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Abstract
Background Artificial-intelligence algorithms derive
rules and patterns from large amounts of data to calculate
the probabilities of various outcomes using new sets of

similar data. In medicine, artificial intelligence (AI) has
been applied primarily to image-recognition diagnostic
tasks and evaluating the probabilities of particular
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outcomes after treatment. However, the performance and
limitations of AI in the automated detection and classi-
fication of fractures has not been examined
comprehensively.
Question/purposes In this systematic review, we asked
(1) What is the proportion of correctly detected or clas-
sified fractures and the area under the receiving operating
characteristic (AUC) curve of AI fracture detection and
classification models? (2) What is the performance of AI
in this setting compared with the performance of human
examiners?
Methods The PubMed, Embase, and Cochrane data-
bases were systematically searched from the start of each
respective database until September 6, 2018, using terms
related to “fracture”, “artificial intelligence”, and “de-
tection, prediction, or evaluation.” Of 1221 identified
studies, we retained 10 studies: eight studies involved
fracture detection (ankle, hand, hip, spine, wrist, and
ulna), one addressed fracture classification (diaphyseal
femur), and one addressed both fracture detection
and classification (proximal humerus). We registered
the review before data collection (PROSPERO:
CRD42018110167) and used the Preferred Reporting
Items for Systematic Reviews and Meta-analyses
(PRISMA). We reported the range of the accuracy and
AUC for the performance of the predicted fracture de-
tection and/or classification task. An AUC of 1.0 would
indicate perfect prediction, whereas 0.5 would indicate a
prediction is no better than a flip-of-a-coin. We con-
ducted quality assessment using a seven-item checklist
based on a modified methodologic index for non-
randomized studies instrument (MINORS).
Results For fracture detection, the AUC in five studies
reflected near perfect prediction (range, 0.95-1.0) , and the
accuracy in seven studies ranged from 83% to 98%. For
fracture classification, the AUC was 0.94 in one study, and
the accuracy in two studies ranged from 77% to 90%. In
two studies AI outperformed human examiners for
detecting and classifying hip and proximal humerus frac-
tures, and one study showed equivalent performance for
detecting wrist, hand and ankle fractures.
Conclusions Preliminary experience with fracture de-
tection and classification using AI shows promising
performance. AI may enhance processing and communi-
cating probabilistic tasks in medicine, including ortho-
paedic surgery. At present, inadequate reference standard
assignments to train and test AI is the biggest hurdle be-
fore integration into clinical workflow. The next step will
be to apply AI to more challenging diagnostic and ther-
apeutic scenarios when there is absence of certitude. Fu-
ture studies should also seek to address legal regulation
and better determine feasibility of implementation in
clinical practice.
Level of Evidence Level II, diagnostic study.

Introduction

In 1959, Arthur Samuel defined artificial intelligence (AI)
as a field of study that gives a computer the ability to learn
without needing to be reprogrammed [26]. In layman’s
terms, AI algorithms are developed to derive rules and
patterns from large amounts of data to calculate the prob-
abilities of various outcomes with new sets of similar data
(Fig. 1). For instance, Netflix uses AI algorithms to analyze
the viewing preferences of millions of people and de-
termine what a viewer is likely to enjoy based on prior
viewing behavior. Computers are programmed to contin-
uously update probabilities of a person liking a given
television show based on a combination of new all-user
data and individual viewing choices.

The initial applications of AI in medicine have focused
largely on image-recognition diagnostic tasks such as
detecting retinopathy in diabetic people via photographs of
the retinal fundus, detecting mammographic lesions, and
recognizing skin cancer [6, 10, 15]. AI algorithms that
address treatment probabilities—such as decision-support
tools to assist orthopaedic oncologists in predicting sur-
vival and mortality—have also been developed but are not
yet widely used in clinical practice [13, 29].

AI might be useful to aid the diagnostic aspects of
fracture care. For example, AI applications might improve
the diagnosis of true fractures among suspected fractures of
the scaphoid or hip, detect key fracture characteristics that
might alter prognosis and treatment, or help detect less
severe fractures that are often overlooked during a sec-
ondary evaluation after complex trauma [11, 24]. The key
applications of AI will help address the shortcomings of
human intelligence that make us susceptible to the magi-
cian’s sleight of hand and, likewise, to overlook important
details in distracting circumstances. In clinical practice,
both the routine and complex can be distractions.

We aggregated data from published studies using AI for
fracture detection and classification to address the follow-
ing questions: (1) What is the proportion of correctly
detected or classified fractures and the area under the re-
ceiving operating characteristic (AUC) curve of AI fracture
detection and classification models? (2) What is the per-
formance of AI in this setting compared with the perfor-
mance of human examiners?

Materials and Methods

Article Selection, Quality Assessment, and
Data Extraction

We performed a systematic search according to the
PRISMA statement [20] using the PubMed, Embase, and
Cochrane libraries for studies from the start of each
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respective database until September 6, 2018. Our re-
view protocol was registered on PROSPERO
(CRD42018110167) before data collection. A professional
medical librarian helped us build the search syntax using
the following keywords in the title and abstract: (orthope-
dics OR orthopedic procedures OR traumatology OR

fracture* OR skeletal fixation* OR (trauma* AND
orthop*)) AND (artificial intelligence OR neural network*
or deep learning OR machine learning OR machine in-
telligence) AND (predict* OR predictive value of test OR
score OR scores OR scoring system OR scoring systems
OR observ* OR observer variation OR detect* or evaluat*

Fig. 1 A-E Two common AI techniques exist. Supervised learning applies to iterative training of an algorithm with a dataset
consisting of input features with ground truth labels. For example, radiographs of the wrist are provided as input features
labelled fracture and no fracture. By providing newwrist radiographs without a label, the algorithm learns tomake a prediction of
both classes on its own. Unsupervised learning applies to data exposure without ground truth labels. During the training phase,
the algorithm attempts to find labels that best organize the data (“clustering”). Generally, unsupervised learning requires more
computational power and larger datasets, and its performance is more challenging to evaluate. Therefore, supervised algorithms
are often used in medical applications. (A) Neural networks are based on interconnected neurons in the human brain. The blue
dots represent input features, whereas the red dots are the output of the algorithm. The green dots mathematically weigh the
input features to predict an output. (B) A support vector machine is used to define an optimal separating “hyperplane” to
maximize the distance from the closest points of two classes. (C) A linear discriminant analysis is a linear classification technique
to distinguish among three or more classes. (D) K-nearest neighbors classify an input feature by a majority vote of its K-closest
neighbors. For instance, the unknown dot will be assigned blue if K = 1 (inner circle), whereas the unknown dot will be assigned
red if K = 5 (outer circle). (E) K-means groups objects based on their characteristics by iteratively aggregating clusters to centroids
by minimizing the distance to the middle point of the cluster. For example, three clusters are aggregated (K = 3): green, red, and
blue dots.
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OR analy* OR assess* OR measure*) (see Appendix;
Supplemental Digital Content 1, http://links.lww.
com/CORR/A194).

Two reviewers (DWGL, SJJ) independently screened
the titles and abstracts, and if a study was considered eli-
gible, they together screened the full-text article using
predefined criteria to reach agreement. A third reviewer
was not deemed necessary as a high level of consistency
during the screening and inclusion process was achieved.
Articles met the inclusion criteria if they addressed one or
more AI models (a mathematical computing algorithm
trained with “big data” to autonomously assign labels to
unseen data) for detecting and/or classifying fractures on
any radiologic imaging modality. We did not restrict the
radiologic imaging modality to detect and/or classify
fractures. We excluded studies in which patients were not
in an orthopaedic trauma setting, studies evaluating robot-
assisted surgery techniques, studies with mixed cohorts
without clear subgroup reporting, review articles, letters to
the editor, conference abstracts, technique papers, animal
and cadaveric studies, and studies not published in English.

The database search yielded 1221 citations, and after
removing duplicate articles, we screened 1044 potentially
eligible records (Fig. 2). Twenty-eight studies were se-
lected for full-text screening, of which eight remained.
However, two additional eligible studies were identified
through verbal communication in our network and meeting
proceedings, but did not appear in our structured systematic
searches [8, 17]. We did not identify new eligible studies
through screening the reference lists of the included
studies.

Two reviewers (DWGL, SJJ) independently appraised
the quality of all included studies. The Newcastle-Ottawa

Scale and methodologic index for nonrandomized studies
(MINORS) instruments are commonly used for cohort or
case-control studies [27, 32]. However, there is no risk of
bias assessment tool that is suitable for diagnostic studies.
Therefore, we decided to conduct quality assessment
using a modified seven-item checklist based on the
MINORS criteria, including disclosure, study aim, input
feature, determination of ground truth labels, dataset dis-
tribution, performance metric, and explanation of the used
AI model. Standardized forms were used to extract and
record data using an electronic database (Microsoft Excel
Version 16.21; Microsoft Inc, Redmond, WA, USA). A
consensus meeting between both observers (DWGL, SJJ)
was held to overcome disagreements regarding article se-
lection, quality assessment, and data extraction.

Outcome Measures

Our primary study outcome was the proportion of correctly
detected or classified fractures and nonfractures to the total
number of patients and the area under the receiving oper-
ating characteristic (AUC) curve of AI models. A total of
10 studies met inclusion criteria and were used to answer
this research question. Our secondary outcome was the
performance of AI in this setting compared with the per-
formance of human examiners. Three studies met inclusion
criteria and were used to answer this research question.

The following data were obtained from each study: year
of publication, input feature (radiologic imaging modality),
projection when plain radiography was used as a radiologic
imaging modality (for example, AP, oblique, or lateral
views) [2, 3, 5, 8, 14, 17, 23, 30], size of the dataset,

Fig. 2 This flowchart depicts the study selection during screening and inclusion of articles
for a search period from start of each initial database to September 6, 2018.
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anatomic location, output classes, AI models that were
used, pretrained convolutional neural network (CNN), if
applicable, size of the training set, size of the validation set
or method, size of the test set, and performance measures
(accuracy and AUC curve).

Output classes included fracture detection and/or clas-
sification. We considered fracture detection as a binary
classifier with two inherent output classes (the presence of
any fracture versus absence of a fracture). From what we
could discern, these studies evaluated any type of fracture:
both displaced fractures, which are easy to detect, and
nondisplaced fractures, which can be subtler. Additionally,
fracture classification addressed multiple output classes.
For example, one study addressed a four-group classifica-
tion system to distinguish among types of proximal hu-
merus fractures (that is, the Neer classification [22]) [5],
whereas another study addressed a subtype of femur frac-
tures (AO-Type 32 [21]: a nine-group classification
method for diaphyseal femur fractures ranging from simple
spiral fractures to complex, irregular, comminuted frac-
tures) [3].

Six studies described the use of a single AI model for
detecting and/or classifying the fracture [5, 8, 14, 17, 30, 33],
and four compared the performance of more than one model
[1-3, 23].

We analyzed studies describing pretrained CNNs (AI
models that were developed using large, separate datasets
such as the ImageNet Large Scale Visual Recognition
Challenge [25]) [5, 8, 14, 17, 23, 30] that were sub-
sequently transferred to new datasets andAImodels trained
from scratch and implemented for new and unseen data.

Generally, two validation techniques are used to eval-
uate an AI model after the training phase: a subset of the
dataset is retained as a validation set (that is, the size of the
validation set) or a validation method is applied. The goal
of using a validation set or validation method—especially
in situations with small datasets—is to increase model ro-
bustness (for example, developing strategies to cope with
errors during performance of a specific task). For example,
k-fold cross-validation is a validation method that is ap-
plied to an automated computer-generated resampling
procedure, in which a dataset is divided into smaller sets of
different combinations (multiple folds or partitions), which
allows it to train throughout many iterations. Although not
mutually exclusive, each fold is iteratively used as a test set
and the rest is used for training. The size of the test set is a
partition of the dataset used for the final evaluation and
determines the performance measures of the AI model.

The accuracy and AUC were assessed to provide in-
formation on each AI model in the test dataset because
these were the most commonly addressed items (eight
studies addressed accuracy [1-3, 5, 8, 14, 23, 30] and five
studies addressed the AUC [5, 8, 14, 17, 30]). In our study,
accuracy applied to the proportion of correctly detected or

classified fractures and nonfractures to the total number of
patients (such as the proportion of correct predictions over
all cases). The AUC corresponds to the probability that a
binary classifier will rank a randomly chosen positive in-
stance higher than a randomly chosen negative one [7]. An
AUC of 1.0 would indicate perfect prediction, whereas 0.5
would indicate a prediction is no better than chance.

Distribution of Fracture Detection and Classification,
Anatomical Location, Used AI Models, and
Input Features

Nine studies addressed AI models for detecting fractures
[1, 2, 5, 8, 14, 17, 23, 30, 33], whereas one study addressed
fracture classification [3]. Chung et al. [5] were the only
authors to report on both a fracture detection and fracture
classification task (Table 1).

Anatomic fractureswere located in thewrist [5, 14, 17, 23],
hip [8, 30], spine [1, 33], ankle [23], diaphyseal femur [3],
hand [23], and proximal humerus [5].

A pretrained CNN was the most frequently used AI
model [5, 8, 14, 17, 23, 30], followed by neural networks
[1-3], k-nearest neighbors [2, 3], support vector machines
[3, 33], K-means [1], and linear discriminant analysis [3].
All AI models were supervised, except for the K-means,
which is an unsupervised AI model.

Input features used in the AI models were as follows:
eight studies used radiography as an imaging modality
[2, 3, 5, 8, 14, 17, 23, 30], whereas two studies used CT
[1, 33]. When radiography was the radiologic imaging
modality, AP [5, 8, 23, 30] and lateral [5, 14, 17, 23]
projections were most commonly used, followed by post-
eroanterior [17], oblique (two different types) [23], and
scaphoid (four specific scaphoid views: proximal, distal,
ulnar, and radial) [23].

Quality Appraisal

Ten studies were included. Quality appraisal demon-
strated that the study aim was clear in seven studies
(70%), possibly resulting in outcome bias for the
remaining three studies (Fig. 3). In seven studies (70%),
the inclusion and exclusion criteria for input features (all
eligible radiographs and CT scans were included in the
dataset) were clearly described, whereas selection bias
could not be excluded for the remaining two studies
(30%). Seven studies (70%) clearly described how they
determined the ground truth (the reference standards in
AI), subjecting the remainder to poorly trained AI models.
All studies reported a clear distribution of the dataset
(training, validation, and testing phases), described
how the performance of an AI model was determined
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Table 1. Studies evaluating the use of AI models in bone fracture detection and/or classification

Author, year
Input

features
Imaging
direction

Size
dataset

Anatomical
location

Ground
truth label
assignment*

Output
classes

AI
models
used

Pretrained
CNN

Size
training
set†

Size validation
set‡ /

validation
method

Size
test
set

Performance
(accuracy/

AUC)

Fracture detection

Al-helo et al. [1] CT NA 50 Spine NA 2 K-means NA 100 NA NA 98/NA

Al-helo et al. [1] CT NA 50 Spine NA 2 NN NA 90 5-LOCV 10 93/NA

Basha et al. [2] X-ray NA 180 NA NA 2 NN NA 78 NA 22 88/NA

Basha et al. [2] X-ray NA 180 NA NA 2 kNN NA 78 10-FCV 22 86/NA

Chung et al. [5] X-ray AP 1891 Proximal humerus Combined
approach§

2 CNN ResNet-152 90 10-FCV 10 96/1.0

Gale et al. [8] X-ray AP 53279 Hip Radiology reports 2 CNN DenseNet 85.4 8.3 6.3 97/0.99

Kim and
MacKinnon [14]

X-ray Lat 1389 Distal radius and
ulna

Radiology
registrarǁ

2 CNN Inception v3 80 10 10 89/0.95

Lindsey et al. [17] X-ray PA, lat 34990 Wrist Orthopaedic
surgeon

2 CNN U-Net 80 10 10 NA/0.97

Olczak et al. [23] X-ray AP, lat, obl,
scaph

256458 Wrist, hand, ankle Radiology reports 2 CNN VGG_16 70 20 10 83/NA

Olczak et al. [23] X-ray AP, lat, obl,
scaph

256458 Wrist, hand, ankle Radiology reports 2 CNN VGG_19 70 20 10 NA

Olczak et al. [23] X-ray AP, lat, obl,
scaph

256458 Wrist, hand, ankle Radiology reports 2 CNN Network-in-
network

70 20 10 NA

Olczak et al. [23] X-ray AP, lat, obl,
scaph

256458 Wrist, hand, ankle Radiology reports 2 CNN VGG CNN
S network

70 20 10 NA

Olczak et al. [23] X-ray AP, lat, obl,
scaph

256458 Wrist, hand, ankle Radiology reports 2 CNN BVLC Reference
CaffeNet

70 20 10 NA

Urakawa et al. [30] X-ray AP 3346 Intertrochanteric
hip

Single radiologist 2 CNN VGG_16 80 10 10 96/0.98

Yao et al. [33] CT NA 40 Thoracic and
lumbar spine

Radiology reports 2 SVM NA 50 10-FCV 50

Fracture classification

Bayram and
Çakiroğlu [3]

X-ray NA 196 Diaphyseal femur NA 9 LibSVM NA 100 10-FCV 90/NA

Bayram and
Çakiroğlu [3]

X-ray NA 196 Diaphyseal femur NA 9 kNN NA 100 10-FCV 87/NA

Bayram and
Çakiroğlu [3]

X-ray NA 196 Diaphyseal femur NA 9 NN NA 100 10-FCV 85/NA

Bayram and
Çakiroğlu [3]

X-ray NA 196 Diaphyseal femur NA 9 LDA NA 100 10-FCV 83/NA
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(accuracy and AUC), and clearly explained the AI model
that was used (see Appendix; Supplemental Digital
Content 2, http://links.lww.com/CORR/A195).

Statistical Analysis

Given the heterogeneity of the studies, we reported the
range for accuracy and AUC for fracture detection and
classification tasks. The sizes of the training, validation,
and test sets are reported as percentages of the total number
of the dataset.

There was no funding received to perform this work.

Results

AI Model Performance

Among the five studies using AUC for fracture detection
AI had near perfect prediction (range, 0.95-1.0) [5, 8, 14,
17, 30]. The accuracy of fracture detection reported in
seven studies ranged from 83% to 98% [1, 2, 5, 8, 14,
23, 30].

Seven studies addressed fracture detection on radio-
graphs [2, 5, 8, 14, 17, 23, 30], and two studies addressed
fracture detection on CT [1, 33].

In studies addressing fracture classification on radio-
graphs, Chung et al. [5] found an AUC of 0.94 and an
accuracy of 77% for classifying proximal humerus frac-
tures into four groups (according to the Neer classification
[22]). Bayram andÇakiroğlu [3] applied four AImodels for
classification of diaphyseal femur fractures into nine
groups (AO-type 32 [21]) and found an accuracy ranging
from 83% to 90%.

AI Models Compared with Humans

Three studies compared the performance of AI models with
the performance of humans [5, 23, 30]. Urakawa et al. [30]
used an AI model (that is, a pretrained CNN: VGG_16) for
detecting hip fractures on an AP radiograph, which had a
better AUC than five orthopaedic surgeons did (pretrained
CNN: 0.98 [95% CI, 0.97-1.0] versus the five orthopaedic
surgeons: 0.97 [95% CI, 0.95-0.97]; p < 0.001). Addition-
ally, the difference in accuracy also favored the AI model
(pretrained CNN: 96% [95% CI, 93-98] versus the five or-
thopaedic surgeons: 92% [95% CI, 89-95]; p < 0.001).

In a study by Olczak et al. [23], the accuracy of the best-
performing AI model (a pretrained CNN: VGG_16) in
detecting wrist, hand, and ankle fractures on several ra-
diographic projections was equivalent to that of two se-
nior orthopaedic surgeons (pretrained CNN: 83 [95% CI,Ta
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80-87] versus 82 [95% CI, 78-86] and 82 [95% CI, 78-85]
for the two senior orthopaedic surgeons).

For detecting fracture, Chung et al. [5] used a pretrained
CNN (Microsoft ResNet-152 ; Redmond, WA, USA) to
detect proximal humerus fractures on an AP radiograph
and compared the accuracy of the CNN with that of three
human groups: general physicians (n = 28), general
orthopaedists (n = 11), and an orthopaedist who specialized
in the shoulder (n = 19). The accuracy of the AI model was
superior to that of the human groups, although there was no
statistical difference between the AI model and the general
orthopaedist and shoulder orthopaedist groups (pretrained
CNN: 96% [95% CI, 94-97] versus 85% [95% CI, 80-90]
for the general physicians, 93% [95% CI, 90-96] for the
general orthopaedists, and 93% [95% CI, 87-99] for the
orthopaedists who specialized in the shoulder; p < 0.001).
Additionally, except for one subset (greater tuberosity
fractures), the pretrained CNN also demonstrated better
accuracy for classifying proximal humerus fractures into
four groups (according to the Neer classification [22]).

Discussion

AI can be used to develop predictive models based on large
data sets. We analyzed the results of studies using AI for
fracture detection and classification to determine the potential
utility in fracture care. In a research setting, we found AI
models are nearly as good as humans for detecting certain
common fractures and—in two studies—outperformed
humans for hip and proximal humerus fracture classification.

This study has several limitations. First, the studies
addressed the performance of AI models based on only one
projection when radiography was used as the input feature;
this is in contrast to daily clinical practice, in which a

surgeon bases his or her interpretation on multiple pro-
jections combined with taking the patient’s history and
performing a physical examination. AI models can be built
to account for features of the interview, examination, and
laboratory values (if applicable) along with image analysis.
Second, the studies used a variety of approaches for
assigning ground truth labels (the reference standard in AI)
for each dataset with which the model was trained. For
example, ground truth labels might be determined by a
fellowship-trainedmusculoskeletal radiologist or through a
thorough screening of reports in the medical record, con-
sensus meeting among physicians with the additional use
of more advanced imaging (such as CT images instead of
radiographs) to resolve discrepancies, and radiologist
reports. All these reference standards are subject to human
error. AI models trained with more objective labeling
assignments (for example, operative exposure) should re-
sult inmore accurate and generalizable probabilities. Third,
an appropriate risk of bias assessment tool does not exist
for diagnostic studies. We therefore modified the meth-
odologic index for nonrandomized studies (MINORS).
Fourth, at present there are only a few preliminary studies
used in simple diagnostic scenarios that may overestimate
of the potential benefit of AI. Additional studies with
clinically relevant settings will help evaluate the utility of
AI. Fifth, although a broad search strategy encompassing
three large databases was used, potentially relevant pub-
lications might have been missed. However, we deem this
risk to be low, because we did not identify new eligible
studies through screening the reference lists of included
studies. In addition, we identified nine conference abstracts
that have not been published yet, suggesting that AI is a
developing research interest.

Our review found that AI was remarkably good at
detecting common fractures. It is reasonable to assume that

Fig. 3 We conducted a quality assessment of included studies using a seven-item checklist
based on a modified methodologic index for nonrandomized studies (MINORS) instrument.
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the fracture locations were selected in these studies because
they are common and yield large datasets. Most fractures in
these areas are displaced and therefore relatively easy to
detect by either a human or a computer. More subtle frac-
tures (such as nondisplaced femoral neck or scaphoid
fractures) need additional study as AI models might be less
accurate. AI algorithms for diagnosing relatively obvious
fractures might be useful for clinical scenarios where
fractures might be overlooked (for example, multiple
trauma) or in primary care or urgent care where a radiol-
ogist is not immediately available [11, 24], potentially
replacing radiologists in this setting. AI could also be
useful in difficult scenarios, such as suspected scaphoid or
hip fractures, if proven to be accurate. A dispassionate
examination of the probability of fracture could help sur-
geons and patients with decision-making. Further research
should seek to identify situations in which AI could act in
synergy with clinicians in fracture detection tasks, which
are generally prone to misinterpretation or uncertainty.
However, there are hurdles to overcome before imple-
mentation in clinical practice. First, a clinician might be
reluctant to use a suggestion by an AI model since there is
no human interface, it is not intuitive (complex statistical
models), and it cannot be interrogated (the inscrutability
of the magic “black box of AI”). The European Union has
addressed liability concerns by incorporating a dictum in
the General Data Protection Regulations that AI algo-
rithmic decisions about humans must be interpretable and
explainable [9]. Second, it remains debatable who would
be held responsible if an algorithm errs and causes harm.
Thus, appropriate legal regulations should be addressed
before implementing AI into the clinical arena outside of
research and quality improvement efforts. Lastly, most
studies used datasets with ground truth labels that were
based on formal reports from radiologists taken from the
medical record to train the respective AI algorithms. For
many reasons, these datasets have some inherent errors
and misinterpretations. We may benefit from better
ground truth labels (for example, operative findings or
more sophisticated imaging) to develop more accurate AI
algorithms.

AI had reasonable accuracy for classifying proximal
humerus and diaphyseal femur fractures. Again, there is an
issue with the lack of reference standards for the correct or
most likely classification in these studies. For example,
Chung et al. [5] determined the reference standard for the
Neer Classification [22] by consensus of two shoulder
surgeons and one radiologist using CT-images on occasion
to reach agreement—an arguably inadequate reference
standard for a classification that is known to be unreliable,
even using CT scans [4, 19]. They also introduced selection
bias by removing fractures for which consensus could not
be reached. Alternatively, AI might use latent class analysis,
a statistical technique that calculates the characteristics of

diagnostic performance without a reference standard [16].
Bayesian inferences, another field of interest proposed by
Kim and MacKinnon [14] could be used to produce more
meaningful predictions that accurately reflects the probable
outcome, by accounting for the influence of fracture in-
cidence when analysing accuracy [14].

Two studies found that AI was better than humans at
detecting and classifying hip and proximal humerus frac-
tures, and one found equivalent performance for detecting
wrist, hand, and ankle fractures [5, 23, 30]. This suggests
that—at least for relatively straightforward diagnostic
scenarios—AI can be useful. There are important gaps to
consider. These studies based their ground truth on human
assessment (for example, radiology reports or a single
radiologist’s interpretation) [5, 23, 30]. As clinicians are
susceptible to error, the AI models were trained and tested
with images that had some level of inaccuracy [12]. As
such, AI models might erroneously report good perfor-
mance, while this would not be detected as a diagnostic
error by the model. Additionally, these AI models can di-
agnose the fracture, but cannot discern which fractures may
involve a bone tumor, for example. In contrast, an ortho-
paedic surgeon or radiologist is more likely to detect ad-
ditional relevant findings when evaluating radiographs of
fractures. Moreover, physicians are able to combine
patients’ preferences and objective parameters (such as
laboratory values) into careful clinical decision-making.

The current thinking about AI application in medicine
seems to be that narrow tasks with predefined context are
most suitable, such as recognizing the border of an organ to
suggest where to stop scanning or detecting suspicious
areas in an image [28]. Risk prediction and therapeutics are
more challenging for AI. A lack of reliable and accurate
standards on which to train and test an algorithm for certain
disease entities (such as delirium), makes the probabilities
generated by AI less suitable and applicable for the end-
user. Furthermore, an algorithm’s output is only an asso-
ciation, not a causative relationship [18]. Therefore,
physicians should always balance the probable outcome of
this output and decide whether it applies to a specific pa-
tient. According to Verghese et al. [31], AI applications and
clinicians should always cooperate: AI helps predict and
the clinician compassionately explains and decides.

We speculate that AI might outperform humans for
many probabilistic tasks that are based on data. However,
the largest challenges will be to find ways to collect and
analyze large amounts of data efficiently and to overcome
legal issues. Despite the current shortcomings, such as in-
adequate ground truth label assignment, we believe that
physicians will benefit by embracing AI rather than ig-
noring or dismissing it. For fracture care, these models
might aid surgeons by drawing their attention to fractures
or fracture characteristics that could cause harm if over-
looked. Future studies in this area might focus on AI as a

2490 Langerhuizen et al. Clinical Orthopaedics and Related Research®

Copyright © 2019 by the Association of Bone and Joint Surgeons. Unauthorized reproduction of this article is prohibited.



tool to assist with complex and uncertain clinical tasks (for
example, determining the response of bone tumors to
chemotherapy, or detecting nondisplaced or occult frac-
tures) and in decision support.
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