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Abstract

Background: Although targeted drugs have contributed to impressive advances in the treatment of cancer
patients, their clinical benefits on tumor therapies are greatly limited due to intrinsic and acquired resistance of cancer
cells against such drugs. Drug combinations synergistically interfere with protein networks to inhibit the activity level
of carcinogenic genes more effectively, and therefore play an increasingly important role in the treatment of complex
disease.

Results: In this paper, we combined the drug similarity network, protein similarity network and known drug-protein
associations into a drug-protein heterogenous network. Next, we ran random walk with restart (RWR) on the
heterogenous network using the combinatorial drug targets as the initial probability, and obtained the converged
probability distribution as the feature vector of each drug combination. Taking these feature vectors as input, we
trained a gradient tree boosting (GTB) classifier to predict new drug combinations. We conducted performance
evaluation on the widely used drug combination data set derived from the DCDB database. The experimental results
show that our method outperforms seven typical classifiers and traditional boosting algorithms.

Conclusions: The heterogeneous network-derived features introduced in our method are more informative and
enriching compared to the primary ontology features, which results in better performance. In addition, from the
perspective of network pharmacology, our method effectively exploits the topological attributes and interactions of
drug targets in the overall biological network, which proves to be a systematic and reliable approach for drug
discovery.
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Background
Traditional “one drug, one target” treatment can not
always lead to desirable therapeutic effect on complex
diseases, because biological pathways and networks are
often redundant and robust to single point perturba-
tions [1]. Drug combination perturbs the biological net-
work through synergistic and synthetic lethal effects, and
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inhibits more effectively the activity level of pathogenic
genes [2, 3]. Previous studies have shown that combi-
nation drugs can effectively inhibit cancer cell growth
or promote cancer cell apoptosis, with reduced toxicity
and side effects than single target drugs [4]. Even more
promising, drug resistance can be decreased or even over-
come through combination therapy [5]. Therefore, thera-
peutic schemes from single- to multi-target drugs play an
increasingly important role in the treatment of complex
diseases [6].
Despite the increasing successes of combination drugs

in inhibiting cancer cell proliferation, most of them are
discovered by clinical experience or by occasional chances
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[5, 6]. Developing combinations of targeted agents is more
difficult than developing a single agent [7], as inhibiting
the cross-talks among multiple pathways depends on our
insight into the pathway interdependencies underlying the
cancer cell proliferation and survival in a specific cancer
type [8, 9]. The high-throughput screening (HTS) exper-
iments currently used to evaluate drug combinations are
still time- and cost- consuming because they rely heav-
ily on the search for a large number of possible target
combinations [10–12]. So, there is an urgent demand for
rational and systematically in silico methods to narrow
down the candidates for combinatorial drugs for wet-lab
experimental validations [13].
Quite a few computational methods have been pro-

posed to predict cancer sensitivity to combinatorial drugs
[1, 4, 14–16]. The existing methods can be roughly
divided into two categories: system biology-based meth-
ods [17] and network-based analysis [15, 18]. System
biology-based methods mathematically model the pertur-
bation of drugs using biochemical reactions and kinetic
parameters, which are often limited to small scale and
well-studied signaling pathway. Network-based methods
often exploit genomic, chemical and pharmacological
properties to build an overall network composed of the
associations among drugs, proteins and pathways, and
then adopt scoring rules [19, 20], optimal combination
searches [1, 16, 21], machine learning [4, 18] to predict
potential drug combinations. As network-based meth-
ods integrate various kinds of ontological features and
interactions between different subject of interest, some
of these methods achieve remarkable performance in
predicting drug combinations. For example, Ligeti et al.
[20] proposed so-called Target Overlap Score (TOS) pri-
oritization function, which is defined for two drugs as
the number of jointly perturbed targets divided by the
number of all targets potentially affected by these two
drugs, to rank candidate drug combinations. Pang et al.
[1] proposed mixed integer linear programming to find
balanced target set cover (BTSC) and minimum off tar-
get set cover (MOTSC) for combination therapy. Huang
et al. [18] propose DrugComboRanker, which first builds a
drug functional network based on their genomic profiles,
and disease-specific signaling networks based on patients
genomic profiles and interactome data, and then prioritize
synergistic drug combinations by searching drugs whose
targets are enriched in the complementary signaling mod-
ules of the disease signaling network. Matlock et al. [21]
tried to find drug combinations maximizing sensitivity
over tumor cell models while minimizing toxicity over
normal cell models, and then proposed a lexicographic
search algorithm to find optimal target set. In addition,
some methods exploit the concept of synthetic lethality to
discover combinatorial drugs [3, 22, 23]. However, most
of previous methods are usually limited to the ability to

dissect potential molecular mechanisms, or to associate
multiple drugs to one disease in huge pharmacological
space.
There have been many approaches that integrate mul-

tiple heterogeneous networks to infer the associations
between biological entities, including lncRNA functions
[24–26], lncRNA-disease associations [27], drug-disease
associations [28, 29] and gene functions inference [30].
Inspired by heterogeneous network-based inference, we
ran random walk with restart on the drug-protein het-
erogenous network to extract features for drug combina-
tions, and then trained gradient tree boosting classifier
using the extracted features to predict new drug com-
binations. Concretely, we integrated a variety of data
sources, including chemical structures of the drugs, pro-
tein sequences, and known drug-protein associations, to
construct a drug-protein heterogeneous network. The
random walk with restart procedure was implemented on
the heterogenous network using the combinatorial drug
and their targets as the initial probability, respectively. The
converged probability distribution was used as feature
vector of the drug combination. Based on the probability
distribution vectors, we subsequently trained the gradient
tree boosting (GTB) classifier, which achieved the AUC
of 0.949 by 10-fold cross-validation. We also compared
our method to other seven typical classifiers, including
kNN, SVM, Logistic regression, Naive Bayes, AdaBoost,
Random Forest and LogistBoost. The performance com-
parison results demonstrate that our proposed model sig-
nificantly outperformed other traditional methods. From
the perspective of network pharmacology, our method
effectively make use of the topological attributes and func-
tional interactions of drug targets in the protein-protein
network.

Results
Drug combination dataset
The set of effective drug combinations was obtained
from DCDB 2.0 [31], a typical drug combination database
focused on collecting verified drug combinations to facil-
itate further exploration, including theoretical modeling
and simulation of such beneficial drug combinations. In
total, the current version(2.0) of DCDB includes 1363
drug combinations (330 approved and 1033 investiga-
tional, including 237 unsuccessful usages), covering 904
individual drugs and 805 targets. We selected those com-
binations that are approved or under trials in DCDB as
positive samples. Note that the number of non-effective
drug combinations is actually enormous, much larger than
that of effective in real world. Therefore, we generated a
number of negative samples of drug combinations by ran-
domly picking up pairwise drugs to balance the positive
and negative samples in our benchmark set. The strat-
egy of generation of negative samples has been widely
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adopted in the prediction of drug-target interactions and
drug-disease associations [28, 32]. Importantly, the drug
set that we selected pairwise combinations is expanded
from the individual drugs in DCDB to their most associ-
ated 3 drugs according to STITCH, yielding 3266 drugs
in total. Finally, the benchmark drug combination set
contains 1359 positive combinations and 1359 negative
combinations.

Performance measures
We conducted performance evaluation using 10-fold cross
validations. In particular, the training set were randomly
divided into ten subsets and each subset had roughly equal
size to others. Each subset was in turn used as the test
set, and the remaining nine subsets were used as train-
ing set. This validation process was repeated ten times
and each performance measure was averaged over the
ten folds for performance evaluation. A couple of perfor-
mance measures were used in our experiment, including
precision (PRE), recall (REC), F-measure, Matthews cor-
relation coefficient (MCC) and the area under the receiver
operating characteristic curve (AUC). They are formally
defined as below:

Precision = TP
(TP + FP)

(1)

Recall = TP
(TP + FN)

(2)

F –Measure = (2 ∗ Precision ∗ Recall)
(Precision + Recall)

(3)

MCC = (TP × TN − FP × FN)√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(4)

in which TP and TN represent the numbers of correctly
predicted positive and negative samples, FP and FN repre-
sent the numbers of wrong predicted positive and negative
samples, respectively. Additionally, the AUC score is com-
puted by varying the cutoff of the predicted scores from
the smallest to the greatest value.

Impact of parameters on performance
To explore the impact of parameter λ, which is the prob-
ability of random walker jumping to different type of
network, We gradually increased its value from 0.1 to 0.9
at interval of 0.1. The aforementioned metrics obtained
by 10-fold cross-validation are shown in Table 1, which
demonstrate that λ has a moderate impact on the predic-
tion performance of our proposed method. In terms of
AUC, the values fit approximately a parabola which hit
the top 0.944 at λ 0.7, which was thus adopted in our
subsequent experiments. For other two parameters intro-
duced in random walk with restart, restart probability α

Table 1 Impact of the parameter λ on the performance of GTB
classifer

λ Precision Recall F-Measure MCC AUC

0.1 0.861 0.852 0.856 0.715 0.929

0.2 0.865 0.853 0.858 0.720 0.930

0.3 0.870 0.854 0.861 0.726 0.934

0.4 0.878 0.861 0.869 0.738 0.939

0.5 0.883 0.871 0.877 0.755 0.941

0.6 0.885 0.868 0.875 0.755 0.941

0.7 0.887 0.867 0.876 0.757 0.944

0.8 0.885 0.865 0.875 0.754 0.943

0.9 0.884 0.864 0.874 0.752 0.943

The boldface figures indicate that GTB classifier achieves the best performance at λ
equal to 0.7

and tradeoff η, we conducted similar tuning to determine
their optimal values that achieve the best performance. As
shown in Additional file 1: Table S1 and S2, the AUCmea-
sure reached the highest value when α and tradeoff η were
equal to 0.2 and 0.9. According to the results, the restart
probability α has a negligible effect on the AUC. Gener-
ally, the restart probability is a heuristical parameter with-
out any theoretical guide or justification when selecting
[33]. However, the heterogeneous network is established
based on drug-drug similarity, protein-protein similar-
ity and known drug-protein associations, resulting in a
heterogeneous network with quantitative weighted edges.
From this perspective, since the random walk simulates
the influence of drugs in protein network, the convergence
state will have a bias on higher weighted nodes. There-
fore, the restart probability may have a slight effect on the
final distribution. As a result, we set the three parameters
λ, α and η to 0.7, 0.2 and 0.9 in the following performance
comparison experiments.

Performance comparison to typical classifiers
To demonstrate the outstanding performance of our
method, we carried out performance evaluation on the
benchmark combination set by comparing our method
with seven other typical classifiers, including kNN,
SVM, Logistic regression, Naive Bayes, Random Forest,
Adaboost and LogitBoost. Based on the derived feature
distribution vectors, we implemented these competitive
classifiers separately using R package [34] so as to conve-
niently reproduce our work. For Native Bayes, we adopted
the R package e1071 [35] and its default setting. Also,
logistic regression and SVM are implemented based on
the e1071 R package, and logistic regression was run with
default settings, while the misclassification penalty coeffi-
cient for SVM varied from 10 to 10000 by interval of 500
to achieve best performance. For KNN, R package kknn
[36] was used to run the algorithm, in which the parameter
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k (k=1, 3, 5, 7 and 9) was enumerated to tune its per-
formance. For the distance metric of kNN, we have tried
Manhattan distance, Euclidean distance and Chebyshev
distance and found that they yield to similar performance,
thereby we adopted Chebyshev distance (q=5) in the per-
formance evaluation. The R package randomForest [37]
was used to run random forest algorithm and the number
of trees varies from 60 to 500 by interval of 20. For boost-
ing methods Adaboost and Logitboost, the R packages
Adabag [38] and caTools were used, where the number of
training iterations was tuned from 10 to 100 by interval
of 5 and 10, respectively. The performance measures of
each comparative method, including precision, recall, F1,
MCC and AUC, achieved by the fine-tuned parameters,
are shown in Table 2. Apparently, our proposed method
significantly outperformed other classifiers in terms of
almost all performance metrics.
To present clear performance comparison, the ROC

curves of GTB and other seven classifiers are also illus-
trated in Fig 1. It can be demonstrated that GTB classifier
greatly outperforms all other competitive methods, which
achieves the highest AUC value 0.95, followed by Random
forest and Adaboost at 0.86. The performance of Naive
Bayes is the worst and gets only 0.508 AUC value.

Performance improvement by heterogenous
network-derived features
To validate the effectiveness of the features extracted
from drug-protein heterogeneous network, we conducted
performance comparison between the primary ontology
features and heterogenous network-based features. Due
to different number of individual drugs and target pro-
teins involved in drug combinations, we can not directly
concatenate the drug fingerprints and protein GO anno-
tations to construct feature vectors that are inconsistent
in dimension. Instead, we first unified the chemical fin-
gerprints of individual drugs in a combination, i.e. union
of individual fingerprint vectors, as well as the union of
GO terms of target proteins of individual drugs. Next,

Table 2 Comparison of GTB with other typical classifiers on
heterogenous network-derived features

Method Precision Recall F-Measure MCC AUC

GTB 0.897 0.872 0.884 0.772 0.949

kNN 0.738 0.833 0.783 0.542 0.768

SVM 0.882 0.779 0.840 0.728 0.859

Logistic 0.499 0.527 0.510 0.014 0.520

Naive Bayes 0.504 0.988 0.770 0.086 0.508

Random forest 0.880 0.841 0.862 0.733 0.866

AdaBoost 0.878 0.854 0.863 0.732 0.866

LogitBoost 0.803 0.820 0.811 0.617 0.808

The boldface figures indicate that GTB achieves the best performance compared
with other typical classifiers on heterogenous network-derived features

we concatenated the union sets of chemical fingerprints
and GO annotations for each pair of drug combinations
as the input features of the GTB classifier. The perfor-
mance measures are shown in Table 3. It can be demon-
strated that the performance of GTB classifier with input
derived from heterogeneous network-based features is
vastly superior to that with primary ontology features.
For example, the AUC value increased from 0.528 to
0.949 for GTB classifier. Moreover, we conducted perfor-
mance comparison for other typical classifiers to validate
the advantage of our extracted feature from drug-protein
heterogenous network. As shown in Tables 2 and 3, the
performance of all these classifiers were greatly boosted
by extracting features from the random walk with restart
on the heterogenous network.

Discussion
In this paper, we proposed a computational method for
predicting effective combination drugs based on features
derived from drug-protein heterogenous network by ran-
dom walk with restart. In order to verify our proposed
method, we conducted plenty of empirical experiments to
compare the performance of our method to other typical
classifiers on the benchmark dataset we constructed pre-
viously, and the experimental results significantly demon-
strated that our method achieves state-of-the-art perfor-
mance. Note that the input of the GTB classifier is the
output of random walk with restart on the heterogeneous
network, which is the probability distribution vector only
accounting for 6,074 dimensions. Therefore, we believed
that the heterogeneous network-derived features are more
informative and have been dimension-reduced compared
to the high-dimensional primary ontology features that
may lead to curse of dimensionality when performing
classification. As a result, the performance of GTB and
other classifiers are significantly improved. In addition,
the majority of current methods to predict drug com-
binations are limited to their size, in which pairwise
drugs are most used. However, our proposed method can
expand the size of drug combinations, which appreciably
increases the practicality.
It is worth noting that the protein network intro-

duced in the random walk with restart is helpful to dig
into the biological mechanism of drug combinations in
vivo. In fact, the final probability distribution of certain
drug combination derived by random walk with restart
strongly suggests the indications of the drug combina-
tion to some extent. Taking the pairwise combination
Docetaxel and Capecitabine as an example, which has
been approved by FDA to treat metastatic breast cancer.
We ranked the protein nodes according to the probabil-
ity distribution, the protein with the highest probability
is ENSP00000315644 and the third is ENSP00000252029,
which are both encoded by Tyms gene. It has been



Liu et al. BMC Bioinformatics          (2019) 20:645 Page 5 of 12

Fig. 1 ROC curves of our method and other typical classifiers on benchmark set

shown that the polymorphisms of Tyms gene are associ-
ated with etiology of neoplasia, including breast cancer.
In addition, the fourth and fifth are ENSP00000269571
and ENSP00000275493, which are encoded by Erbb2 and
Egfr, respectively, are all highly linked to breast can-
cer. To further evaluate the potential of the protein
network, we exemplified another pair of drug combina-
tion, Atorvastatin and Proguanil, which currently has no
official indication. The resulting probability distribution

Table 3 Comparison of GTB with other typical classifiers on
primary ontology features

Method Precision Recall F-Measure MCC AUC

GTB 0.526 0.53 0.523 0.052 0.528

kNN 0.514 0.514 0.513 0.028 0.516

SVM 0.509 0.491 0.478 -0.019 0.491

Logistic 0.506 0.506 0.506 0.012 0.504

Naive Bayes 0.479 0.479 0.478 -0.043 0.46

Random forest 0.499 0.499 0.478 -0.002 0.499

AdaBoost 0.501 0.501 0.425 0.002 0.497

LogitBoost 0.499 0.499 0.479 -0.002 0.495

The boldface figures indicate that GTB achieves the best performance compared
with other 7 typical classifiers trained on primary ontology features

derived by random walk with restart of this drug combi-
nation shows that the protein ENSP00000396308 encoded
by Dhfr has the highest probability value. It has been
demonstrated that diseases associated with Dhfr include
megaloblastic anemia due to dihydrofolate reductase defi-
ciency and megaloblastic anemia. Expectedly, quite a
few works have demonstrated the pharmacological effect
of Atorvastatin and Proguanil on Anemia. For example,
Vahid et al. [39] validated that Atorvastatin can soften
human red blood cells, and physical deformation of the
red blood cells underlies pathological manifestations of
sickle cell anemia and hypercholesterolemia. Another trial
demonstrated the effectiveness of Proguanil in treatment
of malarial anemia [40]. Therefore, anemia may be a
potential indication of the drug combination Atorvastatin
and Proguanil. In summary, we draw the conclusion that
the probability distribution derived by random walk can
effectively reveal the indication of drug combinations.
We further checked the positive samples that are falsely

classified, as negative samples are randomly generated.
We found that the falsely determined samples by our
method have low similarity to other samples. In fact,
most existing computational models, which aim at the
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prediction of drug-target interactions, drug-disease asso-
ciations, often hold the assumption that similar com-
pounds are likely to interact with similar target proteins
and thereby play similar therapeutic efficacy in cellular
micro-environment. These computational methods have
achieved superior performance, and greatly narrowed
down the number of candidate drug targets and reveal
new indications of approved drugs. Under this assump-
tion, the prediction accuracy often relies on the close
associations of tested samples with known samples that
have been validated by wet-lab experiments, such as drug
combinations and drug-target interactions. In terms of
network medicine, the influence of drug molecule would
perturb the cellular network via signal cascade reactions
and protein interaction network. Many computational
methods have taken into account this consideration, and
adopted random walks and diffusion on network to cap-
ture the perturbation of the drugs.
However, there are always some samples located far

from validated samples in the feature space. For instance,
some new drugs have low similarity to other drugs,
and some proteins have low similarity to other protein
in different protein family. As a result, similarity-based
or network diffusion-based computational methods tend
to encounter failure in predicting drug combinations or
drug-target interactions composed of such drugs or pro-
teins. Fortunately, the emergence of large-scale exper-
imental data derived from high-throughput screening
technique can strongly motivate the novelty of methods to
predict synergistic drugs or effective drug combinations.

Conclusion
In this paper, we proposed a gradient tree boosting (GTB)
classifier based on heterogeneous network-derived fea-
tures to predict effective drug combinations. The hetero-
geneous network integrates the drug similarity network,
protein similarity network and known drug-protein asso-
ciations. Next, we ran randomwalk with restart (RWR) on
the heterogenous network using the combinatorial drugs
and their associated targets as the initial probability, and
obtained the converged probability distribution as the fea-
ture vector of each drug combination. The heterogeneous
network-derived features introduced in our method are
more informative and enriching compared to the primary
ontology features. The GTB classifier trained based on
the heterogeneous network-derived features outperforms
seven typical classifiers and traditional boosting algo-
rithms. Moreover, our case studies show that our method
is helpful in revealing the indications of drug combina-
tions. From the perspective of network pharmacology,
our method effectively exploits the topological attributes
and interactions of drug targets in the overall biological
network, which proves to be a systematic and reliable
approach for drug discovery.

Methods
Overview of our methodology
We first constructed the benchmark drug combination
set composed of positive samples derived from pub-
lic databases and negative samples that were randomly
generated. For individual drugs included in the bench-
mark set, we collected a variety of related characteristics,
including chemical fingerprints, drug targets and drug-
protein associations, as shown in Fig. 2a. These ontology
features of drugs and proteins were used to compute
the drug-drug similarities and protein-protein similari-
ties. Together with the known drug-protein associations,
we constructed the drug-protein heterogeneous network.
Next, the randomwalk with restart on heterogeneous net-
work proposed in our previous work [28] was conducted
for each drug combinations as initial state, as illustrated in
Fig. 2b-c. The probability distribution when the random
walk reaches steady state was used as the feature vector
of the drug combination. Based on the feature representa-
tion of the drug combinations, the gradient tree boosting
(GTB) classifier was trained to predict new effective drug
combinations.

Drug-protein associations
We selected drug-protein associations from STITCH
database [41], which is a comprehensive database that
collected compound-protein interactions from different
sources: biochemical experiments, external databases,
text mining and computational predictions. STITCH has
computed a confidence score for each interaction rang-
ing from 0 to 1,000, which indicates the confidence of the
compound-protein interaction supported by four types of
evidences. We first used a confidence threshold 0.5 (cor-
responding to 500 combined score in STITCH) to remove
low-confidence target proteins, because we think too low-
confidence targets are probable unauthentic ones. Next,
we selected top 3 from the rest of target proteins of each
drug. If one drug has less than 3 target proteins with con-
fidence score higher than 0.5, we then took only those
targets into account. In total, we got 210,235 drug-protein
associations regarding to 3,266 unique drugs (drug set are
built by selecting top 3 similar drugs, see following subsec-
tion for details). Formally, denoted by D = (d1, d2, ..., dn)
and P = (p1, p2, ..., pm) the drug and protein node set, and
A the adjacent matrix of drug-protein associations with
element aij equal to the confidence score if there is vali-
dated interaction between drug i and protein j, and aij=0
otherwise.

Drug-drug similarity network
We expanded the list of individual drugs by selecting
top 10 most similar drugs to each single agent included
in DCDB, according to the chemical-chemical combined
scores that were derived from STITCH [41]. After removal
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Fig. 2 Illustrative diagram of the proposed method. a Data collection from drug and protein-related databases; b Construction of drug-drug
similarity network, protein-protein similarity network and drug-protein association network; c Random walk with restart on drug-protein
heterogenous network; d Feature representations of drug combinations via feature extraction process; e Training gradient tree boosting classifier

of duplicate drugs, 3266 unique drugs were obtained. Sim-
ilar compounds are likely to interact with similar target
proteins and thereby play similar therapeutic efficacy in
cellular micro-environment [42], allowing us to find new
drug combinations by introducing similar drugs to known
ones. Therefore, we believe that the expanded list of drugs

can increase the opportunity for discovery of novel drug
combinations.
Next, we generate the chemical fingerprint of the drugs

to calculate the similarity measurement of each pair of
drugs. Similar to our previous work [28], we applied
PaDEL software [43] to compute the chemical fingerprints
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using the SMILES string of a drug, and obtain an 880-d
binary vector for each drug. The element 1 of the binary
vector represents that the drug contains the correspond-
ing chemical fingerprint, and 0 otherwise. Subsequently,
Jaccard score, a widely used similarity measure, is calcu-
lated based on the chemical fingerprints as the chemical
similarities for pairwise drugs. The Jaccard score is gener-
ally defined as the intersection size divided by the union
size of two individual sets, which is shown as follows:

S(d1)
ij = | �di ∩ �dj|

| �di ∪ �dj|
(5)

Further, the bipartite network projection algorithm,
a method inspired by the network-based resource-
allocation dynamics [44], was adopted to compute another
drug similarity measure based on known drug-protein
associations. In the drug-protein bipartite network, each
drug node equally allocates the original resource to its
associated protein nodes, and successively the assigned
resource of each protein node is equally transferred back
to its neighborhood drugs. As a result, the proportion
of the resource of drug di conveyed to drug dj in such
allocation process represents the strength of association
between two drugs. Suppose the initial resource of each
drug node is one-unit, the second drug similaritymeasure,
denoted by S(d2)

ij , can be formulated as below:

S(d2)
ij = 1

k(dj)

m∑

l=1

ailajl
k(pl)

(6)

in which k(dj) and k(pl) are the degrees of drug dj
and protein pl in the drug-protein association network.
Intuitively, more common associated protein nodes the
pairwise drugs share, higher similarity the drugs have. Par-
ticularly, if the associated proteins of two drugs are not
overlapped, i.e. no common associated protein exists, the
similarity is denoted by 0.
Finally, these two aforementioned drug-drug similarities

were integrated into a comprehensive measurement using
the probability disjunction formula as below:

S(d)
ij = 1 −

(
1 − S(d1)

ij

)
∗

(
1 − S(d2)

ij

)
(7)

Protein-protein similarity network
Correspondingly, we constructed the protein-protein sim-
ilarity network based on two different similarity mea-
sures, including protein sequence similarity and GO
semantic similarity. By using R package biomaRt (2.40.4)
[45, 46], the protein sequences can be readily obtained
from Ensembl genome database (2018 updated), which is
dedicated to curating gene-related information to encour-
age genome analysis [47]. The sequence similarity S(p1)

ij
between protein pi and protein pj was computed by using

the R package Protr (1.6-2) [48], in which the Smith-
Waterman algorithm is applicable.
Similar drugs are supposed to interact with proteins

that act in similar biological processes or have similar
molecular functions or reside in similar compartments
[49]. Therefore, the GO semantic similarity S(p2)

ij between
protein pi and protein pj was calculated using R pack-
age GOSemSim (2.10.0) [50]. All three types of ontology
features are used in the calculation of semantic similarity.
Likewise, the probability disjunction was used to inte-

grate two aforementioned protein-protein similarities,
which is formulated as below:

S(p)
ij = 1 −

(
1 − S(p1)

ij

)
∗

(
1 − S(p2)

ij

)
(8)

where S(p)
ij is the comprehensively integrated similarity

measurement between protein pi and protein pj.

Randomwalk with restart on heterogenous network
The drug-drug similarity network, protein-protein simi-
larity network and drug-protein association network were
combined to construct the drug-protein heterogeneous
network G = (V ,E). The node set V = {D,P}, V is the
union set of the drug and protein nodes. The edge set
E = {Edd ∪ Edp ∪ Epd ∪ Epp}, where Edd, Epp, Edp and Epd
are the drug-drug edge, protein-protein and drug-protein
edge collections, respectively.
In order to obtain the feature representations of drug

combinations, we extended our previous work in which
the random walks with restart on the heterogeneous net-
work was developed for single drug repurposing [28].
More precisely, for a drug combination di and drug dj,
we performed random walk with restart on the heteroge-
neous network in which these two drugs and their known
target proteins act as seed nodes, as shown in Fig. 3. Actu-
ally, since the initial probability distribution can be easily
extended to more drugs and their targets, the number of
individual drugs involved in the combination is not lim-
ited to 2 in our method. When the random walk process
reaches steady state, the probability distribution vector
can be regarded as the perturbation on the protein net-
work by the combinatorial drugs. With the drug-protein
heterogeneous network, the transition matrix T can be
defined as below:

T =
[
T (dd) T (dp)

T (pd) T (pp)

]
(9)

whereT (dd) andT (pp) are the probability transitionmatrix
from drug nodes (protein) to drug nodes (protein nodes)
during the random walk process; T (dp) denotes the prob-
ability transition matrix that drug nodes walk to protein
nodes, and T (pd) denotes the probability transition matrix
that protein nodes walk to drug nodes.
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Fig. 3 Illustrative diagram of the random walk with restart on drug-protein heterogenous network, starting from two drugs and their targeted
proteins

Suppose that the random walker starts from a drug
node, and then visits one of its targeted proteins with
probability λ, or visits any other drug nodes with probabil-
ity (1-λ) in the heterogeneous network. If λ=0, the random
walker can only stay within the networks where it starts.
According to the drug-drug similarity, the transition prob-
ability from drug di to drug dj can be defined as below:

T (dd)
ij =

⎧
⎨

⎩
S(d)
ij /

∑n
k=1 S

(d)

ik , if
∑m

l=1 ail = 0

(1 − λ)S(d)
ij /

∑n
k=1 S

(d)

ik , otherwise.
(10)

where Sij is the similarity between ith drug and jth drug,
ail is the association confidence score between ith drug
and lth protein. The sum of ail equaling to 0 indicates
that the drug has no approved or predicted association
with any proteins. Similarly, the transition probability
from protein pi to protein pj can be defined based on the
protein-protein similarity as below:

T (pp)
ij =

⎧
⎨

⎩
S(p)
ij /

∑m
k=1 S

(p)
ik , if

∑n
l=1 ali = 0

(1 − λ)S(p)
ij /

∑m
k=1 S

(p)
ik , otherwise.

(11)

where Sij is the similarity between ith protein and jth pro-
tein, ali is the association score between lth drug and ith
protein.
Accordingly, the transition probability from drug di to

protein pj is defined as:

T (dp)
ij =

{
λaij/

∑m
l=1 ail, if

∑m
l=1 ail �= 0

0, otherwise.
(12)

The transition probability from protein pi to drug dj is
defined as:

T (pd)
ij =

{
λaji/

∑n
l=1 ali, if

∑n
l=1 ali �= 0

0, otherwise.
(13)

Provided that P(t) is a (n+m)-dimension probability vec-
tor at step t, in which P(t)[i] represents the probability
of the random walker visiting node i(drug or protein),
the random walk process can be iteratively calculated as
below:

P(t + 1) = (1 − α)T ′P(t) + αP0 (14)

where α is the restart probability, and P0 is the initial prob-
ability distribution vector of a set of seed nodes consisting
of a combinatorial drugs and their targeted proteins. Take
the drug combination di and dj as an example, di and dj
are employed as the seed nodes in the drug network and
each seed node is given equal probability 1/2. By giving
rest drug nodes probability 0, the initial probability matrix
with respect to drugs can be constructed. Correspond-
ingly, the protein nodes related to drug di and drug dj are
used as seed nodes in protein network and equal probabil-
ities are allocated to these protein nodes so that the sum
of the probabilities is 1. As shown in Fig. 3, there are three
targeted proteins and thus each protein is given initial
probability 1/3. Let P(d)

0 and P(p)
0 be the initial probability

vectors of drugs and proteins separately, the initial prob-
ability P0 for drug-centric random walk can be defined as
follows:

P0 =
[

ηP(d)
0

(1 − η)P(p)
0

]
(15)
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where η ∈[ 0, 1] is a tradeoff parameter to balance the
weight of importance between the drug nodes and pro-
tein nodes. In our experiments, η is set to 0.5. If the
difference between twice iteration is lower than 1e-10,
the random walk is supposed to reach steady state.
Once the random walk process converges, the probabil-
ity distribution is used as the feature vector of the drug
combination.

Building gradient tree boosting classifier
Based on the feature vectors produced by the random
walk on drug-protein heterogenous network for each pair
of drug combination, we built a gradient tree boost-
ing (GTB) classification model, referred to as gradient
boosting regression or decision tree (GBRT or GBDT).
Gradient tree boosting is an efficacious machine learn-
ing method that has achieved desirable performance
in both classification and regression problems [51–53].
In fact, Caruana and Niculescu-Mizil have conducted
comprehensive performance evaluation on eight differ-
ent binary classification problems by comparing boosted
trees algorithm with other nine typical classifiers, includ-
ing SVMs, Neural Nets, Logistic regression, Naive Bayes,
memory-based learning, Random Forests, Decision Trees,
Bagged Trees and Boosted Stumps. Their conclusion
showed that boosted tree-based algorithm achieved best
performance [54]. Another empirical performance eval-
uation has also demonstrated that boosted decision
trees perform exceptionally well when the dimension-
ality of the input is not too high [55]. Therefore, we
adopted the GTB algorithm to build our classification
model.
Formally, the decision function of GTB is initialized as:

θ0(x) = arg min
N∑

i=1
L(yi, c) (16)

where N is the number of drug combinations contained
in the training set. The gradient tree boosting algorithm
repeatedly constructs K different classification subtrees
h(x, a1), h(x, a2),..., h(x, aK ), each of which is separately
trained based on a subset of randomly selected samples
from the training set, and then iteratively establishes the
additive function θk(x):

θk(x) = θk−1(x) + bkh(x, ak) (17)

in which bk and ak are the weight and parameter vector of
the k-th classification subtree h(x, ak). The loss function
L(y, θk(x)) is defined as:

L(y, θ(x)) = log(1 + exp(−yθ(x))) (18)

where y is a binary value representing the real class of the
combination and θ(x) is the decision function. In order

to minimize the loss function L(y, θk(x)), both bk and ak
are iteratively optimized by applying grid search. In this
paper, grid search strategy was adopted to tune the opti-
mal hyperparameters of GTB by 10-fold cross-validation
on the constructed drug combination dataset. Finally, the
optimal number of trees of the GTB is 300, and the tuned
depth of the trees is 13.
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