Table 7. Results for ordinal regression (elastic net)–coefficients.
Parameters | Coefficients (95% CI) | |
---|---|---|
logit(P[Y = 1|Y> = 1]) | logit(P[Y = 2|Y> = 2]) | |
Serum | ||
(Intercept) | 5.007 (2.320; 5.241) | 3.745 (2.144; 3.779) |
IL-18 | -0.115 (-0.232; 0) | -0.073 (-0.232; 0) |
IL-18BP | -0.237 (-0.311; -0.082) | -0.237 (-0.317; -0.093) |
IL-37 | 0.129 (0; 0.047) | 0.046 (0; 0.002) |
IFN-γ | -0.848 (-0.633; -0,020) | -0.848 (-0.633; -0.020) |
IP-10 | -0.113 (-0.149; -0.062) | -0.157 (-0.175; -0.079) |
IL-18/IL-18BP | -0.545 (-0.811; 0) | -1.025 (-0.858; 0) |
IL-18/IL-37 | 0.129 (0;0.015) | 0.129 (0; 0.015) |
IL-18/IFN-γ | -0.051 (-0.12; 0) | 0.079 (-0.007; 0.056) |
IL-18/IP-10 | 0 (0; 0.154) | 0 (0; 0.088) |
IL-18BP/IL-37 | 0 (-0.019; 0) | -0.153 (-0.081; 0) |
IL-18BP/IFN-γ | 0 (-0.155; 0) | 0 (-0.209; 0) |
IL-18BP/IP-10 | 0.222 (0.150; 0.431) | -0.005 (0; 0.430) |
IL-37/IFN-γ | 0 (0; 0.023) | 0 (-0.007; 0.021) |
IL-37/IP-10 | 0 (-0.034; 0) | -0.200 (-0.063; 0) |
IFN-γ/IP-10 | 1.300 (0; 0.851) | 2.427 (0; 1.589) |
QFT supernatant | ||
IL-18 | -0.371 (-0.419; -0.063) | 0 (-0.123; 0) |
IL-18BP | -0.097 (-0.540; -0.217) | -0.028 (-0.125; 0) |
IL-37 | -0.086 (-0.067; 0) | 0.011 (-0.032; 0.004) |
IFN-γ | -0.981 (-0.478; -0.153) | -0.027 (-0.027; 0) |
IL-18/IL-18BP | 0.433 (0; 0) | -0.106 (-0.252; 0) |
IL-18/IL-37 | 0 (-0.028; 0) | 0 (-0.035; 0) |
IL-18/IFN-γ | 0.301 (0; 0.602) | -0.363 (-0.418; -0.021) |
IL-18BP /IL-37 | -0.543 (-0.514; -0.074) | 0.089 (-0.022; 0.232) |
IL-18BP/IFN-γ | 0.266 (0.411; 1. 116) | -0.659 (-0.947; -0.247) |
IL-37/IFN-γ | 0.047 (0.031; 0.211) | -0.009 (0; 0.049) |
The CI's were estimated via boostrap procedure based on 300 repetitions with the size of the subsample equal to 80% of the original sample. This approach is proposed due to lack of closed form formulas for the distributions of the coefficients. Due to differences in sample size, there are instances where the coefficient lies outside of the CI indicating lack of robustness.