristic patterns of differential expression 

under non-stressed and heat shock conditions. By analyzing published Ribo-seq data for the 

Hsp90 chaperones in S. cerevisiae we find wide-ranging artifacts originating from “multi-

mapping” reads (reads that cannot be uniquely assigned to one position), which constitute ~25% 

of typical S. cerevisiae Ribo-seq datasets and ~80% of the reads from HEK293 cells. Estimates of 

Hsp90 protein production as determined by Ribo-seq are reproducible but not robust, with inferred 

expression levels that can change ten-fold depending on how multi-mapping reads are processed. 

The differential expression of Hsp90 chaperones under non-stressed and heat shock conditions 

creates artificial peaks and valleys in their ribosome profiles that give a false impression of 

regulated translational pausing. Indeed, we find that multi-mapping can even create an appearance 

of reproducibility to the shape of the Hsp90 ribosome profiles from biological replicates. Adding 

further complexity, this artificial reproducibility is dependent on the computational method used to 

construct the ribosome profile. Given the ubiquity of multi-mapping reads in Ribo-seq 

experiments and the complexity of artifacts associated with multi-mapping, we developed a 

publicly available computational tool to identify transcripts most at risk for multi-mapping 

artifacts. In doing so, we identify biological pathways that are enriched in multi-mapping 

transcripts, meaning that particular biological pathways will be highly susceptible to multi-

mapping artifacts.
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INTRODUCTION

Ribosome profiling (Ribo-seq) is a high-throughput sequencing technique used to study 

protein translation (Ingolia, Brar, Rouskin, McGeachy, & Weissman, 2012; Ingolia, 

Ghaemmaghami, Newman, & Weissman, 2009). In Ribo-seq experiments, ribosome-bound 

mRNAs are isolated and subjected to nuclease digestion to degrade exposed mRNA, leaving 

the fragments protected by ribosomes, called ribosome footprints, for subsequent high-
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throughput sequencing (Ingolia et al., 2009). Ribo-seq experiments can quantify the 

populations of transcripts being actively translated and indicate the ribosome occupancy 

along transcripts. The distribution of ribosome footprints along a transcript, the ribosome 

profile, has the potential to reveal mechanistic insights into translational regulation and 

ribosome pausing. However, the interpretation of Ribo-seq data has led to conflicting 

conclusions. For example, Ribo-seq studies have reached different conclusions about how 

ribosome elongation rate is influenced by wobble base-pairing, codon usage in relation to 

tRNA concentration, local secondary structure of mRNA, and positively-charged amino 

acids (Artieri & Fraser, 2014; Charneski & Hurst, 2013; Dana & Tuller, 2012b, 2014; 

Gardin et al., 2014; Ingolia, Lareau, & Weissman, 2011; Qian, Yang, Pearson, Maclean, & 

Zhang, 2012; Stadler & Fire, 2011; Tuller et al., 2011; Yang, Chen, & Zhang, 2014). Many 

labs are working on improving the experimental protocols and computational methods for 

analyzing Ribo-seq data.

Ribo-seq reads are typically 28–30 bp long, set by the ribosome size. Due to the short read 

length, some reads will inevitably align to multiple positions on a reference transcriptome, 

i.e. multi-map, making it impossible to unambiguously assign these fragments to their 

transcripts of origin. Figure 1 shows that a typical level of multi-mapping in S. cerevisiae 
Ribo-seq data is ~25% of the alignable reads and in HEK293 cells this level rises to ~80%. 

Alternate transcripts strongly contribute to the increased level of multi-mapping in HEK293 

datasets (Figure S1). Despite representing a large proportion of the reads, the influence of 

multi-mapping on the interpretation of Ribo-seq data is poorly understood.

At first glance the yeast Hsp90 chaperones, Hsc82 and Hsp82, seem like ideal targets to 

study translation mechanisms using Ribo-seq experiments. Hsc82 is constitutively expressed 

at a high level whereas Hsp82 is rapidly expressed in response to heat shock (Borkovich, 

Farrelly, Finkelstein, Taulien, & Lindquist, 1989; Erkine, Adams, Gao, & Gross, 1995). 

Ribo-seq data could yield insights into how Hsp82 is efficiently translated under harsh 

environmental conditions. The high expression levels of Hsc82 and Hsp82 make them 

candidates for a detailed analysis because ribosome profiles are more reproducible between 

replicates when the read coverage is high (Diament & Tuller, 2016). Hsc82 and Hsp82 share 

92% nucleotide sequence identity, which could make it easier to relate differences in 

sequence to differences in ribosome profiles.

Ribo-seq data can reveal mechanisms of translational regulation by comparing ribosome 

profiles in response to an environmental change (Gerashchenko & Gladyshev, 2014; 

Gerashchenko, Lobanov, & Gladyshev, 2012; Ingolia et al., 2009). Indeed, Hsp82 shows 

suggestive changes in profile shape upon heat stress (Figure 2). In particular, the Hsp82 

ribosome profile appears to have regions of high ribosome occupancy resembling ribosome 

pausing under unstressed conditions. The apparent pausing goes away under heat shock 

conditions. This behavior is observed whether the data is plotted as total per-nucleotide 

coverage (the number of reads overlapping a nucleotide position) or p-site occupancy, where 

each read is only counted at its “p-site”, the 12th nucleotide from the 5’ end of the read. 

However, the suggestive peaks in the Hsp82 profile under unstressed conditions correspond 

to regions where the local sequence similarity with the Hsc82 transcript predicts that multi-

mapping will occur (shaded areas in Figure 2). The apparent expression of the Hsp82 
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transcript under unstressed conditions as inferred from Ribo-seq data is in conflict with 

northern blot measurements showing minimal population of the Hsp82 transcript under 

unstressed conditions (Erkine et al., 1995). As discussed later, the combination of multi-

mapping and differential expression of two transcripts can lead to complicated artifacts in 

Ribo-seq experiments.

The optimal way of dealing with multi-mapping reads remains uncertain. Because there is 

no established best practice for processing multi-mapping reads, it is unclear whether multi-

mapping has influenced conclusions in published studies. Computational tools are being 

developed with the goal of minimizing artifacts associated with multi-mapping (Langmead, 

2017; Robert & Watson, 2015; Taub, Lipson, & P. Speed, 2010; Wang, McManus, & 

Kingsford, 2016; Zytnicki, 2017). For example, the ‘crossmap’ script from the plastid 

package (Dunn & Weissman, 2016) can create a mask to exclude multi-mapping regions, 

which has been utilized to obtain an accurate measurement of ribosome density (reads per 

unit length of gene) (Taggart & Li, 2018). This tool generates a ‘k-mer’ dataset where the 

reads are a single copy of all length ‘k’ bp subsequences of the reference and aligns these k-

mers back to the reference sequence, which identifies the multi-mapping regions. Another 

tool, MMR (Kahles, Behr, & Ratsch, 2016), uses uniquely mapping reads in proximity to 

multi-mapping regions to guide the assignment of each ambiguous read such that the read 

coverage is maximally uniform. However, this approach is more appropriate for RNA-seq 

data, where the assumption is that read coverage should be uniform across the transcript. In 

addition to publicly available computational tools, lab-specific scripts also have been used to 

deal with multi-mapping reads on a case by case basis (Dana & Tuller, 2012a; Dunn, Foo, 

Belletier, Gavis, & Weissman, 2013; Morgan, Burkhardt, Kelly, & Powers, 2018). In 

addition to computational approaches, coupling RNA-seq and Ribo-seq data is proposed to 

reduce multi-mapping when ambiguous reads are the result of multiple isoforms (Wang et 

al., 2016), such as in human cell lines. For example, Ribomap (Wang et al., 2016), uses 

RNA-seq to estimate mRNA isoform abundance which is then used to guide assignment of 

the ambiguous Ribo-seq reads. Evaluating tools that seek to mitigate multi-mapping artifacts 

is difficult because there are no established benchmarks that clearly illustrate these artifacts.

Ribo-seq data can reveal global translation changes associated with specific biological 

pathways (Jiang et al., 2017; Zou, Ouyang, Li, & Zheng, 2017) by identifying transcripts 

whose expression changes in response to some change in condition and then using programs 

such as GO (gene ontology) to identify pathways that are enriched in these differentially 

expressed transcripts. As discussed later, we identify a collection of biological pathways that 

are enriched in multi-mapping transcripts, which makes these pathways poorly suited for 

Ribo-seq analysis.

We provide a computational tool which characterizes multi-mapping behavior within a 

reference transcriptome, identifying transcripts that multi-map and their multi-mapping 

partners. This can be used to identify problematic pathways and transcripts in the 

transcriptome of any organism. Our tool can be used prior to designing and performing 

Ribo-seq experiments, allowing researchers to know how multi-mapping could affect Ribo-

seq analysis of their transcript or biological pathway of interest. This tool can also help in 

the interpretation of published results and analysis of available datasets.
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METHODS

Reference Sequences

The S. cerevisiae S288C reference transcriptome, ‘orf_coding.fasta’, was downloaded from 

the SGD (R64–2-1) (Cherry et al., 2012; Engel et al., 2014). This transcriptome does not 

include ORF sequences labelled as “pseudogene” or “dubious”. We further filtered the 

transcriptome by removing sequences labelled as “transposable_element_gene”, leaving 

5826 transcripts.

The human transcriptome was downloaded from ensembl (Zerbino et al., 2018) (GRCh38, 

release 91). We used the file ‘Homo_sapiens.GRCh38.cds.all.fa’ containing the CDS 

sequences as the reference transcriptome. Transcripts with the character ‘N’ in the sequence 

were removed, leaving 96,590 transcripts. A minimal human transcriptome (Figure S1) was 

constructed with one transcript for each gene from the APPRIS (Rodriguez et al., 2018) 

principal isoform annotations database. For each gene, the best scoring transcript was used. 

In the case of multiple best scoring transcripts, the longest transcript was chosen. In the case 

where there was no single longest transcript (i.e. multiple best scoring transcripts of equal 

length) a random transcript was chosen. This list was further filtered by removing transcripts 

shorter than 50 bp. The minimal human transcriptome contained 20037 transcripts.

Data preprocessing and alignment

HEK293 Ribo-seq datasets (SRR2433794 (Calviello et al., 2016), SRR5227448 (Zhang et 

al., 2017), SRR5227449 (Zhang et al., 2017), and SRR6327777 (Zhang et al., 2017)) and 

yeast Ribo-seq datasets (SRR1520311 (Gerashchenko & Gladyshev, 2014), SRR1520327 

(Gerashchenko & Gladyshev, 2014), SRR948553 (McManus, May, Spealman, & Shteyman, 

2014), and SRR948555 (McManus et al., 2014)) were downloaded from the SRA (Leinonen, 

Sugawara, Shumway, & International Nucleotide Sequence Database, 2011). Adaptor 

sequences were trimmed using the BBTools bbduk tool (Bushnell, 2015) (version 38) or 

cutadapt (Martin, 2011). The ribogalaxy (Michel et al., 2016) web service was used to 

remove contaminating ribosomal RNA (rRNA). Reads were aligned to rRNA sequences 

using bowtie parameters: ‘-n 2 -e 70 -l 25 --maxbts 125 -k 1 --un’ and those mapping to 

rRNA were discarded. The reads were then trimmed from the 3’ end to remove low quality 

regions if necessary. For the McManus 2014 (McManus et al., 2014) datasets (SRR948553 

and SRR948555) only reads of length 27–33 were kept to follow the authors’ analysis. To 

map the reads to the reference transcriptomes we utilized bowtie (Langmead, Trapnell, Pop, 

& Salzberg, 2009) (version 1.2.2). Unless otherwise specified we used bowtie parameters ‘--

norc -v 2’ with 1 additional parameter: either all alignments included (‘-a’), multi-mapping 

alignments excluded (‘-m 1’) or 1 alignment reported per read (‘-k 1’). Results were similar 

with and without the ‘--best’ parameter (‘--best -k 1’) (Figure S2). The MMR program was 

used with parameters: ‘-F 0 -b -v -o’ and applied to the alignment file from bowtie run with 

parameters: ‘--norc -v 2 -a’.

Alignment counts, RPKM, coverage plots, and p-site occupancy

Alignment counts for each transcript were obtained using the idxstats tool from samtools (Li 

et al., 2009) (version 1.6). RPKM values for each transcript were calculated by dividing each 
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transcript’s alignment count by a sequencing depth normalization factor (the number of 

alignable reads in the dataset divided by 1×106). This value was then divided by the length 

of each transcript in kilobases. Coverage was defined as the number of reads overlapping a 

nucleotide position in the alignment. A transcript’s coverage profile was defined as the 

coverage vs. nucleotide position for a transcript. Coverages were obtained using bedtools 

(Quinlan & Hall, 2010) (version 2.26.0), with the ‘coverage’ or ‘genomecov’ tools using the 

parameter ‘-d’. The p-site of each read was defined as the single position 12 nt from the 5’ 

end of the read. P-site occupancy was defined as the number of p-sites aligning to a 

nucleotide position. A transcript’s p-site occupancy profile was defined as the p-site 

occupancy vs. nucleotide position for a transcript.

The contribution of each transcript to total multi-mapping (Figure 3)

The multi-mapping reads in the datasets (unstressed: SRR1520311, heat shock: 

SRR1520327) were first isolated via alignment to the transcriptome with bowtie parameters 

‘--norc -v 2 -m 1 --max’ where ‘--max’ writes multi-mapping reads to a file. These multi-

mapping reads were then aligned to the transcriptome with parameters ‘--norc -v 2 -a’. 

Samtools was used to obtain the multi-mapping alignment count for each transcript.

K-mer profile

Using custom python scripts, a ‘k-mer’ dataset was created of a reference transcriptome, 

where the reads are a single copy of all length ‘k’ bp subsequences of each transcript. The 

transcript of origin and 5’ position of the k-mer on the transcript were recorded in the read 

name for later multi-mapping network construction (described below). The k-mers were then 

aligned back to the reference transcriptome using bowtie with parameters ‘--norc -v 2’ and 

either ‘-m 1’ (Figure 4D, Figure S6B) or ‘-a’ (Figure S6A). Regions unaffected by multi-

mapping have a k-mer profile coverage value equal to ‘k’.

Random ribosome profile correlation (Figure S6)

K-mer profiles (k=29) were first scaled by multiplying the coverage value by 100. Random 

ribosome profiles were created by adding random noise to the scaled k-mer profile at each 

nucleotide position. The added noise was sampled from a normal distribution, the standard 

deviation of which was scaled by the coverage value at that nucleotide position and a 

multiplication factor termed ‘noise level’.

Correlation between biological replicates

To quantify apparent ribosome profile reproducibility across biological replicates, we 

calculated the Pearson correlation coefficient between transcript coverage profiles or p-site 

occupancy in two replicate datasets (SRR948553 and SRR948555). Correlations for 

transcripts with a cumulative coverage of less than or equal to 5000 were removed from the 

analysis. The transcript k-mer profiles (k=29) were used to isolate the transcript regions 

where the coverage is unaffected by multi-mapping (Figure 5D, Figure S7D, and Figure 

S6C), i.e. where the k-mer profile coverage is equal to ‘k’. Experimental reads were trimmed 

to a length of 29 bp from the 3’ end and reads shorter than 29 bp were discarded. All 
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correlations (Figures 5–6, Figure S3, and Figures S6–S8) were performed with 29 bp reads 

or k-mers (k=29) to ensure a fair comparison between processing parameters.

Multi-mapping network

To construct the S. cerevisiae S288C transcriptome multi-mapping network (Figure 7), a k-

mer dataset with k=30 was created as described above. With a similar approach as the 

‘crossmap’ script from the plastid library (Dunn & Weissman, 2016), the multi-mapping 30-

mers were isolated via alignment to the transcriptome with bowtie parameters ‘--norc -v 2 -

m 1 --max’. The isolated multi-mapping 30-mers were then aligned back to the 

transcriptome with parameters ‘--norc -v 2 -a’. A custom python script was used to construct 

the multi-mapping network from the resulting alignment. Briefly, the k-mer read name, 

containing the k-mer origin location (the transcript name and nucleotide position where the 

k-mer was generated from), was used to separate the alignments into three categories: 

correct alignments, internal multi-mapping alignments (correct transcript but different 

position), and external multi-mapping alignments (mapped to a different transcript than the 

transcript of origin). The list of multi-mapping transcripts and the multi-mapping network 

was then constructed from the external and internal multi-mapping alignments and 

visualized in cytoscape (Shannon et al., 2003). The same procedure was used to create the 

human transcriptome multi-mapping network (Figure S10), except the bowtie alignments 

were performed with zero allowed mismatches (‘-v 0’).

Gene enrichment analysis

The S. cerevisiae multi-mapping network analysis described above identified 1124 multi-

mapping transcripts (Supplemental Table I) which were used as input for a Gene Ontology 

(GO) enrichment analysis (Ashburner et al., 2000; Mi et al., 2017; The Gene Ontology, 

2017). The PANTHER Overrepresentation Test (Released 2017–12-05) analysis tool was 

used for the enrichment analysis using the Saccharomyces cerevisiae (all genes in database) 

reference list. The ‘GO biological process complete’ annotation data set was used with 

annotation version: GO Ontology database (Released 2018–05-21). The Fisher’s exact test 

with FDR correction was chosen as the test type.

RESULTS

Here we focus on published S. cerevisiae Ribo-seq datasets (Gerashchenko & Gladyshev, 

2014; McManus et al., 2014) under unstressed conditions and heat shock. Datasets were pre-

processed to remove adaptor sequences, low-quality regions, and ribosomal RNA reads 

(Methods). Processed reads were then aligned to the S288C transcriptome, composed of 

coding regions with transposons, dubious genes, and pseudogene sequences removed. 

Despite an overall similar percent of multi-mapping in the heat shock and unstressed 

conditions (Figure 1), the relative contribution of each transcript changes dramatically 

(Figure 3). This is particularly evident for the molecular chaperones Ssa1/Ssa2 (Hsp70 

family), Hsp82/Hsc82 (Hsp90 family), and Hsp150, where the increase in multi-mapping is 

a result of increased expression after heat shock.
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Table I shows alignment counts for Hsc82, Hsp82, and a non-multi-mapping control 

transcript (AHP1) under both unstressed and heat shock conditions. Alignment counts were 

determined under four bowtie processing conditions: i) including multi-mapping alignments 

(‘-a’), ii) excluding multi-mapping alignments (‘-m 1’), iii) Reporting one alignment per 

read for multi-mapping reads (‘-k 1’, Bowtie default) iv) using the MMR program 

(Methods). Two mismatches per read are allowed (bowtie default).

We observe high levels of reproducibility between biological replicates (Figure S3). 

Specifically, the correlation between number of alignments per gene across replicate datasets 

is R2 = 0.994 when multi-mapping alignments are included (-a), R2 = 0.991 when one 

alignment per read is reported (-k 1), and R2 = 0.988 when multi-mapping reads are 

excluded (-m 1) (Figure S3).

While Ribo-seq estimates of ribosome occupancy on Hsp90 transcripts (RPKM) are 

reproducible, these estimates are not robust. Specifically, while AHP1 gives consistent 

alignment counts under all alignment parameters, the alignment counts for both Hsc82 and 

Hsp82 are highly sensitive to the processing of multi-mapping reads (Table I). For example, 

the alignment count for Hsp82 under unstressed conditions is ten-fold greater when multi-

mapping alignments are included versus excluded (Table I). Comparing Hsp82 and Hsc82 

alignment counts between environmental conditions, such as unstressed versus heat shock, 

further illustrates the poorly defined nature of translation estimates associated with multi-

mapping transcripts. Figure S4 shows a collection of multi-mapping transcripts, including 

Hsp82 and Hsp82, that show large apparent changes in transcript expression (RPKM) upon 

heat shock. The fold change in RPKM is highly sensitive to alignment parameters. 

Collectively, these results suggest that Ribo-seq estimates of translation levels and 

comparisons across environmental conditions are unreliable for multi-mapping transcripts.

Multi-mapping creates artificial peaks and valleys in ribosome profiles

Figures 4A&B compare ribosome coverage profiles of Hsc82 and Hsp82 under unstressed 

conditions when multi-mapping alignments are excluded and included. Multi-mapping has 

opposite effects on the apparent ribosome profiles of the Hsc82 and Hsp82 transcripts. 

Specifically, when multi-mapping alignments are excluded, the Hsc82 profile has distinct 

peaks and valleys that could be interpreted as ribosomal pause sites, whereas the Hsp82 

profile appears relatively flat. When all multi-mapping alignments are included, the Hsc82 

profile appears flat and the Hsp82 profile has peaks resembling regions of high ribosome 

occupancy. Depending on the alignment parameters, one could reach opposite conclusions 

about the translation behavior of these two transcripts. Similar results are observed in p-site 

occupancy plots of Hsc82 and Hsp82 under unstressed conditions (Figure S5).

Strikingly, the complex pattern of peaks and valleys observed for the Hsc82 profile can be 

quantitatively reproduced by simply considering the sequence similarity between Hsc82 and 

Hsp82. Here we generated a k-mer dataset where the reads are a single copy of all 30 bp 

subsequences of each transcript in the transcriptome, and then aligned these k-mers back to 

the transcriptome. A non-multi-mapping transcript (such as AHP1, Figure 4C 

(Thorvaldsdottir, Robinson, & Mesirov, 2013)) has a flat k-mer profile (with a height of ‘k’) 
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with sloping edges. A multi-mapping transcript has a rugged k-mer profile. Regions that are 

unaffected by multi-mapping are the plateaus where coverage values are equal to ‘k’.

The k-mer profile represents a null hypothesis, where the profile reflects the expectations of 

a uniform distribution of Ribo-seq data. The solid lines in Figure 4D show that the peaks and 

valleys observed in the ribosome profile of Hsc82 can be quantitatively reproduced by k-

mers and multi-mapping. In other words, despite the complex appearance of the 

experimental Hsc82 ribosome profile, this profile could be explained by a uniform ribosome 

density across the transcript.

Multi-mapping can create a false impression of reproducibility between replicate 
experiments

Reads from multi-mapping transcript regions will multi-map in different experiments, 

raising the concern of the false appearance of reproducibility. To quantify the extent to 

which multi-mapping alone causes ribosome profiles to be artificially correlated, we first 

performed numerical simulations. Here we generated random ribosome profiles by adding 

random noise to Hsc82 k-mer profiles and then calculated the statistical correlation between 

these artificial datasets (Methods). The k-mer profile shape causes random replicates to be 

highly correlated whether multi-mapping alignments are included or excluded (Figure 

S6A&B). In contrast, regions that are unaffected by multi-mapping correctly show no 

statistical correlation (shaded areas in Figure S6C).

The same artificial reproducibility observed in the above numerical simulations is also 

observed for Hsc82 and Hsp82 in biological replicates. For example, each data point in 

Figure 5 represents coverage at the same site on the Hsc82 transcript for two replicate 

experiments. When all multi-mapping alignments are included or when one alignment per 

read is reported, the datasets are significantly correlated (Figure 5A, B; R2 = 0.61 and R2 = 

0.65, respectively). When multi-mapping reads are excluded, the two datasets are more 

highly correlated (Figure 5C; R2 = 0.85). This increase in R2 value is statistically significant 

(p<0.05 using the Fisher R to Z transformation). However, the correlation between replicate 

datasets decreases (Figure 5D; R2 = 0.39) for transcript regions that are unaffected by multi-

mapping (i.e. k-mer coverage = ‘k’). Similar results are observed for the Hsp82 profile 

(Figure S7). When the Ribo-seq data is plotted as p-site occupancy, the apparent 

reproducibility is sensitive to multi-mapping processing parameters as well, but to a lesser 

extent than per-nucleotide coverage (Table II, or Figure S8). The overall level of 

reproducibility as inferred from coverage versus p-site analysis differ, with p-site analysis 

showing a lower level of reproducibility. We conclude that the profile shapes of Hsc82 and 

Hsp82 are minimally reproducible but multi-mapping creates a false impression of 

reproducibility under a wide range of standard processing conditions.

A global analysis of transcripts and pathways that will be confounded by multi-mapping

Due to the artificial reproducibility created by multi-mapping between Hsc82 and Hsp82, we 

questioned whether the most reproducible transcripts are enriched in multi-mappers. Figure 

6 is the result of a global analysis of ribosome profile reproducibility for all transcripts from 

two replicate experiments. Regardless of the alignment parameters, multi-mapping 
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transcripts are highly enriched in the group of transcripts that show high reproduciblility 

across replicate experiments (Figure 6). This enrichment cannot be explained by a secondary 

correlation showing that multi-mapping transcripts are slightly longer than non-multi-

mapping transcripts (Figure S9). We suggest that a detailed analysis of Ribo-seq data can be 

perfomed on transcripts that show high reproducibility and are not multi-mappers. With 

default bowtie parameters, 95 non-multi-mapping transcripts in the yeast transcriptome show 

coverage profile reproducibility with an R2 between 0.8–1.0.

To better understand the global prevalence of multi-mapping transcripts in S. cerevisiae, we 

created transcriptome k-mers and aligned them back to the transcriptome, thereby 

identifying all of the transcriptome regions that multi-map and their multi-mapping partners 

(Methods). For a read length of 30 bp, 1124 of the 5826 transcripts (19%) multi-map (a 

complete list is given in Supplemental Table I along with the fraction of the transcript that 

can multi-map and the number of multi-mapping partners).

The above k-mer analysis describes the multi-mapping patterns within a transcriptome 

which can be visualized as a multi-mapping network (Figure 7). Strikingly, we find that 

multi-mapping transcripts fall into a wide range of distinct classes. As expected from the 

whole genome duplication of S. cerevisiae (Kellis, Birren, & Lander, 2004; Wolfe & 

Shields, 1997), many transcript pairs multi-map, including Hsc82 and Hsp82. Internal multi-

mapping is present, where one transcript position maps to more than one position on the 

same transcript. Other multi-mapping transcripts form clusters with complicated 

connectivity. The largest cluster has 275 members. The distinct classes of multi-mapping 

suggest that different computational methods will be needed to correct for the artifacts 

associated with each class.

The multi-mapping network shows that certain protein families and biological pathways will 

be susceptible to multi-mapping artifacts on a global scale. To identify pathways enriched in 

multi-mapping transcripts, we performed a Gene Ontology (GO) enrichment analysis 

(Ashburner et al., 2000; Mi et al., 2017; The Gene Ontology, 2017) using the multi-mapping 

genes as input. This analysis identifies many pathways at risk for multi-mapping artifacts. 

For example, every single member of the mannose transport pathway is a multi-mapping 

transcript (Figure 7B). Other pathways enriched in multi-mapping transcripts are listed in 

Supplemental Table II.

A tool for identifying multi-mapping transcripts and pathways

We provide here a python-based script for identifying multi-mapping transcripts and their 

connectivity in any reference transcriptome. With a k-mer analysis similar to that described 

above, this command line tool takes an input reference transcriptome, read length, and 

bowtie alignment parameters, and outputs a table of the multi-mapping transcripts. The table 

includes the percent of each transcript that multi-maps, the number of other transcripts it 

multi-maps with and if there are any internal multi-maps. Additionally, the multi-mapping 

connectivity network is output for visualization in cytoscape (Shannon et al., 2003). For 

example, the multi-mapping network for the human transcriptome is shown in Figure S10. 

This network is much more complex than for yeast, even when reducing the number of 

allowed mismatches from two to zero, suggesting that artifacts from multi-mapping reads 
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will be more complicated. The script is available for download at https://github.com/

jacksonh1/findMM.

DISCUSSION

Multi-mapping reads are abundant in Ribo-seq datasets (Figure 1) and understood to be a 

potential problem in data analysis. However, the specific ways in which multi-mapping reads 

can affect the interpretation of Ribo-seq data are not fully understood. There is no 

established best practice for processing multi-mapping reads and the procedure varies across 

labs, meaning that the nature of multi-mapping artifacts will vary from study to study. Here, 

we find that a pair of multi-mapping transcripts in yeast, Hsc82 and Hsp82, uncovers a 

variety of artifacts caused by ambiguous reads. We find estimates of Hsp90 expression are 

reproducible between replicates, but these values are not robust. The inferred expression of 

Hsp82 and Hsc82 can change ten-fold by processing multi-mapping reads in different ways 

(Table I). This variability confounds estimates of relative transcript expression levels within 

an experiment. Comparison of expression levels across environmental conditions, such as 

unstressed versus heat shock, is also confounded by multi-mapping (Figure S4).

We identify a second multi-mapping artifact related to evaluating ribosome profile shape. 

Here we find that multi-mapping between Hsp82 and Hsc82 creates artificial peaks and 

valleys that can give the false appearance of regulated translational pausing (Figure 2, 4 and 

S5). Multi-mapping imparts a reproducible structure to ribosome profiles which can lead to a 

misleading appearance of profile reproducibility from biological replicates (Figures 5–6, and 

S7–S8). We find that the apparent reproducibility of ribosome profiles is sensitive to whether 

the profiles are analyzed by coverage (Figure 5) versus P-site analysis (Table II and Figure 

S8). P-site analysis assumes that all reads have been precisely trimmed by the nuclease to 

exactly 12 nt from the P-site and demands that this exact kind of trimming is reproducibly 

achieved across different experiments. Additional confounding factors in P-site analysis 

(nuclease digestion biases, incomplete digestion, ribosome conformational changes) may 

further complicate how multi-mapping artifacts manifest in Ribo-seq analysis.

Ribo-seq data is characterized by highly heterogeneous coverage, containing peaks and 

valleys that can be caused by ribosome pausing, technical artifacts, and sensitivity to 

experimental conditions (Bartholomaus, Del Campo, & Ignatova, 2016). Indeed, poor 

reproducibility of ribosome profiles at the individual transcript level is a known issue with 

Ribo-seq datasets (Diament & Tuller, 2016). As such, a variety of normalization methods 

and data analysis techniques have been developed to extract biological insights from noisy 

datasets. A simple approach is to limit analysis to the most reproducible transcripts across 

replicates having sufficient sequencing depth. The artificial reproducibility created by multi-

mapping shows that this approach will inadvertently result in a large enrichment of multi-

mapping transcripts (Figure 6). We propose that a detailed analysis of Ribo-seq data can be 

perfomed on non-multi-mapping transcripts with high reproducibility. However, this select 

group represents a small fraction of yeast transcripts (Figure 6).

Due to the high level of multi-mapping in Ribo-seq datasets, the choice of parameters for 

dealing with multi-mapping reads at the computational level is an important step in data 
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analysis. Typical short-read alignment programs, e.g. bowtie, have standard processing 

parameters for dealing with multi-mapping reads such as excluding all multi-mappers 

(m=1), reporting all multi-mapping alignments (-a), or choosing 1 of the potential 

alignments (k=1). Multi-mapping artifacts appear under all these standard processing 

methods. More computationally advanced tools are being developed or are already available 

for dealing with multi-mapping reads. For example, MMR (Kahles et al., 2016) uses 

uniquely mapping reads local to the multi-mapping regions to assign an alignment for each 

ambiguous read such that the overall coverage is maximally uniform. This method is 

founded on an assumption of locally uniform coverage. However, assuming a uniform 

ribosome occupancy negates a primary benefit of using Ribo-seq data. The results shown 

here indicate that the Hsc82 and Hsp82 pair could be a valuable benchmark for testing 

computational tools aimed at mitigating multi-mapping artifacts in Ribo-seq data.

The network of multi-mapping transcripts in yeast (Figure 7) shows distinct varieties 

ranging from simple internal multi-mapping to complex clusters of multi-mapping 

transcripts. Each multi-mapping pattern will have unique artifacts, potentially requiring 

different analyses. The complexity is magnified when considering differential expression of 

the transcripts in response to changes in environmental condition, such as heat shock. 

Indeed, our results indicate that the heat shock response is an example of an area of biology 

that is poorly suited for analysis by Ribo-seq. Supplemental Table II lists other pathways in 

yeast that should be treated with caution. Problematic transcripts and pathways will be 

specific to the organism of interest.

An alternative to addressing the multi-mapping problem computationally is to avoid analysis 

of multi-mapping transcripts altogether. We provide a script to identify and characterize 

multi-mapping transcripts in any given transcriptome and their connectivity. Using this tool 

researchers can identify a priori which transcripts are multi-mappers and identify the 

pathways that are enriched in multi-mapping transcripts before conducting an experiment. 

Prior knowledge of the multi-mapping patterns within a reference transcriptome will 

indicate whether Ribo-seq is an appropriate method for studying their transcript or pathway 

of interest. This tool may also be helpful for interpreting published studies and available 

datasets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Prevalence of multi-mapping reads in ribosome profiling experiments. Mappable reads 

exclude reads that cannot be aligned on coding regions of the transcriptome.
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Figure 2. 
Ribosome profiling data for a portion of the Hsp82 transcript (positions 200–700). Inset: full 

transcript. Top: Unstressed conditions (Dataset: SRR1520311). Bottom: Heat shock 

conditions (Dataset: SRR1520327). Alignment was performed with 2 mismatches allowed 

and reporting 1 alignment per read (bowtie: k=1, v=2). The gray shaded regions are where 

the Hsc82 and Hsp82 transcript sequences are identical for at least 30 bps. The data is 

plotted as: (A) per-nucleotide coverage (number of reads overlapping a nucleotide position) 

and (B) P-site occupancy (each read counted once, at the position of the 5’ end of read + 12 

nt).
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Figure 3. 
The contribution of each transcript to the total multi-mapping under unstressed (A) and heat 

shock (B) conditions is shown as the percent of the total multi-mapping alignments. The 15 

transcripts with the largest contribution are shown. Alignment and data analysis details 

described in methods.
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Figure 4. 
The Hsc82 (A) and Hsp82 (B) ribosome coverage profiles are dramatically altered when 

multi-mapping alignments are included versus excluded (unstressed conditions: 

SRR1520311). (C) Alignment of transcriptome k-mers to AHP1 transcript. The non-multi-

mapping transcript has a flat k-mer profile. (D) The detailed shape of the experimental 

Hsc82 ribosome coverage profile can be reproduced from a k-mer analysis of the Hsc82 

transcript sequence. Profiles are normalized by dividing coverage by the average coverage 

across the transcript.
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Figure 5. 
Yeast unstressed replicate Hsc82 coverage profiles are well correlated when including all 

multi-mapping alignments (A) or keeping a single alignment for each read (B). When multi-

mapping alignments are excluded, replicates show even higher correlation (C). However, 

transcript regions that are unaffected by multi-mapping are poorly correlated (D). Each point 

represents the coverage value at an individual nucleotide position. Replicate 1 dataset: 

SRR948553. Replicate 2 dataset: SRR948555
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Figure 6. 
The percent of transcripts that multi-map within different ranges of transcript coverage 

profile reproducibility. Transcript reproducibility was defined as the correlation (R2) 

between coverage profiles across biological replicate datasets (SRR948553 and 

SRR948555). A larger percentage of the highly correlated transcripts multi-map under all 

alignment conditions tested: (A) reporting 1 alignment per read (-k 1), (B) including all 

multi-mapping alignments (-a), and (C) excluding all multi-mapping alignments (-m 1).
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Figure 7. 
Multi-mapping network. (A) Schematic illustrating multi-mapping network construction 

from transcriptome k-mer alignment. (B) Multi-mapping network for the yeast 

transcriptome. Edge thickness is scaled by the number of k-mer alignments that multi-map. 

Self connections indicate internal multi-maps where a k-mer from one position of a 

transcript multi-maps to a different position on the same transcript. Examples of biological 

pathways enriched in multi-mappers are circled.
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Table I.

Alignment counts for Hsc82, Hsp82, and AHP1 when processed with a variety of parameters. Alignment 

counts are un-normalized for sequencing depth or transcript length.

Unstressed (SRR1520311)

transcript multi-mapping alignments included (-a) multi-mapping alignments excluded (-m 1) bowtie default (-k 1) MMR

Hsc82 144923 59114 125180 138290

Hsp82 93224 7405 27147 14037

AHP1 96539 96539 96539 96539

Heat shock (SRR1520327)

transcript multi-mapping alignments included (-a) multi-mapping alignments excluded (-m 1) bowtie default (-k 1) MMR

Hsc82 123984 21464 58639 74149

Hsp82 155384 52845 118182 102680

AHP1 31078 31078 31078 31078
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Table II.

Summary of correlations (R2) between Hsc82 and Hsp82 p-site occupancy or coverage profiles across 

biological replicate datasets (SRR948553 and SRR948555).

Hsc82 Hsp82

Bowtie alignment 
parameter

R2 (p-site 
occupancy)

R2 (coverage) Number of 
points in 

correlation

R2 (p-site 
occupancy)

R2 (coverage) Number of 
points in 

correlation

Multi-mapping alignments 
included (-a)

0.583 0.608 2118 0.597 0.780 2130

Multi-mapping alignments 
excluded (-m 1)

0.674 0.846 2118 0.502 0.782 2130

Report 1 alignment per 
read (-k 1)

0.596 0.655 2118 0.529 0.675 2130

Regions unaffected by 
multi-mapping

0.389 276 0.262 276
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