Table 3.
Method | Precision | Recall | F-Measure | MCC | AUC |
---|---|---|---|---|---|
GTB | 0.526 | 0.53 | 0.523 | 0.052 | 0.528 |
kNN | 0.514 | 0.514 | 0.513 | 0.028 | 0.516 |
SVM | 0.509 | 0.491 | 0.478 | -0.019 | 0.491 |
Logistic | 0.506 | 0.506 | 0.506 | 0.012 | 0.504 |
Naive Bayes | 0.479 | 0.479 | 0.478 | -0.043 | 0.46 |
Random forest | 0.499 | 0.499 | 0.478 | -0.002 | 0.499 |
AdaBoost | 0.501 | 0.501 | 0.425 | 0.002 | 0.497 |
LogitBoost | 0.499 | 0.499 | 0.479 | -0.002 | 0.495 |
The boldface figures indicate that GTB achieves the best performance compared with other 7 typical classifiers trained on primary ontology features