Table 2.
Method | Precision | Recall | F-Measure | MCC | AUC |
---|---|---|---|---|---|
GTB | 0.897 | 0.872 | 0.884 | 0.772 | 0.949 |
kNN | 0.738 | 0.833 | 0.783 | 0.542 | 0.768 |
SVM | 0.882 | 0.779 | 0.840 | 0.728 | 0.859 |
Logistic | 0.499 | 0.527 | 0.510 | 0.014 | 0.520 |
Naive Bayes | 0.504 | 0.988 | 0.770 | 0.086 | 0.508 |
Random forest | 0.880 | 0.841 | 0.862 | 0.733 | 0.866 |
AdaBoost | 0.878 | 0.854 | 0.863 | 0.732 | 0.866 |
LogitBoost | 0.803 | 0.820 | 0.811 | 0.617 | 0.808 |
The boldface figures indicate that GTB achieves the best performance compared with other typical classifiers on heterogenous network-derived features