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Abstract

A finite dimensional abstract approximation and convergence theory is developed for estimation of 

the distribution of random parameters in infinite dimensional discrete time linear systems with 

dynamics described by regularly dissipative operators and involving, in general, unbounded input 

and output operators. By taking expectations, the system is re-cast as an equivalent abstract 

parabolic system in a Gelfand triple of Bochner spaces wherein the random parameters become 

new space-like variables. Estimating their distribution is now analogous to estimating a spatially 

varying coefficient in a standard deterministic parabolic system. The estimation problems are 

approximated by a sequence of finite dimensional problems. Convergence is established using a 

state space-varying version of the Trotter-Kato semigroup approximation theorem. Numerical 

results for a number of examples involving the estimation of exponential families of densities for 

random parameters in a diffusion equation with boundary input and output are presented and 

discussed.
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1. Introduction

The work we report on here was motivated by a compound inverse or blind deconvolution 

problem involving the interpretation of data from a transdermal alcohol biosensor. The 

observation (dating back to the 1930s [25, 35, 36, 37, 38]) that ethanol is highly miscible 

and finds its way into all the water in the body, and in particular, sweat, has in the past two 
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decades, led to the development of technology to measure the amount of ethanol excreted 

from the body transdermally (i.e. through the skin) through perspiration and to then use it to 

quantitatively assess intoxication level. The basis for the measurement is an oxidation-

reduction (redox) reaction that produces four electrons for each ethanol molecule oxidized. 

This results in a continuous current whose level is proportional to the amount of ethanol 

evaporating from the surface of the skin beneath the sensor. Now while these devices have 

been available and in use, both experimentally and commercially, for a number of years, 

they have been used primarily as abstinence monitors because transdermal alcohol level or 

concentration (TAC) data cannot consistently be converted to breath and blood alcohol 

concentrations (BrAC/BAC) across individuals, devices, and environmental conditions. 

(BAC and BrAC are currently, and historically have been, the standard measures of 

intoxication among alcohol researchers and clinicians, as well as in the courts.) Indeed, 

unlike a breath analyzer, which relies on a relatively simple model from basic chemistry 

(i.e., Henrys Law) for the exchange of gases between circulating pulmonary blood and 

alveolar air (see, for example, [22]) that has been found to be reasonably robust across the 

population, the transport and filtering of alcohol by the skin is physiologically more complex 

and is affected by a number of factors that differ across individuals (e.g., skin layer 

thickness, porosity and tortuosity, etc.) and even drinking episodes within individuals (e.g., 

body and ambient temperature, skin hydration, vasodilation). The challenge in making these 

devices practicable is to develop a means to reliably convert biosensor measured TAC into 

BAC or BrAC.

In our earlier work ([14, 19, 28]) we have taken a strictly deterministic approach to 

converting TAC to either BAC or BrAC. We fit first principles physics-based models in the 

form of a distributed parameter (diffusion) system with unbounded input and output, and 

used individual calibration data to capture the dynamics of the forward process - the 

propagation of alcohol from the blood, through the skin, and its measurement by the sensor 

(i.e. the forward model) by estimating the parameters (diffusivity, input/output gain, 

propagation inertia, etc.) that appear in the model via nonlinear least squares. Then in a 

second phase of processing, we use the fit model to deconvolve BAC or BrAC from the TAC 

signal measured by the biosensor in the field. However, because of the challenges described 

above, this approach was not entirely satisfying. Indeed, while it was possible to fit the 

models quite well to any particular drinking episode, we observed significant variance in the 

values of the parameters across different individuals and across different drinking episodes 

for the same individual. Consequently, the fit models did not yield the desired level of 

accuracy when they were used to deconvolve BAC or BrAC from TAC for a drinking 

episode that they were not specifically trained on.

To deal with this problem we have been looking at the idea of fitting a population forward 

model (having BAC or BrAC as input and TAC as output) in the form of a random partial 

differential equation, to data from multiple drinking episodes and multiple individuals and 

then using the population model to solve the deconvolution problem. Fitting a population 

model of this form implies that rather than estimate particular values for the parameters, we 

treat the parameters as random variables and estimate their distributions. In this way, it will 

become possible to produce not only an estimate for the BAC or BrAC, but also some form 

Sirlanci et al. Page 2

Commun Appl Anal. Author manuscript; available in PMC 2020 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of credible bands to go along with it providing a quantitative estimate of the level of 

uncertainty in the estimate.

The basic underlying assumption in such an approach is that our first principles physics/

physiological based model in essence, describes the dynamics common to the entire 

population (population interpreted broadly here to include not only all individuals, but also 

all devices, environmental conditions, and in effect, all ethanol molecules) and to then 

attribute all unmodeled sources of uncertainty (primarily due to variations in physiology, 

hardware, and the environment) observed in individual data to random effects. Moreover, we 

assume that what we observe in any individual data set is the combination or average of 

these random effects. Thus, this approach is realized by letting the parameters in the PDE 

model be random variables, the distributions of which are to be estimated based on 

aggregate population data.

In this paper, we develop an abstract approximation framework and convergence theory for 

formulating and solving just such an estimation problem. In addition to the theory, we have 

also included a number of examples and numerical results. However, we do not discuss here 

the application of these ideas to either the alcohol biosensor problem discussed above or 

even the deconvolution problem. Those results are presented elsewhere ([31, 32, 33]). In our 

treatment here, we are strictly concerned with the problem of estimating the distributions of 

random parameters in a forward model from a particular class of abstract linear infinite 

dimensional systems for which the input is known and observations of the output for a 

sampling of members of the target population are available. That is, we are referring to the 

problem of fitting the population model.

The class of systems we consider here are those governed by abstract parabolic or 

hyperbolic operators with damping formulated in a Gelfand triple setting together with input 

and observations on the boundary of the domain. These types of operators are sometimes 

referred to as being regularly dissipative, and can typically be shown to generate 

holomorphic or analytic semigroups. We formulate the estimation problem in much the same 

way as it is in standard linear regression. That is, that each data point is assumed to be an 

observation of the mean population behavior plus random error. We then formulate the 

estimation problem as an optimization problem over the space of feasible distributions for 

the random parameters. The objective of the optimization problem is to minimize prediction 

error in the form of the difference between the observed output signal and the expectation of 

the output of the model. We then consider a sequence of approximating estimation problems 

in each of which the infinite dimensional system is replaced by a finite dimensional 

approximating system. We then demonstrate that under appropriate (and readily verifiable) 

assumptions, the solutions to the approximating estimation problems converge to a solution 

to the original estimation problem with the infinite dimensional state. These convergence 

results are formulated in a functional analytic or operator theoretic setting and are based on 

ideas and results from linear semigroup theory.

Our general approach relies heavily on three relatively recent papers: 1) Banks and 

Thompson’s [7] framework for the estimation of probability measures in random abstract 

evolution equations and the convergence of finite dimensional approximations in the 
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Prohorov metric, 2) a more recent and enhanced version of the previous paper, [2], and 3) 

Gittelson, Andreev, and Schwab’s [20] theory for random abstract parabolic partial 

differential equations with dynamics defined in terms of coercive sesquilinear forms. While 

our effort here is similar in spirit and takes its cue from the treatment in [2] and [7], it is 

somewhat different in that we are forced to assume that the probability measures that 

describe the distribution of our random parameters can be defined in terms of a joint density 

function; that is, that the random parameters are jointly absolutely continuous.

The approach in [20] is novel in the way that it treats the random parameters in the PDE as 

another space-like independent variable. This is done by appropriately defining 

corresponding Bochner spaces in which the weak formulation of the problem is stated and 

shown to be well-posed. In fact, it turns out that the random parameter dependent regularly 

dissipative operators that determine the underlying PDE are regularly dissipative when 

embedded in these Bochner spaces. Consequently, we are able to use linear semigroup 

theory to develop our approximation framework in much the same way as we have in our 

earlier deterministic treatments. In this way, finite dimensional approximation is handled in 

much the same way that it is for the standard deterministic space variables, and the 

estimation of the distribution of the random parameters effectively becomes analogous to the 

problem of estimating a variable coefficient in a deterministic PDE, a problem which has 

been studied extensively over the last thirty years ([4] and [6]).

We use the framework in [20] together with generation and approximation results from 

linear semigroup theory, (i.e. the Hille-Yosida-Phillips theorem and a version of the Trotter 

Kato approximation theorem) to establish that the sufficient conditions for a Banks 

Thompson-like convergence result are satisfied. These theoretical results allow us to develop 

rigorously established convergent computational algorithms that yield numerical 

approximations to the desired distributions. Moreover, the solutions in the Bochner spaces 

and their finite dimensional approximations directly capture the explicit dependence of the 

state and output (and eventually the deconvolved input) on the random parameters. Using 

this together with the estimated distributions for the random parameters, it becomes straight 

forward to directly identify credible intervals for the output without having to re-solve the 

PDE many times as you would if you were attempting to identify these credible intervals by 

naive sampling.

An outline of the remainder of the paper is as follows. In Section (2) we formally develop 

the estimation problem, reformulate it as a nonlinear least squares optimization problem and 

establish the existence of solutions. In Section (3) we discuss infinite dimensional systems 

described by regularly dissipative operators involving unbounded input and output (this is 

typically the case for a PDE with input and output on the boundary). In Section (4) we 

discuss the framework in [20] for treating systems of the form discussed in Section (3) but 

now involving random parameters. Our approximation and convergence results are presented 

in Section (5) and a discussion of examples and our numerical results are in Section (6). 

Section (7) has a few concluding remarks regarding where we plan to go next with this line 

of research.
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In our discussions to follow we will on occasion use the notation E[X∥f], 𝔼[X F], or E [X∥π] 

to denote the expectation of the random variable X with respect to the probability density 

function f, the cumulative distribution function F, or the probability measure π. We use the 

“double bar” as opposed to a “single bar” to distinguish what we mean here with conditional 

expectation.

2. Estimation of Random Discrete Time Dynamical Systems

We consider the family of discrete or sampled time initial value problems that are set in an, 

in general, infinite dimensional Hilbert state space, ℋ, given by

x j + 1, i = g(t j, x j, i, ui; q), j = 0, …, ni, i = 1, 2, …, m, (2.1)

x0, i = x0, i(q), i = 1, 2, …, m, (2.2)

where g :ℝ+ × ℋ × ∏ j = 0
ni ℝμ × Q ℋ and for j = 0, …, ni and i = 1, 2, …, m, ui = {ui,j} is 

an external input or control with ui, j ∈ ℝμ, and tj = jτ, with τ > 0 the length of the sampling 

interval, describing the dynamics of a process common to the entire population. In addition, 

we assume that we can observe some function of the solutions of (2.1)-(2.2), xj,i, as given by 

the output equation

y j, i = y(t j, x0, i, ui; q) = C(x j, i, x0, i, ui; q), j = 0, …, ni, i = 1, 2, …, m, (2.3)

where C :ℋ × ℋ × ∏ j = 0
ni ℝμ × Q ℝν.

In equations (2.1)-(2.3), we assume q ∈ Q, where Q is the set of admissible parameters (a 

subset of Euclidean space endowed with Lebesgue measure), and the values of the 

parameters are specific to each individual in the population. Therefore, assuming that the 

parameters, q, are samples from a random vector 𝓆, the objective is to estimate their (joint) 

distribution based on the aggregate data sampled from the population. For this purpose, we 

assume that the distribution of these random vectors is described by the joint pdf f 0 ∈ ℱ(Q), 

where ℱ(Q) represents a set of feasible pdfs with support in Q.

There are a number of ways to formulate the statistical model that will be used as the basis 

for the estimation of the distribution of the random parameters. One approach is to treat 

(2.1)- (2.3) as an, in general, nonlinear mixed effects model (see, for example, [16, 17, 18, 

32]) wherein randomness in the parameters, q, are used to quantify uncertainty between 

subjects, and randomness in the output or measurements, yj,i given in (2.3) is intended to 

capture uncertainty within individual subjects. In this case we assume that the observed data 

points are of the form

V j, i = y j, i + ε j, i, j = 0, …, ni, i = 1, …, m,
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where εj,i, j = 0, …, ni, i = 1, …, m, representing measurement noise are assumed to be 

independent across subjects (i.e with repsect to i), conditionally independent with respect to 

𝓆 within subjects (i.e with repsect to j), identically distributed with mean 0 and known 

common variance σ2, and with εj,i ~ φ, j = 0, …, ni, i = 1, …, m. In this case, for example, 

using conditional probability and the total probability formula, a likelihood function could 

be defined formally as

ℒ( f 0; {V j, i}) = ∏
i = 1

m ∫Q
Li(q; {V j, i}) f 0(q)dq = ∏

i = 1

m ∫Q
∏
j = 0

ni
φ(V j, i − C(x j, i, x0, i, ui; q)) f 0(q)dq .

Once one deals with a number of computational issues, specifically, the discretization or 

parameterization of f0, finite dimensional approximation of the in general infinite 

dimensional state equation (2.1), the efficient evaluation of a potentially high dimensional 

integral, the loss of precision and underflow issues due to the fact that the evaluation of ℒ
requires the computation of products of small numbers, etc., one could then seek a 

maximum likelihood estimator for f0 by maximizing ℒ or, more typically, an expression 

involving logℒ( f 0; {V j, i}) to avoid having to deal with the products. Under appropriate 

regularity assumptions on φ, f0, and the system (2.1)- (2.3), one way to do this might be via 

a gradient based search. Another might be via stochastic optimization. One could also treat 

direct observations of 𝓆 as missing data and then use the iterative E-M algorithm to find the 

MLE (see, for example, [12]).

Alternatively, one could use the likelihood function defined above and take a Bayesian 

approach (see, for example, [8, 9, 10, 15, 33, 34]). One way of doing this would be to 

assume f0 = f0(·; ρ) has been parameterized by a parameter vector ρ ∈ ℛ, where ℛ denotes a 

parameter set. Then assume a prior 𝒫 on ρ and apply Bayes to obtain the posterior 𝒫 as

𝒫(ρ) = 𝒫(ρ ∣ {V j, i}) = 1
Z ℒ(ρ; {V j, i})𝒫(ρ) = 1

Z ℒ( f 0( ⋅ ; ρ); {V j, i})𝒫(ρ) .

where Z is the normalizing constant given by

Z = ∫ℛ
ℒ(ρ; {V j, i})𝒫(ρ)dρ = ∫ℛ

∏
i = 1

m ∫Q
∏
j = 0

ni
φ(V j, i − C(x j, i, x0, i, ui; q)) f 0(q; ρ)dq𝒫(ρ)dρ .

Still another Bayesian approach could be used to estimate the distribution of 𝓆 ∼ f 0 directly 

where now the posterior for 𝓆, 𝒫 = 𝒫(q) serves as the estimator for f0. In this case we 

assume that εj,i, j = 0, …, ni, i = 1, …, m are simply independent both across and within 

subjects, identically distributed with mean 0 and known common variance σ2, and with εj,i ~ 

φ, j = 0, …, ni, i = 1, …, m. If we now let 𝒫 denote the prior for 𝓆, then Bayes yields
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𝒫(q) = 𝒫(q ∣ {V j, i}) = 1
Z ∏

i = 1

m
Li(q; {V j, i})𝒫(q) = 1

Z ∏
i = 1

m
∏
j = 0

ni
φ(V j, i − C(x j, i, x0, i, ui; q))𝒫(q),

where the normalizing constant Z is now given by

Z = ∫Q
∏

i = 1

m
Li(q; {V j, i})𝒫(q)dq = ∫Q

∏
i = 1

m
∏
j = 0

ni
φ(V j, i − C(x j, i, x0, i, ui; q))𝒫(q)dq .

Both of these Bayesian approaches also have some of the same computational issues as the 

MLE approach when some sort of MCMC technique such as Metropolis-Hastings or the 

Gibbs Sampler is used to sample the posterior distribution.

In our study here, however, we take a statistically somewhat less sophisticated approach. We 

consider the naive pooled data estimator. We do this for a number of reasons. 1) Our primary 

focus here is the finite dimensional approximation of the infinite dimensional state equation 

and the convergence of the corresponding estimators and the computational challenges 

described above would only serve to confound our findings, 2) The naive pooled estimator 

meshes especially well with the approach we take in dealing with the randomness in the 

family of PDEs (i.e. abstract parabolic, and eventually, damped hyperbolic) of particular 

interest to us here in the context of the alcohol biosensor problem described earlier. 3) A 

reasonable argument could be made that the data we observe is best described as pooled or 

averaged. We note that it in fact turns out that the approximation and convergence results we 

present here are highly relevant to the MLE and Bayesian approaches described in the 

previous paragraphs; we are currently investigating that and we will report on our findings 

and results in those cases elsewhere. Finally it is interesting to note that in the Bayesian 

approach, if the prior f0 and the distribution of the measurement noise process, εj,i, as 

described by the density φ are both assumed to be normal, then the naive pooled data 

estimator we find here is in fact the Maximum A-Posteriori, or MAP, estimator.

In light of this, our statistical model assumes that the observed data points can be 

represented by the mean output of the model plus random error. Thus, we assume that we 

have random observations of the process given by a random array with components

V j, i = 𝔼[y j, i ∣ ∣ f 0] + ε j, i, j = 0, …, ni, i = 1, …, m, (2.4)

where in (2.4), εj,i, j = 0, …, ni, i = 1, …, m, represent measurement noise and are assumed 

to be independent and identically distributed with mean 0 and known common variance σ2. 

For f ∈ ℱ(Q), define

vi(t j; f ) = 𝔼[y(t j, x0, i, ui; 𝓆) ∣ ∣ f ] = ∫
Q

C(x j, i, x0, i, ui; q) f (q)dq, (2.5)

the mean behavior at time tj, j = 0, …, ni, if 𝓆 ∼ f .
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The estimation problem is to estimate the pdf, f0, using a least squares approach

f = arg min
f ∈ ℱ(Q)

J( f ; V) = arg min
f ∈ ℱ(Q)

∑
i = 1

m
∑
j = 0

ni
(V j, i − vi(t j; f ))2 . (2.6)

where the vi(tj; f) are as given in (2.5).

Solving the optimization problem given in (2.6) will typically require finite dimensional 

approximation of the dynamical system given in (2.1)-(2.2), and the parameterization of the 

feasible set of pdfs, ℱ(Q). Indeed, in our treatment here, we assume that the set of pdfs, 

ℱ(Q), is parameterized by a vector of parameters θ ∈ Θ, where Θ ⊆ ℝr is a set of feasible 

parameters. In this case, we denote the set of pdfs by ℱΘ(Q).

We approximate the estimation problem given in (2.6) by a sequence of finite dimensional 

estimation problems by replacing vi(tj; f) with a finite dimensional approximation vi
N(t j; f ). 

We obtain

f N = arg min
f ∈ ℱΘ(Q)

JN( f ; V) = arg min
f ∈ ℱΘ(Q)

∑
i = 1

m
∑
j = 0

ni
(V j, i − vi

N(t j; f ))2 . (2.7)

We note that ultimately, we will want to dispense with the assumption that ℱ(Q) has been 

parametrized by the finite dimensional parameter θ ∈ Θ and actually estimate the shape of f 
directly. In this case, ℱ(Q) will also have to be approximated or discretized with the level, or 

dimension of the parameterization having to grow in order to establish convergence. We are 

currently studying this extension to the results presented here and will discuss our findings 

elsewhere. Analogous to theorem 5.1 in [7], we have the following convergence result for 

the f N,s.

Theorem 2.1. Let Θ ⊆ ℝr be compact. If

A. The maps on Θ, θ ↦ f (q; θ), for almost every q ∈ Q, and θ ↦ JN (f (·; θ); V), for all N 

and f ∈ ℱΘ(Q) are continuous,

B. For any sequence of densities f N ∈ ℱΘ(Q) with limN→∞ fN(q) = f (q), a.e. q ∈ Q, for 

some f ∈ ℱΘ(Q), we have vi
N(t j; f N) converging to vi(tj; f) for all i ∈ {1, …, m} and j ∈ {0, 

…, ni} as N → ∞, and

C. The vi(tj; f) and vi
N(t j; f ) are uniformly bounded for all j ∈ {0, …, ni}, i ∈ {1, …, m} and 

f ∈ ℱΘ(Q),
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then it will follow that there exist solutions f N to the estimation problems over ℱΘ(Q), given 

in (2.7), and there exists a subsequence of the f N,s that converges to a solution f  of the 

estimation problem over ℱΘ(Q) given in (2.6).

Proof. Finding the solution to the problem in (2.7) is equivalent to finding the parameters θ 
∈ Θ such that JN (f; V) is minimized. Since Θ is a compact set and the map θ → JN (f(·; θ); 

V) is continuous for all N by (A), a solution f N to the estimation problem (2.7) over ℱΘ(Q)

exists.

Next, let { f N} ⊆ ℱΘ(Q) be any sequence with limN→∞ fN(q) = f (q), a.e. q ∈ Q for some 

f ∈ ℱΘ(Q) and consider that

∣ JN( f N; V) − J( f ; V) ∣ = ∣ ∑
i = 1

m
∑

j = 0

ni
(V j, i − vi

N(t j; f N))2

− ∑
i = 1

m
∑

j = 0

ni
(V j, i − vi(t j; f ))2 ∣

≤ ∑
i = 1

m
∑

j = 0

ni
∣ 2V j, i − (vi(t j; f ) + vi

N(t j; f N)) ∣

⋅ ∣ vi(t j; f ) − vi
N(t j; f N) ∣

≤ M ∑
i = 1

m
∑

j = 0

ni
∣ vi(t j; f ) − vi

N(t j; f N) ∣ ,

for some M > 0, since vi(tj; f) and vi
N(t j; f ) are uniformly bounded for all i ∈ {1, …, m} and j 

∈ {0, …, ni} (by assumption (C)), and f ∈ ℱΘ(Q). Then, by (B), we obtain

JN( f N; V) J( f ; V), (2.8)

as N → ∞. On the other hand, since f N = f ( ⋅ ; θ N), where θ N ∈ Θ, is the minimizer of JN(f; 
V), we have

JN( f N; V) ≤ JN( f ; V), (2.9)

for all f = f ( ⋅ ; θ) ∈ ℱΘ(Q) and N = 1, 2, …. Since {θ N} ⊂ Θ, compact, there exists a 

subsequence θ
Nk with θ

Nk θ  as k → ∞. Thus, taking the limit as k → ∞ in (2.9) with N 

replaced by Nk, and using (2.8) (with f k
N = f , all k =1, 2, … when the limit is taken on the 

right hand side of (2.9)), we obtain

J( f ; V) ≤ J( f ; V), (2.10)
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for all f ∈ ℱΘ(Q), where f = f ( ⋅ ; θ ). Thus, (2.10) implies that f  is a solution of estimation 

problem given in (2.6) over ℱΘ(Q). □

3. Abstract Parabolic Systems with Unbounded Input and Output

Let V and H be in general complex (but in many instances, real would suffice) Hilbert 

spaces with V ↪ H, i.e. V is continuously and densely embedded in H. By identifying H 
with its dual H*, we obtain the Gelfand triple V ↪ H ↪ V*. Let < ·, · >H denote the H 
inner product and ∣·∣H, ∥·∥V denote norms on H and V, respectively, and assume that (Q, dQ) 

is a compact metric space contained in Euclidean space endowed with Lebesgue measure. In 

what follows all multi-dimensional vectors, whether in Euclidean or some abstract space, are 

assumed to be column vectors, unless explicitly stated otherwise. For q ∈ Q, let 

a(q; ⋅ , ⋅ ) :V × V ℂ be a sesquilinear form that has the following properties

i. Boundedness There exists a constant α0 > 0 such that ∣a(q; ψ1, ψ2)∣ ≤ 

α0∥ψ1∥V∥ψ2∥V, ψ1, ψ2 ∈ V, q ∈ Q,

ii. Coercivity There exist constants λ0 ∈ ℝ and μ0 > 0 such that 

a(q1; ψ , ψ) + λ0 ∣ ψ ∣H
2 ≥ μ0 ψ

V
2

, ψ ∈ V, q ∈ Q,

iii. Measurability For all ψ1, ψ2 ∈ V, the map q ↦ a(q; ψ1, ψ2) is measurable on 

Q with respect to all measures defined in terms of the densities in ℱΘ(Q), where 

Θ ⊆ ℝr is the set of feasible parameters.

Assume further that b(q), c(q) are respectively μ and ν dimensional row vectors in V* with 

the maps q ↦< b(q), ψ >V*,V and q ↦< c(q), ψ >V*, V measurable on Q for ψ ∈ V, where 

< ·, · >V*,V denotes the duality pairing between V and V*. We consider the system which is 

written in weak form as

x., ψ
V∗, V

+ a(q; x, ψ) = b(q), ψ
V∗, V

u, ψ ∈ V ,

x(0) = x0 ∈ H,

y(t) = ∫
0

T
c(q), x(t)(s)

V∗, V
ds,

(3.1)

where T > 0, and φ(t)(s) = φ(t − s)χ[0, T](s), s ∈ [0, T]. For u ∈ L2([0, T], ℝμ), it can be shown 

that (3.1) has a unique solution (see [24, 39]) 

x ∈ W(0, T) ≔ {ψ :ψ ∈ L2([0, T], V), ψ. ∈ L2([0, T], V∗)} ⊆ C([0, T], H) which depends 

continuously on u ∈ L2([0, T], ℝμ). It follows that y ∈ L2([0, T], ℝν).

For q ∈ Q, under the assumptions (i),(ii), the sesquilinear form a(q; ·, ·) defines a bounded 

linear operator A(q) : V → V* by < A(q)ψ1, ψ2 >V*,V = −a(q; ψ1, ψ2) where ψ1, ψ2 ∈ V. 

It can be shown further that (see [3, 5, 39]) A(q) restricted to the set Dom(A(q)) = {ϕ ∈ V : 

A(q)ϕ ∈ H} is the infinitesimal generator of a holomorphic or analytic semigroup of 
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bounded linear operators on H. Moreover, this semigroup can be restricted to be a 

holomorphic semigroup on V and extended to a holomorphic semigroup on V* by 

appropriately restricting or extending the domain, Dom(A(q)), of the operator A(q) (see, for 

example, [3] and [39]).

For q ∈ Q, define the operators B(q) :ℝμ V∗ by B(q)u, φ
V∗, V

= b(q), φ
V∗, V

u and 

C(q) :L2([0, T], V) ℝν by C(q)ψ = ∫ 0
T c(q), ψ(s)

V∗, V
ds, for u ∈ ℝμ, φ ∈ V, and ψ ∈ L2([0, 

T], V), and rewrite the system in (3.1) as

x.(t) = A(q)x(t) + B(q)u(t),
x(0) = x0,
y(t) = C(q)x(t), t > 0 .

(3.2)

The mild solution of (3.2) is given by the variation of constants formula as

x(t; q) = eA(q)tx0 + ∫
0

t
eA(q)(t − s)B(q)u(s)ds, t ≥ 0 . (3.3)

Moreover, since the semigroup {eA(q)t : t ≥ 0} is analytic it follows that

y(t; q) = C(q)x(t)(q) = ∫
0

T
c(q), x(t)(s; q)

V∗, V
ds, t ≥ 0 . (3.4)

is well defined.

3.1. The Discrete Time Formulation

Now let τ > 0 be a sampling time and consider zero-order hold inputs of the form u(t) = uj, t 
∈ [jτ,(j + 1)τ), j = 0, 1, 2, …. Setting xj = x(jT), for j = 0, 1, 2, …, (3.3) and (3.4) yield that

x j + 1 = A(q)x j + B(q)u j, yi = C(q)x( j), j = 0, 1, 2, … (3.5)

where now we let x0 ∈ V. Here, again by the properties of the analytic semigroup (see [26, 

39]), we have {eA(q)t : t ≥ 0}, xj ∈ V, A(q) = eA(q)τ ∈ ℒ(V , V) and 

B(q) = ∫ 0
τ eA(q)sB(q)ds ∈ ℒ(ℝμ, H). The operator C(q) appearing in (3.5) is defined by 

recalling (3.4). We set

C(q)x( j) = C(q)x( j), (3.6)

where x(j) in (3.6) denotes the function in L2(0, T, V) given by

x( j) = ∑
i = 1

j
xiχ[( j − 1)τ, jτ] . (3.7)
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Now, in light of the coercivity assumption, Assumption (ii), by making the change of 

variables z(t) = e−λ0tx(t) and v(t) = e−λ0tu(t), without loss of generality we may assume that 

the operator A(q) is invertible with bounded inverse. Thus we have that 

B(q) = ∫ 0
τ eA(q)sB(q)ds = A(q)−1eA(q)sB(q) 0

τ = (A(q) − I)A(q)−1B(q) ∈ ℒ(ℝμ, V). It follows that 

the recurrence given in (3.5) is a recurrence in V with A(q) ∈ ℒ(V , V) and B(q) ∈ ℒ(ℝμ, V). 
Thus it now becomes possible to allow the discrete time output operator C(q) ∈ ℒ(V , ℝν)
defined in (3.6) and (3.7), if so desired, to take on the much simpler form 

C(q)x = c(q), x
V∗, V

. In what follows we shall assume that the output operator takes this 

simpler form.

3.2. Systems with Boundary Input

Of primary interest to us here are systems of the form (3.1) or (3.2) where the input u is on 

the boundary of the spatial domain. The theory developed in [13] and [27] tells us how in 

this case to define the input operator B(q) and the notion of a mild solution upon which our 

approach is based. Let W be a Hilbert space which is densely and continuously embedded in 

H. Let Δ(q) ∈ ℒ(W , H) and Γ(q) ∈ ℒ(W , ℝμ) and assume that Dom(A(q)) ⊆ 𝒩(Γ(q)) ⊆ W, Γ(q) 

is surjective and Δ(q) = A(q) on Dom(A(q)). We then consider the system with input on the 

boundary given by

x.(t) = Δ(q)x(t), t > 0,
Γ(q)x(t) = u(t), t > 0,

y(t) = C(q)x(t), t > 0,
x(0) = x0 .

(3.8)

In [13], Curtain and Salamon define a solution to the system (3.8) for the case where 

u ∈ C([0, T]; ℝμ) and x0 ∈ W with Γ(q)x0 = u(0), to be a function x ∈ C([0, T]; W) ∩ C1([0, 

T]; H) that satisfies (3.8) at every t ∈ (0, T). The operator A(q) densely defined implies that 

it has an adjoint operator A(q)* : Dom(A(q)*) ⊆ H → H which is also densely defined and 

closed. Defining Z* to be the Hilbert space Dom(A(q)*) endowed with the graph Hilbert 

space norm associated with A(q)*, Z* will be continuously and densely embedded in H. So, 

the Gelfand triple Z* ↪ H ↪ Z is obtained where Z = Z** represents the dual space of Z*. 

By definition A(q)∗ ∈ ℒ(Z∗, H) and consequently therefore, A(q) ∈ ℒ(H, Z). It follows that 

the semigroup {eA(q)t : t ≥ 0} can be uniquely extended to a holomorphic semigroup on Z 
with infinitesimal generator A(q) : H ⊆ Z → Z, the extension A(q) to H defined via the 

duality pairing < A(q)ψ, ϕ>Z,Z*=< ψ, A(q)* ϕ >H, for ψ ∈ H, and ϕ ∈ Z* = Dom(A(q)*).

For each q ∈ Q, let Γ+(q) ∈ ℒ(ℝμ, W) be any right inverse of Γ(q) ∈ ℒ(W , ℝμ), and define the 

operator B(q) ∈ ℒ(ℝμ, Z) by B(q) = (Δ(q) – A(q))Γ+(q). It is not difficult to show that B(q) is 

well defined (i.e. that it does not depend on the particular choice of the right inverse Γ+ (q)). 

Then for any x0 ∈ H and u ∈ L2([0, T]; ℝμ), the mild solution, x ∈ C([0, T]; Z), of the initial 

boundary value problem in (3.8) is the Z-valued function given by
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x(t) = eA(q)tx0 + ∫
0

t
eA(q)(t − s)B(q)u(s)ds, t ≥ 0 . (3.9)

It is shown in [13] that if (3.8) has a solution, then it is given by (3.9) where x ∈ C([0, T], H) 

∩ H 1 ((0, T), Z) and moreover, we have that the estimate given by 

∣ ∫ 0
t eA(q)(t − s)B(q)u(s)ds ∣H ≤ k u

L2([0, T]; ℝμ)
 holds.

We note that if in fact we have that W ⊂ V, which is often the case (for example, in a one 

dimensional diffusion equation with either Neumann or Robin boundary input (see our 

examples in Section (6) below), but may not be the case if, for example, the boundary input 

is Dirichlet), then in the above formulation we may take Z* = V and Z = V*. In this case it 

will follow that B(q) = (Δ(q) − A(q))Γ+(q) ∈ ℒ(ℝμ, V∗) and consequently that the theory 

presented at the beginning of Section (3), and in particular, the discrete time theory 

presented in Section (3.1), applies. For ease of exposition, we will assume that this is indeed 

the case for what follows below. We note that all the results continue to follow in the more 

general case where Z* = Dom(A(q)*). It then follows that A(q) = eA(q)τ ∈ ℒ(V , V) and that 

B(q) = ∫ 0
τ eA(q)sds B(q) ∈ ℒ(ℝμ, V) and therefore that

B(q) = ∫0
τ
eA(q)sB(q)ds = A(q)−1eA(q)sB(q)

0

τ
= (A(q) − I)A(q)−1B(q),

and C(q) = C(q) ∈ ℒ(V , ℝν). Note that now we have

B(q) = (I − A(q))Γ+(q) + ∫
0

τ
eA(q)sdsΔ(q)Γ+(q) ∈ ℒ(ℝμ, V), (3.10)

and if Γ+(q) can be chosen so that R(Γ+(q)) ∈ 𝒩(Δ(q)), then the expression in (3.10) becomes 

B(q) = (I − A(q))Γ+(q). Then, if x0 = 0 ∈ H, yi is given by

yi = ∑
j = 0

i − 1
C(q)A(q)i − j − 1B(q)ui

= ∑
j = 0

i − 1
Ki, ju j, i = 1, 2, …,

(3.11)

where the operator Ki, j = C(q)A(q)i − j − 1(I − A(q))Γ+(q) appearing in (3.11) is the gain that 

represents the contribution of the jth input channel to the ith output channel.
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4. Random Regularly Dissipative Operators and Their Associated 

Semigroups

In this section, we summarize the key ideas from the framework developed in [20] and [30] 

which are central to our approach. We assume that 𝓆 is a p-dimensional random vector 

whose support is in ∏i = 1
p [ai, bi] where −∞ < α‒ < ai < bi < β‒ < ∞ for all i = 1, 2, …, p. 

Letting a = [ai]i = 1
p , b = [bi]i = 1

p  and let Θ ⊂ ℝr for some r be closed and bounded. We 

assume that the distribution of 𝓆 can be represented by an absolutely continuous cumulative 

distribution function F(q; a , b , θ ), or equivalently, by a (push forward) measure 

π = π( a , b , θ ), where θ ∈ Θ. Let a(·; ·, ·) be a sesquilinear form satisfying (i)-(iii) given in 

Section (3), where the assumed measurability is with respect to all of the measures 

π = π( a , b , θ ).

Define the Bochner spaces 𝒱 = Lπ
2(Q; V) and ℋ = Lπ

2(Q; H). The assumptions from Section 

(3) on the spaces V and H guarantee that the spaces 𝒱, ℋ and 𝒱∗ form the Gelfand triple 

𝒱 ℋ 𝒱∗ (see [20]) where ℋ is identified with its dual ℋ∗ and 𝒱∗ is identified with 

Lπ
2(Q; V∗).

For a = [ai]i = 1
p , b = [bi]i = 1

p  satisfying −∞ < α‒ < ai < bi < β‒ < ∞ for all i = 1, 2, …, p, and 

θ ∈ Θ, set ρ = ( a , b , θ ). Then we define the π(ρ)-averaged sesquilinear forms 

𝒶(ρ; ⋅ , ⋅ ) :𝒱 × 𝒱 ℂ (note, the spaces ℋ, 𝒱, and 𝒱∗ now of course depend on ρ, but our 

notation here we will not explicitly show this dependence unless clarity demands it) by

𝒶(ρ; φ, ψ) = ∫
Q

a(q; φ(q), ψ(q))dπ(q; ρ) = 𝔼[a(𝓆; φ(𝓆), ψ(𝓆)) ∣ ∣ π(ρ)], (4.1)

where φ, ψ ∈ 𝒱 and ρ = ( a , b , θ ). It is not difficult to show that Assumptions (i)-(iii) imply 

that 𝒶(ρ; ⋅ , ⋅ ) is a bounded and coercive sesquilinear form on 𝒱 × 𝒱. Consequently, this 

sesquilinear form defines a bounded linear map 𝒜(ρ) :𝒱 𝒱∗ by 

< 𝒜(ρ)φ, ψ >
𝒱∗, 𝒱

= − 𝒶(ρ; φ, ψ) which when appropriately restricted or extended is the 

infinitesimal generator of analytic semigroups of bounded linear operators {e𝒜(ρ)t : t ≥ 0} on 

𝒱, ℋ and 𝒱∗ (see [3, 5, 39]). We assume that the maps q ↦< b(q), ψ(q) >V*,V and q ↦< 

c(q), ψ(q) >V*,V are π(ρ)-measurable for any ψ ∈ 𝒱, and that ∥b(q)∥V*, ∥c(q)∥V* are 

uniformly bounded for a.e. q ∈ Q. We then define ℬ(ρ) :ℝμ 𝒱∗ and 𝒞(ρ) :𝒱 ℝν by

< ℬ(ρ)u, ψ >
𝒱∗, 𝒱

= ∫
Q

b(q), ψ(q)
V∗, V

dπ(q; ρ)u

= 𝔼[ b(𝓆), ψ(𝓆)
V∗, V

∣ ∣ π(ρ)]u,
(4.2)
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𝒞(ρ)ψ = ∫
Q

c(q), ψ
V∗, V

dπ(q; ρ) = 𝔼[ c(𝓆), ψ(𝓆)
V∗, V

∣ ∣ π(ρ)], (4.3)

for u ∈ ℝμ and ψ ∈ 𝒱.

With the definitions (4.1) - (4.3) of the operators 𝒜, ℬ, and 𝒞, consider the abstract 

evolution system given by

x.(t) = 𝒜(ρ)x(t) + ℬ(ρ)u(t),
x(0) = x0 ∈ H,
𝒴(t) = 𝒞(ρ)x(t), t > 0,

(4.4)

whose mild solution is given by

x(t) = 𝒯(t; ρ)x0 + ∫
0

t
𝒯(t − s; ρ)ℬ(ρ)u(s)ds, t ≥ 0, (4.5)

where 𝒯(t; ρ) = {e𝒜(ρ)t: t ≥ 0} is the analytic semigroup generated by the operator 𝒜(ρ). 
From (4.4) and (4.5), it follows that

𝒴(t) = ∫
0

t
𝒞(ρ)𝒯(t − s; ρ)ℬ(ρ)u(s)ds, t ≥ 0 . (4.6)

As in Section (3), we obtain a discrete or sampled time version of (4.4). Now let x0 ∈ V, let 

τ > 0 be the sampling time, and consider zero-order hold inputs of the form u(t) = uj, t ∈ [jτ, 

(j + 1)τ),τ), j = 0, 1, 2, …. Setting 𝒳 j = 𝒳( jτ) and 𝒴 j = 𝒴( jτ), j = 0, 1, 2, …, (4.5) and (4.6) 

yield

x j + 1 = 𝒜(ρ)x j + ℬ(ρ)u j, 𝒴 j = 𝒞(ρ)x j, j = 0, 1, 2, …, (4.7)

with 𝒳0 ∈ 𝒱 and 𝒜(ρ) = 𝒯(τ; ρ) ∈ ℒ(𝒱, 𝒱), ℬ(ρ) = ∫ 0
τ 𝒯(s; ρ)ℬ(ρ)ds ∈ ℒ(ℝμ, 𝒱), and 

𝒞(ρ) = 𝒞(ρ) ∈ ℒ(𝒱, ℝν). Note that the operators 𝒜(ρ) and ℬ(ρ) are bounded since 

{𝒯(t; ρ): t ≥ 0} is an analytic semigroup on 𝒱, ℋ, and 𝒱∗ (see [3, 5, 24, 39]). If 

𝒜(ρ):Dom(𝒜(ρ)) ⊆ 𝒱∗ 𝒱∗ has bounded inverse, then 

ℬ(ρ) = ∫ 0
τ 𝒯(s; ρ)ℬ(ρ)ds = A(ρ)−1𝒯(s; ρ)ℬ(ρ) ∣0

τ = (𝒜(ρ) − I)𝒜(ρ)−1ℬ(ρ) ∈ ℒ(ℝμ, 𝒱).

It is shown in [20] and [30] that the solutions of systems (4.4) and (3.2) and (4.7) and (3.5) 

agree for π-a.e. q ∈ Q. It follows that

𝒴(t) = 𝒞(ρ)x(t) = 𝔼[y(t; 𝓆) ∣ ∣ π(ρ)] = 𝔼[C(𝓆)x(t; 𝓆) ∣ ∣ π(ρ)], ∀t ≥ 0, (4.8)

and hence, from (4.8), that
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𝒴 j = 𝒞(ρ)x j = 𝔼[𝒴 j(𝓆) ∣ ∣ π(ρ)] = 𝔼[C(𝓆)x j(𝓆) ∣ ∣ π(ρ)], (4.9)

where in (4.8) and (4.9) 𝔼[ ⋅ π] denotes expectation with respect to the measure π.

5. Approximation and Convergence

In this section, we can now formally state our estimation problem and the sequence of finite 

dimensional approximating problems. We will also state and prove a convergence theorem.

5.1. The Estimation Problem

Assume that data of the form ({u i, j} j = 0
ni − 1

, {y i, j} j = 0
ni )

i = 1

m
, has been given. Determine 

ρ∗ = ( a ∗, b
∗
, θ

∗
) ∈ Ξ, Ξ a compact subset of ℝ2p × Θ ⊂ ℝ2p + r, a ∗ = [ai

∗]
i = 1
p

, 

b
∗

= [bi
∗]

i = 1
p

, which minimizes

J(ρ) = ∑
i = 1

m
Ji(ρ) = ∑

i = 1

m
∑
j = 0

ni
∣ 𝒴i, j({u i, k}

k = 0
ni − 1

, ρ) − y i, j ∣
2

(5.1)

where for i = 1, 2, …, m, 𝒴i, j({u i, k}
k = 0
ni − 1

, ρ) is given by (4.7) with u j = u i, j, j = 0, …, n, i = 

1, 2, …, m, and (4.9).

Recalling the assumption that for i ∈ {1, 2, …, p}, −∞ < α‒ ≤ ai < bi ≤ β‒ < ∞, let 

Q‒ = ∏i = 1
p [α‒, β‒]. Let ρ‒ = ([α‒]i = 1

p , [β‒]i = 1
p θ ) ∈ Ξ,ℋ‒ = Lπ(ρ‒)

2 (Q‒; H) and 𝒱‒ = Lπ ρ‒
2 Q‒; V . Then, 

for N = 1, 2, …, let a N = [ai
N]

i = 1
p

, b
N

= [bi
N]

i = 1
p

 be such that −∞ < α‒ ≤ ai
N < bi

N ≤ β‒ < ∞, 

and let ρN = ([ a N, b
N

, θ ) ∈ Ξ. Set QN = ∏i = 1
p [ai

N, bi
N], ℋN = L

π(ρ‒N)
2 (QN, H), 

𝒱N = L
π(ρ‒N)
2 (QN, V) and let 𝒰N be a finite dimensional subspace of 𝒱N. Let ℒN :ℋ‒ ℋN

be a linear map defined by ℒN(ψ) = ψ ∣
QN for any ψ ∈ ℋ‒ , let 𝒫N :ℋN 𝒰N denote the 

orthogonal projection of ℋN onto 𝒰N, and define 𝒥N :ℋ‒ 𝒰N by 𝒥N = 𝒫N ∘ ℐN.

In addition, recall that we have assumed that for p ∈ Ξ, the probability distributions 

described by π(ρ) are all absolutely continuous; that is π(ρ) ~ f(ρ), where f(ρ) = f(·; ρ) is a 

joint density for the random vector 𝓆.

Noting that in this formulation, 𝒰N is neither a subspace of ℋ‒  nor 𝒱‒ , we define the 

operators 𝒜N(ρ) on 𝒰N to be what are essentially the restrictions of 𝒜(ρ) to the spaces 𝒰N. 

More precisely, we set
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𝒜N(ρ)vN, wN = − 𝒶(ρ; vN, wN) = − ∫
Q

a(q; vN(q), wN(q))dπ(q, ρ)

= − ∫
Q

a(q; vN(q), wN(q)) f (q; ρ)dq = − 𝔼[a(𝓆; vN(𝓆), wN(𝓆)) ∣ ∣ π(ρ)],
(5.2)

where 𝒱N, wN ∈ 𝒰N.

Define the operators ℬN(ρ):ℝμ 𝒰N and 𝒞N(ρ):𝒰N ℝν by

< ℬN(ρ)u, vN >
𝒱∗, 𝒱

= ∫
Q

b(q), vN(q)
V∗, V

dπ(q; ρ)u

= 𝔼[ b(𝓆), vN(𝓆)
V∗, V

∣ ∣ π(ρ)]u,
(5.3)

𝒞N(ρ)vN = ∫
Q

c(q), vN
V∗, V

dπ(q; ρ) = 𝔼[ c(𝓆), vN(𝓆)
V∗, V

∣ ∣ π(ρ)], (5.4)

where vN ∈ 𝒰N, and u ∈ ℝμ.

With these definitions, we can now state the finite dimensional approximating problems.

Assume that data of the form ({u i, j} j = 0
ni − 1

, {y i, j} j = 0
ni )

i = 1

m
, has been given. Determine 

ρN ∗ = ( a N ∗, b
N ∗

, θ
N ∗

) ∈ Ξ, Ξ a compact subset of ℝ2p × Θ ⊂ ℝ2p + r, a N ∗ = [ai
N ∗]

i = 1
p

, 

b
N ∗

= [bi
N ∗]

i = 1
p

, which minimizes

JN(ρ) = ∑
i = 1

m
∑
j = 0

ni
∣ 𝒴i, j

N ({u i, k}
k = 0
ni − 1

, ρ) − y i, j ∣
2
, (5.5)

where in (5.5), for i = 1, 2, …, m, 𝒴i, j
N ({u i, k}

k = 0
ni − 1

, ρ) = 𝒞(ρ)Nxi, j
N  is given by (4.7) and (4.9) 

with u j = u i, j, j = 0, …, ni, i = 1, 2, …, m, 𝒳 j replaced by 𝒳i, j
N ∈ 𝒰N, 𝒜(ρ) replaced by

𝒜N(ρ) = 𝒯N(τ; ρ) = e𝒜N(ρ)τ ∈ ℒ(𝒰N, 𝒰N),

ℬ(ρ) replaced by ℬN(ρ) = ∫ 0
τ e𝒜N(ρ)sℬN(ρ)ds ∈ ℒ(ℝμ, 𝒰N), 𝒞(ρ) replaced by 

𝒞N(ρ) ∈ ℒ(𝒰N, ℝν), and 𝒳i, 0 replaced by 𝒳i, 0
N = 𝒥N𝒳i, 0 ∈ 𝒰N. It follows that for i = 1, 2, 

…, m,

xi, j + 1
N = AN(ρ)xi, j

N + ℬN(ρ)u i, j, 𝒴i, j
N = 𝒞N(ρ)xi, j

N j = 0, 1, 2, …, (5.6)
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with the operators 𝒜N(ρ), ℬN(ρ), and 𝒞N(ρ) appearing in (5.6) are as they have been defined 

above using (5.2)-(5.4).

In the following sections we prove that there exists a subsequence of solutions to the 

sequence of approximating problems that converges to the solution of our original 

estimation/optimization problem.

5.2. A Version of the Trotter-Kato Semigroup Approximation Theorem

Our convergence proof is based on a version of the Trotter-Kato semigroup approximation 

theorem ([5, 21, 26]) that does not require the approximating spaces to be subspaces of the 

underlying infinite dimensional state space. Banks, Burns and Cliff [1] proved just such a 

result but unfortunately they do not state their hypotheses in terms of resolvent convergence 

which is what we require here. Consequently we establish the result in its requisite form 

here.

Let H be a Hilbert space with norm ∣ · ∣ and let {HN} be a sequence of Hilbert spaces, each 

equipped with norm ∣ · ∣N. Assume that for each N ∈ ℕ, UN is a closed (finite dimensional) 

subspace of {HN}. Assume that the operators A on H, and for each N ∈ ℕ, AN on UN, are in 

G(M, λ0) with M and λ0 independent of N; that is they are the infinitesimal generators of 

C0-semigroups S(t) on H and SN(t), on UN, respectively, that are uniformly (uniformly in N) 

exponentially bounded. (We note that if A is obtained from a bounded and coercive 

sesquilinear form and the UN,s are subspaces with AN defined as the restrictions of A to UN, 

then this latter assumption is easily verified [3, 5].)

Theorem 5.1. Let H, HN, and UN be Hilbert spaces as defined above. Let 𝒥N :H HN be an 

operator such that Im(𝒥N) = HN and ∣ 𝒥Nz ∣N ≤ ∣ z ∣. Let 𝒫N :HN UN be the canonical 

projection of HN onto UN and define PN ≔ 𝒫N ∘ ℐN. Let A ∈ G(M, λ0) on H, and 

AN ∈ G(M, λ0) on UN. Suppose that for some λ ≥ λ0,

∣ PNRλ(A)z − Rλ(AN)PNz ∣
N

0, as N ∞, (5.7)

for every z ∈ H, where Rλ(A) = (λI − A)−1 and Rλ(AN) = (λI − AN)
−1

 denote respectively the 

resolvent operators of A and AN at λ. Then

∣ PNS(t)z − SN(t)PNz ∣N 0, as N ∞, (5.8)

in HN, for every z ∈ H uniformly in t on compact t-intervals.

Proof. For ease of exposition and without loss of generality, let λ0 = 0. Then, since S(t)Rλ(A)

and SN(t)Rλ(AN) are both strongly differentiable in t, we have
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d
dt S(t)Rλ(A) = AS(t)Rλ(A) = S(t)ARλ(A) = S(t)[λRλ(A) − I] . (5.9)

Then, using an identity for SN(t)Rλ(AN) analogous to (5.9) , we obtain

d
ds [SN(t − s)Rλ(AN)PNS(s)Rλ(A)]

= SN(t − s)[PNRλ(A) − Rλ(AN)PN]S(s) .
(5.10)

Then, since

SN(t − s)Rλ(AN)PNS(s)Rλ(A)
s = 0
s = t

= Rλ(AN)[PNS(t) − SN(t)PN]Rλ(A),
(5.11)

(5.10) and (5.11) imply that

Rλ(AN)[PNS(t) − SN(t)PN]Rλ(A)

= ∫
0

t
SN(t − s)[PNRλ(A) − Rλ(AN)PN]S(s)ds .

(5.12)

Equation (5.12) and ∣ SN(t − s) ∣ ≤ M (recall λ0 = 0), for any u ∈ H, yield

∣ Rλ(AN)[PNS(t) − SN(t)PN]Rλ(A)u ∣
N

≤ M∫
0

t
∣ [PNRλ(A) − Rλ(AN)PN]S(s)u ∣

N
ds .

(5.13)

By (5.7), we know that the integrand in (5.13) converges to 0 for a fixed s, and also it is 

bounded by 2M2∣u∣/λ, and therefore, by the Lebesgue Dominated Convergence Theorem, 

the right-hand side of (5.13) converges to 0 as N → ∞, where the convergence is uniform in 

t on compact t-intervals.

Letting v = Rλ(A)u, and using the fact that D(A) is dense in H, we have that

∣ Rλ(AN)[PNS(t) − SN(t)PN]v ∣N 0, as N ∞, (5.14)

for all v ∈ H. Then, since ∣ S(t) ∣ ≤ M, (5.7) implies that
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∣ Rλ(AN)SN(t)PNv − SN(t)PNRλ(A)v ∣N
= ∣ SN(t)[Rλ(AN)PNv − PNRλ(A)v] ∣N 0,

(5.15)

and similarly, ∣ SN(t) ∣ ≤ M and ((5.7)) imply that

∣ Rλ(AN)PNS(t)v − PNS(t)Rλ(A)v ∣N
= ∣ [Rλ(AN)PN − PNRλ(A)]S(t)v ∣N 0 .

(5.16)

Combining (5.15), (5.16), and the triangle inequality we get

∣ Rλ(AN)[SN(t)PN − PNS(t)]v + [PNS(t) − SN(t)PN]Rλ(A)v ∣N 0, (5.17)

as N → ∞. Then, because of (5.14), and again by the triangle inequality, we obtain that

∣ [PNS(t) − SN(t)PN]Rλ(A)v ∣N 0, as N ∞ . (5.18)

Letting w = Rλ(A)v, we have w ∈ Dom(A2); and since Dom(A2) is dense in H, it follows from 

(5.7), (5.17) and (5.18) that

∣ SN(t)PNz − PNS(t)z ∣N 0, as N ∞,

for all z ∈ H uniformly in t on compact t-intervals. □

5.3. Application to the Density Estimation Problem

Let {ρN}, ρ ∈ Ξ be such that fN(q) → f(q), for almost every q ∈ Q, where fN(q) = f(q; ρN) 

and f(q) = f(q; ρ). Let ℋ‒ , 𝒱‒ , VN, 𝒰N, ℐN, ℋ‒ HN, 𝒫N :ℋN 𝒰N, and 𝒥N :ℋ‒ 𝒰N be as 

they were defined earlier. Set 𝒜 = 𝒜(ρ) and consider it to be an operator on ℋ‒  and 𝒱‒  by 

extending f(·, ρ), which is defined on Q, to Q‒ by setting it equal to zero on Q‒ ∖ Q and let 

𝒜𝒩 = 𝒜N(ρN). Then it follows from Assumptions (i) - (iii) that 𝒜 is in G(M, λ0) on ℋ‒  and 

𝒜𝒩 is in G(M, λ0) on ℋN with M and λ0 independent of N.

In the statement of Theorem (5.1), set H = ℋ‒ , HN = ℋN, UN = 𝒰N, PN = 𝒥N, A = 𝒜, and 

AN = 𝒜N. To apply Theorem (5.1) and conclude that in this case, (5.8) holds, we need only 

verify (5.7). In order to do this, we require the following two additional assumptions

i. There exist positive real numbers γ and δ such that for any ρ ∈ Ξ, we have 0 < γ 
≤ f(q; ρ) ≤ δ < ∞ for π(ρ)-a.e. q ∈ Q.

ii. For all w ∈ 𝒱‒ , there exists uN ∈ 𝒰N such that uN − 𝒥Nw
𝒱N 0 as N → ∞.

We are now able to prove the following theorem.
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Theorem 5.2. Let assumptions (i) - (v) be satisfied and let {ρN}, ρ ∈ Ξ be such that fN(q) 

→ f(q), for almost every q ∈ Q‒, where fN(q) = f(q; ρN) and f(q) = f(q; ρ). Then, with the 

definitions above, the conditions of Theorem (5.1) (and in particular the resolvent 

convergence specified in (5.7)) are satisfied. Consequently, it follows that

𝒯N(t; ρN)PNz − 𝒥N𝒯(t; ρ)z
ℋN 0, as N ∞, (5.19)

for every z ∈ ℋ, uniformly in t on compact t-intervals where 𝒯N = {𝒯N(t; ρN): t ≥ 0} is the 

semigroup on ℋN(ρ) given by 𝒯N(t; ρN) = e𝒜N(ρN)t and 𝒯 = {𝒯(t; ρ): t ≥ 0} is the semigroup 

on ℋ and ℋ‒  given by 𝒯(t; ρ) = e𝒜t = e𝒜(ρ)t.

Proof. First, note that if we can show resolvent convergence for every z ∈ 𝒱‒ , then since 𝒱‒  is 

dense in ℋ‒ , and 𝒥NRλ0
(𝒜) and Rλ0

(𝒜N)𝒥N are uniformly bounded, the desired resolvent 

convergence for every z ∈ ℋ‒  will have been demonstrated. In what follows, for any 

ρ = ( a , b , θ ) ∈ Ξ, f (·; ρ) is defined on Q = ∏i = 1
p [ai, bi], but it can be extended to be 

defined on Q‒ by setting it equal to zero on Q‒ ∖ Q. We will use this fact frequently below 

without further remark.

Let z ∈ 𝒱‒  and define w = Rλ0
(𝒜)z, and wN = Rλ0

(𝒜N)𝒥Nz. Suppose also that uN ∈ 𝒰N be as 

in Assumption (v) for w = Rλ0
(𝒜)z.

Then, by triangle inequality, we have

𝒥Nw − wN
𝒱N ≤ 𝒥Nw − uN + uN − wN

𝒱N

≤ 𝒥Nw − uN
𝒱N + uN − wN

𝒱N .
(5.20)

Thus, (5.20), Assumption (v) and the continuous embedding of 𝒱N in ℋN imply that it is 

enough to show that uN − wN
𝒱N 0 as N → ∞. Let zN = wN – uN. Then, since 

wN ∈ 𝒰N ⊂ 𝒱N),

𝒜 ρN; wN, zN = −𝒜NwN, zN
ℋN

= (λ0I − 𝒜N)Rλ0
(𝒜N)𝒥Nz, zN

ℋN
− λ0 wN, zN

ℋN

= 𝒥Nz, zN
ℋN − λ0 wN, zN

ℋN .

(5.21)

Also, since w ∈ Dom(𝒜),
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𝒶(ρ; w, ℐN +zN) = −𝒜w, ℐN +zN
ℋ‒

= (λ0I − 𝒜)Rλ0
(𝒜)z, ℐN +zN

ℋ‒
− λ0 w, ℐN +zN

ℋ‒

= z, ℐN +zN
ℋ‒ − λ0 w, ℐN +, zN

ℋ‒ ,

(5.22)

where 𝒥N+
 denotes the Moore-Penrose generalized inverse [11] of 𝒥N. We note that for 

ψ ∈ ℋN, 𝒥N+
ψ  is the function in ℋ‒  that agrees with ψ on QN and is zero on Q‒ ∖ QN. Then, 

from (5.21) and (5.22), we obtain

𝒶(ρN; wN, zN) − 𝒶(ρ; w, ℐN +zN) = − ℐNz, zN
ℋN − λ0 wN, zN

ℋN

− z, ℐN +zN
ℋ‒ + λ0 w, ℐN +zN

ℋ‒ .
(5.23)

Recalling Assumptions (i) and (ii) for the form α(·; ·, ·) on V × V, let α0, μ0, λ 0 denote the 

boundedness and coercivity coefficients for the forms 𝒜( ⋅ ; ⋅ , ⋅ ). Then, using boundedness, 

coercivity, Assumptions (iv) and (v), Young’s and the Cauchy Schwarz Inequalities, and the 

continuous embeddings of the space V in the space H (i.e. that there exist a constant k such 

that ∣ · ∣H ≤ k∥ · ∥V) and (5.23), for any ε > 0, we obtain
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µ0 zN
𝒱N ≤ 𝒜(ρN; zN, zN) + λ 0 ∣ zN ∣ℋ

N

= 𝒜(ρN; wN, zN) − 𝒶(ρN; uN, zN) + λ 0 ∣ zN ∣
ℋN
2

= 𝒜(ρN; wN, zN) − 𝒶(ρ; w, ℐN+
zN)

+ 𝒜(ρ; w, ℐN+
zN) − 𝒶(ρN; uN, zN) + λ 0 ∣ zN ∣

ℋN
2

= ℐNz, zN
ℋN − λ 0 wN, zN

ℋN − z, ℐN+
zN

ℋ‒
+ λ 0 w, ℐN+

zN
ℋ‒

+ ∫
Q‒

(a(q; w, zN) f (q) − a(q; uN, zN) f N(q))dq + λ 0 ∣ zN ∣
ℋN
2

= ∫
Q‒

( z, zN
H( f N(q) − f (q))dq

+ λ 0∫
Q‒

( w, zN
H f (q) − uN, zN

H f N(q))dq

+ ∫
Q‒

(a(q; w, zN) f (q) − a(q; uN, zN) f N(q))dq

= ∫
Q‒

( z, zN
H( f N(q) − f (q))dq + λ 0∫

Q‒
w, zN

H( f (q) − f N(q))dq

+ λ 0∫
Q‒

w − uN, zN
H f N(q)dq + ∫

Q‒
(a(q; w, zN)( f (q) − f N(q))dq

+ ∫
Q‒

a(q; w − uN, zN) f N(q)dq

≤ ∫
Q‒

∣ z ∣H ∣ zN ∣H f N(q) − f (q) dq

+ λ 0∫
Q‒

∣ w ∣H ∣ zN ∣H f (q) − f N(q) dq

+ λ 0∫
Q‒

∣ w − uN ∣H ∣ zN ∣H f N(q)dq + α0∫
Q‒

w V zN
V ∣ f (q) − f N(q) ∣ dq

+ α0∫
Q‒

w − uN
V zN

V f N(q)dq

≤ εk2

2α ∫
QN zN

V
2 f N(q)dq + 1

2ε∫Q‒
∣ z ∣H

2 ∣ f N(q) − f (q) ∣2dq

+
λ 0εk2

2α ∫
QN zN

2
V f N(q)dq +

λ 0k2

2ε ∫
Q‒

w V

2
∣ f N(q) − f (q) ∣2dq

+
λ 0εk2

2 ∫
QN zN

V
2 f N(q)dq +

λ 0k2

2ε ∫
QN w − uN

V
2 f N(q)dq

+
α0ε
2α ∫

QN zN
V
2 f N(q)dq +

α0
2ε∫Q‒

w V

2
∣ f N(q) − f (q) ∣2dq

+
α0ε
2 ∫

QN zN
V
2 f N(q)dq +

α0
2ε∫QN w − uN

V
2 f N(q)dq

.

(5.24)
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Then, letting c = μ0 − ε
2α k2(λ 0 + 1) + (α + 1)(λ 0k2 + α0) , it follows from (5.24) that

c zN

𝒱N

2

≤ 1
2ε∫Q‒

∣ z ∣H
2 f N(q) − f (q) ∣2 dq +

λ 0k2 + α0
2ε ∫

QN w − uN

V

2

f N(q)dq

+
λ 0k2 + α0

2ε ∫
Q‒

w
V

2

∣ f N(q) − f (q) ∣2 dq

= 1
2ε∫Q‒

∣ z ∣H
2 ∣ f N(q) − f (q) ∣2 dq +

λ 0k2 + α0
2ε 𝒥Nw − uN

𝒱N

2

+
λ 0k2 + α0

2ε ∫
Q‒

w
V

2

∣ f N(q) − f (q) ∣2 dq

.

(5.25)

Choosing ε positive, but sufficiently small in (5.25), it follows from Assumption (v) and the 

hypotheses of the theorem that

wN − uN
𝒱N = zN

𝒱N 0 as N ∞ . (5.26)

Thus (5.26) together with (5.20), and Assumption (v) yield resolvent convergence and the 

theorem is proved. □

We note that in the proof of Theorem (5.2) we were in fact able to establish resolvent 

convergence in the 𝒱N norm. Consequently we may conclude that the semigroup 

convergence in (5.19) is in the 𝒱N norm as well. Moreover, it is not difficult to establish the 

following corollary to Theorem (5.2).

Corollary 5.1. Under the same hypotheses of Theorem (5.2), we have

xi, j
N (ρN) − 𝒥Nxi, j(ρ)

𝒱N
0, as N ∞,

∣ 𝒴i, j
N (ρN) − 𝒴i, j(ρ) ∣

ℝν 0 as N ∞,
(5.27)

for every i = 1, 2, …, m, uniformly in j, for j = 0, 1, 2,…, ni, where 𝒳i, j
N (ρN) and 𝒴i, j

N (ρN) are 

given in (5.6) and 𝒳i, j(ρ) and 𝒴i, j(ρ) are given in (4.7).

The assumption that the feasible parameter set Ξ is closed and bounded in ℝ2p + r, together 

with (5.27) in the statement of Corollary (5.1) and Theorem (2.1) then yield the following 

result.

Theorem 5.3. If, in addition to Assumptions (i)-(v), we assume that the maps ρ ↦ f (q; ρ) 

from Ξ to ℝ are continuous for π(ρ) a.e. q ∈ Q‒, then each of the approximating estimation 
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problems admits a solution, ρN*. Moreover, the sequence {ρN*} has a convergent 

subsequence, {ρN*} with ρNk* → ρ* and ρ* a solution to the original estimation problem.

It is also possible to establish a consistency result for the estimator ρ∗ = ( a ∗, b
∗
, θ

∗
) ∈ Ξ. 

We require the following additional assumptions:

(a) The measurement noise {εj,i} is i.i.d. with respect to a probability space {Ω, Σ, P} with 

𝔼[ε j, i P] = 0 and Var[εj,i∥P] = σ2,

(b) The feasible set of parameters Ξ is compact (i.e. closed and bounded since it is finite 

dimensional) and has nonempty interior,

(c) For i = 1, 2, …, ni = n and nτ = T for some positive integer n and some T > 0, where τ is 

the sampling time defined in Section 3,

(d) That y i, j = 𝒴i, j({u i, k}
k = 0
ni − 1

, ρ0) + ε j, i, for some ρ0 ∈ int{Ξ}, where for i = 1, 2, …, m, 

𝒴i, j({u i, k}
k = 0
ni − 1

, ρ) is given by (4.7) with u j = u i, j, j = 0, …, ni, i = 1, 2, …, m, and (4.9), and

(e) For each i = 1, 2, …, m, ρ0 ∈ Ξ is the unique minimizer of Ji,0 in Xi where

Ji, 0(ρ) = σ2 + ∫
0

T
(𝒴(t; u i, ρ0) − 𝒴(t; u i, ρ))2dt, (5.28)

and 𝒴(t; u i, ρ) is given by (4.4) -(4.6) with u = u i.

Then a straight forward application of Theorem 4.2 in [7] can then be used to establish the 

following lemma and theorem (see [32]).

Lemma 5.1. If in addition to Assumptions (i)-(iv) and (a) (e) above we assume that the maps 

ρ ↦ f(q; ρ) from Ξ to ℝ are continuous for π(ρ) a.e. q ∈ Q‒, then there exists an event A ∈ Σ 
with P(A) = 1 such that for all ω ∈ A and J as given in (5.1) we have

1
m ∑

i = 1

n
{1

nJi(ρ) − Ji, 0(ρ)} 0,

as n, m → ∞ and τ → 0, with nτ = T, uniformly in ρ for ρ ∈ Ξ, where Ji is given by (5.1) 

and Ji,0 by (5.28).

Theorem 5.4. (Consistency of the estimator ρ*) Let ρ* ∈ Ξ be as defined in (5.1) in Section 

5.1. Then under the assumptions of Lemma (5.1) the estimator ρ∗ = ( a ∗, b
∗
, θ

∗
) ∈ Ξ is 

consistent for ρ0. That is ρ* → ρ0 in probability with repsect to the probability measure P, 

as m, n → ∞, and τ → 0 with ητ = T.
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6. Examples and Numerical Results

6.1. The Adjoint Method

The approximating optimization problems are solved numerically by using an iterative 

gradient-based scheme. Once a basis for the space N is chosen, matrix forms of the operators 

𝒜N, ℬN, and 𝒞N can be computed. The gradient of JN(ρ), with respect to the 2p + r 
parameters in ρ can be computed accurately (in fact exactly with the exception of finite 

precision arithmetic round-off) and efficiently (which is especially important if the 

dimension of the approximating system (5.6) and/or the number of parameters is large) using 

the adjoint method (see [23]). For each i = 1, …, m, set vi, j
N = 2[𝒞N]

T
(𝒞N𝒳i, j

N − y i, j) ∈ ℝKN
, 

j = 0, …, ni where KN is the number of basis elements for 𝒰N. Then for each i = 1, …, m, 

the adjoint systems are defined to be

zi, j − 1
N = [𝒜N]Tzi, j

N + vi, j − 1
N , zi, ni

= vi, ni
N , j = ni, ni − 1, …, 2, 1 . (6.1)

The gradient of JN at ρ = ( a , b , θ ) can then be computed from

∇ JN(ρ) = ∑
i = 1

m
∑
j = 1

ni
[zi, j

N ]T ∂𝒜N

∂ρ xi, j − 1
N

− (𝒜N)−1 ∂𝒜N

∂ρ (𝒜N)−1(𝒜N − I)ℬNu i, j − 1

− ∂𝒜N

∂ρ ℬNu i, j − 1 − (𝒜N − I)∂ℬN

∂ρ u i, j − 1

+ ∑
i = 1

m
∑
j = 0

ni
(𝒴 j

N − y i, j)
T ∂𝒞N

∂ρ xi, j
N .

(6.2)

Using (6.1) and (6.2) to compute the gradient requires the calculation of the tensor ∂𝒜N

∂ρ . 

This can be done using the sensitivity equations. For t ≤ 0 set ΦN(t) = e𝒜N(t) from which 

differentiation yields

Φ
. N(t) = 𝒜NΦN(t), ΦN(0) = I . (6.3)

Then, setting Ψ N(t) = ∂ΦN(t)
∂ρ , differentiating (6.3) with respect to ρ, and interchanging the 

order of differentiation, we obtain

Ψ
. N(t) = 𝒜NΨN(t) + ∂𝒜N

∂ρ ΦN(t), ΨN(0) = 0 . (6.4)
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Combining (6.3) and (6.4), and solving the resulting system, we obtain

ΨN(t)
ΦN(t)

= exp
𝒜N ∂𝒜N ∕ ∂ρ

0 𝒜N
τ

0
I

(6.5)

Setting t = τ in (6.5), we obtain that ∂𝒜N

∂ρ = Ψ N(τ).

To illustrate our approach, we consider the case of a one dimensional heat/diffusion equation 

on the interval [0, 1] with random (thermal) diffusivity and two different sets of boundary 

conditions. Consider the partial differential equation, boundary conditions and output 

operator given by

∂x
∂t (t, η) = q1

∂2x
∂η2 (t, η), 0 < η < 1, t > 0, (6.6)

ΓDx(t, ⋅ ) = x(t, 0) = 0, t > 0, (6.7)

ΓRx(t, ⋅ ) = q1
∂x
∂η (t, 0) − x(t, 0) = 0, t > 0, (6.8)

Γ1x(t, ⋅ ) =
q1
q2

∂x
∂η (t, 1) = u(t) t > 0, (6.9)

x(0, η) = 0, 0 < η < 1, (6.10)

y(t) = x(t, η0), t > 0, (6.11)

where 0 < η0 < 1. In the examples below, we consider the parameterized family of 

probability density functions defined as follows.

Definition 6.1. Let φ(q; θ), q ∈ ℝn be a member in an exponential family [12], and let Φ 
denote its cumulative distribution function. Let θ represent a vector of parameters, and let 

D ⊂ ℝn be a bounded region to which φ will be restricted. Then define ΦD(θ) = ∫D φ(q; 

θ)dq. Then the family of pdfs, f (·, ρ) given by

f (q; ρ) =
φ(q; θ)χD(q)

ΦD(θ) = 1
ΦD(θ)h(q)c(θ)exp ∑

i = 1

k
wi(θ)ti(q) χD(q)

where the parameters ρ include the parameters θ and parameters a  and b  to describe the 

domain D, is called a truncated exponential family.
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It is clear that this family of densities satisfies Assumption (iv) and the hypotheses of 

Theorem (5.1).

All of the numerical results presented here use simulation data. Our studies involving actual 

experimental/clinical data are discussed elsewhere (see [32]). The simulated data was 

generated by first sampling the target distribution to obtain 100 samples q of 𝓆. A spline 

based Galerkin approximation to the system (6.6) -(6.11) using a 128 equally spaced point 

grid on [0,1] was then solved using each 𝓆-sample. The resulting 100 output signals were 

then averaged at each time point. The approximating estimation problems were all solved on 

either MAC or PC laptops using the Matlab optimization toolbox routine FMINCON for 

constrained optimization. Gradients were computed using either FMINCON built-in finite 

differencing or the adjoint method, (6.1)-(6.5). Which method was used had only a 

negligible effect on the results. The input signal used was u(t) = ∣cos(t)∣χ[0,2](t), t ∈ [0, 20], 

and the sampling interval was τ = 0.1. In all of our examples below, the admissible 

parameter space Q is assumed to be either in ℝ+ in the case of the uni-variate examples, or 

in the fist quadrant of the plane ℝ2 in the bivariate examples. Consequently when the 

approximating optimization problems were solved, the lower bounds for the supports of the 

random parameters, a and c, were constrained to be strictly positive. This is based on the 

requirements of the physical model (6.6)-(6.11) and the assumption that properties (i)-(iii) in 

Section 3 hold.

6.2. Examples 6.1,6.2 and 6.3; One Random Parameter; Truncated Uniform, Exponential 
and Normal Distributions

In this series of examples we consider the system (6.6),(6.7),(6.9)-(6.11) with q1 random and 

q2 = 1. In this case we have q = q1 ∈ Q = [a, b], W = [φ ∈ H2(0, 1), ΓDφ = 0}, 

H = HL
1(0, 1) = {φ ∈ H1(0, 1), ΓDφ = 0}, Dom(A(q)) = [φ ∈ V : Γ1φ = 0}, and Γ(q) = Γ1. It 

follows that

a(q; φ, ψ) = q∫0
1

φ′(η)ψ ′(η)dη, φ, ψ ∈ V ,

and ⟨b(q), ψ⟩V*,V = ⟨b, ψ⟩V*,V = ψ(1) = δ(· − 1), ψ ∈ V, and ⟨c(q), ψ⟩V*,V = ⟨c, ψ⟩V*,V = 

ψ(1/3), ψ ∈ V, where in this case η0 = 1/3. Standard arguments [3, 5] show that 

Assumptions (i)-(iii) are satisfied.

To carry out the finite dimensional discretization, we let n, m be positive integers and set N 
= (n, m). In this case we have either D = [a, b] (uniform and normal) or D = [0, R] 

(exponential). In what follows we describe the q or Q discretization for the uniform and 

normal cases; the exponential is similar. The basis for the approximating subspaces 𝒰N were 

taken to be tensor products of the standard linear spline basis elements φi
n corresponding to 

the uniform mesh {0, 1
n , 2

n , …, n − 1
n , 1} on [0, 1], and the characteristic function basis χ j

m for 

the interval [a, b]. The jth element corresponds to the jth sub-interval 

[a + ( j − 1)b − a
m ), a + jb − a

m ), j = 1, 2, …, m. In this way 𝒰N = span{ξi, j
N }, i = 1, 2, …, n, j = 1, 
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2, …, m where ξi, j
N (η, q) = φi

n(η)χ j
m(q), η ∈ [0, 1], q ∈ [a, b] with dim(𝒰N) = nm. Using 

standard estimates [29] it is not difficult to show that Assumption (v) holds.

Re-numbering ξi, j
N,s so that ξi, j

N = ξk
N where k = (i − 1)n + j and letting Ψk

N = [ψ i
N]

i = 1
nm ∈ ℝnm, 

the matrix representation for the operators 𝒜N are given by [𝒜N] = − (MN)−1
KN with

Mr, s
N = Mr, s

N (a, b, θ) = ξr
N, ξs

N
ℋ

= ∫a

b∫0
1

ξr
Nξs

N f (q; a, b, θ)dηdq = ∫a

b
χ j

mχl
m f (q; a, b, θ)dq∫0

1
φi

nφk
ndη,

Kr, s
N = Kr, s

N (a, b, θ) = 𝒜(q; ξr
N, ξs

N) = ∫a

b
q∫0

1 ∂ξr
N

∂η

∂ηs
N

∂η f (q; a, b, θ)dηdq

= ∫a

b
qχ j

mχl
m f (q; a, b, θ)dq∫0

1
φi

n′φk
n′dη,

where r = (j − 1)n + i, s = (l − 1)n + k, i, k = 1, 2, …, n, j, l = 1, 2, …, m.

We also have

Br
N = Br

N(a, b, θ) = ∫a

b
ξr
N(1, q) f (q; a, b, θ)dq = φi

n(1)∫a

b
χ j

m f (q; a, b, θ)dq,

Cs
N(a, b, θ) = ∫a

b
ξs
N(1 ∕ 3, q) f (q; a, b, θ)dq − φk

n(1 ∕ 3)∫a

b
χl

m(q) f (q; a, b, θ)dq,

r, s = 1, 2, …, nm, r = (j − 1)n + i, s = (l − 1)n + k, i, k = 1, 2, …, n, j, l = 1, 2, …, m.

With the density f = f0(·; ρ) = f0(·; (a, b, θ)) as given in Definition (6.1) above, if we define

f 1(α, β; ρ) = ∫α

β
f (q; ρ)dq and f 2(α, β; ρ) = ∫α

β
q f (q; ρ)dq,

it is a straightforward, albeit somewhat tedious, exercise to compute the partial derivatives 
∂ f i
∂α , 

∂ f i
∂β , 

∂ f i
∂θ , 

∂ f i
∂a , 

∂ f i
∂b , i = 0, 1, 2. These partial derivatives show up in the matrices that 

appear in the adjoint equations (6.1)-(6.5). We tested our scheme on truncated uniform (ρ = 

(a, b)), exponential (ρ = (R, θ)) and normal (ρ = (a, b, μ, σ)) distributions. Our results are 

shown in Table (6.1) and Figure (6.1) below. In panels (a) - (c) of Figure (6.1), we have 

plotted the converged estimated population models together with the data and the 75% 

credible band for the truncated uniform, exponential and normal densities. The credible 

bands can be obtained directly from the solution to the population model. Indeed, 𝓆 is 

sampled using the estimated distribution and then C(𝓆)𝒳 j
N( ⋅ , 𝓆) is evaluated at the sample 

q’s where 𝒳 j
N is given by (5.6). Now the q dependence of the solution to the population 
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model is only valid π almost everywhere and our convergence framework is an L2 (in q) 

theory. Consequently, pointwise evaluation is, strictly speaking, undefined. However, the 

results appear to be useful so we have included them. We are currently working on an 

extension of the results presented here that involves introducing parabolic regularization in 

q. This will potentially allow us to justify pointwise evaluation in q of the population model 

to obtain credible band. It is interesting to note that the credible band for the exponential 

distribution is quite wide, almost to the point of making the population model not that 

useful. This is because the exponential distribution, especially one with a mean and variance 

of μ = 1/θ = 3, has a rather “fat” tail. Panels (d) and (f) of Figure (6.1) show the converging 

estimated pdfs for the truncated exponential and normal distributions, respectively. Panel (e) 

shows how the output of the population model compares to the data when the resolution of 

the finite element discretizations of q and η and the truncation point of the densities are 

varied. It appears from the figure that it is the q discretization that determines the rate of 

convergence, while a rather coarse η discretization seems to suffice. We believe that this 

explains the slow convergence of θ (the exponential parameter) and σ (the standard 

deviation of the normal) observed in Table (6.1) and panel (f) of Figure (6.1). The truncation 

of the density appears to have only a negligible effect. We are currently investigating 

whether using smoother first order splines for the q elements produces improved estimates 

and more rapid convergence.

6.3. Example 6.4; Two Random Parameters; Truncated Bi-variate Normal Distribution

In this example we consider the system (6.5)-(6.11), but instead of the Dirichlet boundary 

condition (6.2) at η = 0, we take the Robin boundary condition (6.3) at η = 0. In this case, q 
= [q1, q2] is the vector of random parameters with q ∈ D = Q = [a, b] × [c, d], H = L2(0, 1), 

V = H1(0, 1), W = H2(0, 1), and Dom(A(q)) = {φ ∈ H2(0, 1) : ΓRφ = 0, Γ1φ = 0} and Γ(q) = 

Γ1. The sesquilinear form on V × V is given by a(q; φ, ψ) = q1∫ 0
1φ′ψ ′dη + φ(0)ψ(0) with < 

b(q), ψ >V*,V = q2ψ(1) = q2ψ(· − 1), ψ ∈ V, and < c(q), ψ >V*,V=< c,ψ >V*,V = ψ(0), ψ ∈ 
V where we have set η0 = 0. In this case N = (n, m1, m2), where n is again the level of 

discretization of the space variable η and mi is the level of discretization of qi, i = 1, 2. Once 

again the approximating subspaces were constructed using tensor products, 

𝒰N = span{ξi, j, k
N }, i = 0, 1, 2, …, n, j = 1, 2, …, m1, k = 1, 2, …, m2 where 

ξi, j, k
N (η, q1, q2) = φi

n(η)χ j
m1(q1)χk

m2(q2), η ∈ [0, 1], q1 ∈ [a, b], q2 ∈ [c, d] with 

dim(𝒰N) = (n + 1)m1m2.

In this example the truncated exponential family was based on the bivariate normal. Once 

again, it is possible to compute all the partial derivatives (although of course their evaluation 

requires the numerical evaluation of single and double integrals) that are required to form 

the matrices that appear in the state and adjoint equations (6.1)-(6.5). We obtained simulated 

data by generating samples for 𝓆 from a N(μ‒, Σ‒) distribution with μ‒ = 12
10  and Σ‒ = 9 3

3 5 .

Our results are shown in Table (6.2) and Figure (6.2), where it can be seen that we obtained 

reasonably good approximations to the actual parameters that we used to simulate the data. 
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We parameterized the covariance matrix as Σ = LTL, where the 2 × 2 matrix L is upper 

triangular with L11 and L22 both positive so as to guarantee that at each step in the 

optimization, Σ is positive definite symmetric. The plot of the optimal joint density in the 

left hand panel of Figure (6.2) correspond to n = 16 and m1 = m2 = 8. In the right hand panel 

of Figure (6.2) we have plotted the output of the fit population model and the 75% credible 

band. Once again, we believe that the rate of convergence could be improved by using linear 

splines rather than piece-wise constant elements to discretize the random parameters q.

7. Concluding Remarks

We are currently working on a number of applications and extensions of the results 

presented here. Specifically, we are looking at applying our approach to actual experimental 

and clinical BrAC and TAC data collected in both the lab/clinic and the field using two 

different transdermal alcohol biosensors from a number of different individuals that include 

several drinking episodes occurring over a time period of several days. We are developing 

deconvolution schemes based on population models fit using the approach discussed here 

that, given an output signal, will provide a population based estimate for the input together 

with credible bands obtained directly from the deconvolved input signal and not requiring 

simulation. We are also looking at extensions of the ideas presented here to the solution of 

the LQR and LQG compensator problems wherein the infinite dimensional linear regularly 

dissipative dynamics and quadratic performance index involve random parameters.

In our treatment here, we assumed that the probability measures describing the distribution 

of the random parameters were defined in terms of parameterized families of joint density 

functions. We are looking at developing numerical schemes and an associated convergence 

theory for estimating the shape of the density directly. We also hope to be able to apply the 

convergence theory based on the Prohorov metric on a space of measures developed in [7] 

more directly to the class of problems that we have discussed here. More precisely, we 

would like to be able to eliminate the assumption that the measures are defined in terms of a 

density, and estimate the measure directly. We believe that such a theory may be possible by 

assuming that our approximating subspaces are required to satisfy additional regularity (i.e. 

smoothness) assumptions; in particular that they are required to be contained in the domain 

of the operator. Then by making use of a slightly different version of the Trotter-Kato 

semigroup approximation theorem (see, for example, [1]) we believe it may now be possible 

to verify the hypotheses of the more general convergence theorem established in [7] for the 

estimation of the probability measures directly, rather than by estimating an associated 

density.
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Figure 6.1: 
Top row, starting from the left: Data, converged estimated population model and 75% 

credible band for (a) Example 6.1 Truncated uniform distribution; (b) Example 6.2 

Truncated exponential distribution; (c) Example 6.3 Truncated normal distribution. Bottom 

row, starting from the left: (d) Example 6.2 Converged pdfs for truncated exponential 

distribution; (e) Example 6.2 Data and Estimated population model for various values of R, 
n and m; (f) Example 6.3 Converged pdfs for truncated normal distribution.
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Figure 6.2: 
Left hand panel: Example 6.4 Estimated bivariate normal joint density with n = 16 and m1 = 

m2 = 8; Right hand panel: Example 6.4 Data, estimated population model and 75% credible 

band for truncated bivariate normal distribution.
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Table 6.1:

Convergence results for Examples 6.1, 6.2 and 6.3; estimation of the parameters in truncated uniform, 

exponential and normal distributions.

N Uniform Exponential Normal

n m a* b* θ* R* a* b* μ* σ*

4 4 1.76 4.27 2e-5 3.61 2.61 5.44 4.05 0.62

8 8 1.91 4.05 4e-5 3.81 2.29 5.42 4.01 0.40

16 16 1.94 4.00 0.20 4.34 2.17 5.42 4.01 0.37

32 32 1.95 3.99 0.30 5.95 2.15 5.42 4.00 0.35

64 64 1.96 3.99 0.30 11.08 2.14 5.42 4.00 0.35

True Values 2 4 1/3 — — — 4 0.25
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Table 6.2:

Convergence results for Example 6.4; estimation of the parameters in truncated bivariate normal distribution.

n m1 m2 a* b* c* d* μ* σ*

4 8 8 5.88 18.15 4.85 14.63
11.72
9.88

12.13 5.76
5.76 7.35

8 8 8 5.67 18.35 5.17 14.46
11.68
9.87

10.15 4.04
4.04 5.97

16 8 8 5.79 18.17 5.06 14.66
11.67
9.86

9.29 3.03
3.03 5.21

Commun Appl Anal. Author manuscript; available in PMC 2020 January 18.


	Abstract
	Introduction
	Estimation of Random Discrete Time Dynamical Systems
	Abstract Parabolic Systems with Unbounded Input and Output
	The Discrete Time Formulation
	Systems with Boundary Input

	Random Regularly Dissipative Operators and Their Associated Semigroups
	Approximation and Convergence
	The Estimation Problem
	A Version of the Trotter-Kato Semigroup Approximation Theorem
	Application to the Density Estimation Problem

	Examples and Numerical Results
	The Adjoint Method
	Examples 6.1,6.2 and 6.3; One Random Parameter; Truncated Uniform, Exponential and Normal Distributions
	Example 6.4; Two Random Parameters; Truncated Bi-variate Normal Distribution

	Concluding Remarks
	References
	Figure 6.1:
	Figure 6.2:
	Table 6.1:
	Table 6.2:

