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Abstract

We considered the properties of the fluorescence anisotropy when the cylindrical symmetry of the 

fluorescence emission field is absent due to the effects of polarized light quenching. By light 

quenching we mean stimulated emission by a second longer wavelength pulse following the 

excitation pulse. In these experiments one observes the excited state population which remains 

following stimulated emission. When cylindrical symmetry is not present the generally known 

definition of the emission anisotropy cannot be applied. A generalized theory of anisotropy was 

described previously by Jabloński. However, we found this formalism to be inadequate for the 

expected experimental results of light quenching. An extension of this concept, which we call an 

anisotropy vector, appears capable of describing the expected orientation under all conditions of 

light quenching. We found that the anisotropy vector can exist within a plane defined by two 

projections rH and rV. The projection rV is comparable to the classical steady state or time-

dependent anisotropy with cylindrical symmetry. The projection rH has no direct analogue in 

classical anisotropy theory. The interesting behavior of the anisotropy vector is that all possible 

points (rH, rV) are placed inside a certain triangle, which we call a triangle of anisotropy. For 

symmetrical molecules, or for molecules which display isotropic depolarizing rotations, the 

anisotropy vector is expected to decay on the anisotropy triangle along straight lines towards the 

origin. The concept of the anisotropy vector should allow predictions of the effect of polarized 

light quenching on the anisotropy decays, and suggests experimental methods to study anisotropy 

decays in the presence of light quenching. Further work is needed to apply these concepts to 

anisotropic rotators.

I. INTRODUCTION

To evaluate the fluorescence anisotropy one measures the intensity of the emission through a 

polarizer. Usually vertically polarized excitation and right-angle observation are chosen (Fig. 

1). Then two measurements of the fluorescence intensity, I‖ and I⊥, are carried out with the 

observation polarizer oriented either parallel (‖) or perpendicular (⊥) to the direction of the 

electric vector of the polarized excitation. The emission anisotropy is then calculated as1,2
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r =
I − I⊥

I + 2I⊥
. (1)

The validity of this method of measurement of the emission anisotropy is limited to the 

cases when the emission field is cylindrically symmetrical, that is, where the value of I⊥ 
remains constant for the observation detector placed anywhere in the x – y plane (Fig. 1). 

The symmetry properties of the emission field are determined by the symmetry of the 

observed spatial dependence of the intensity of the luminescence passed through the linear 

polarizer. In this sense, due to the cos2 transmission law of the polarizer, the symmetry of 

the emission field does not always have to be the same as the symmetry of the spatial 

distribution of the emission transition dipoles. Cylindrical symmetry of the emission field is 

always observed when an isotropic solution of the fluorophore is excited by a linearly 

polarized light. Under these conditions one-photon excitation generates values of r 
belonging to the interval (−0.2, 0.4). Values of r lying outside this interval may be observed 

when the excitation is a twoor three-photon process.3 The anisotropy of the fluorescence 

emission excited by natural or circularly polarized light is also related to two intensity 

components, I‖ and I⊥. Here the resulting emission field is also cylindrically symmetrical, 

but the definition of r slightly differs from Eq. (1),

rn =
I − I⊥

2I + I⊥
. (2)

The origin of this difference is that for natural or circularly polarized excitation the 

symmetry axis is not parallel but perpendicular to the electric vector of the excitation light.

Light quenching is a technique which allows modification of the polarized intensity 

components by stimulated emission.4–6 In such measurements one observes the remaining 

fluorescence, not the emission stimulated along the light path of the quenching pulse. In 

one-pulse light quenching, both excitation and quenching is caused by the same light pulse 

and the resulting distribution of the emission dipoles is always cylindrically symmetrical. In 

a two-pulse light quenching experiment the quenching pulse has a different wavelength and 

is delayed in time. The quenching pulse typically has a longer wavelength to overlap with 

the emission spectrum of the fluorophore. The quenching pulse is polarized either parallel or 

perpendicular to the polarization direction of the excitation pulse. In the presence of 

perpendicular two-pulse light quenching the resulting emission field may not display a 

cylindrical symmetry.7,8 For such cases the general definition of r, proposed by Jabloński9 

may be applied

r2 =
Ix − Iy

2 + Iy − Iz
2 + Iz − Ix

2

2I2 , (3)

where

I = Ix + Iy + Iz . (4)
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In Eq. (3) Ix, Iy, and Iz are the intensities of the emission measured through the observation 

polarizer oriented parallel to the respective axes of the Cartesian system (Fig. 2). The 

orientation of the system is selected so that the difference between the strongest and weakest 

component intensities is maximum. Because the definition (3) does not account for positive 

or negative values of r, Jabloński suggests that it should be complemented by a convention 

about the sign. When the sample is excited by a linearly polarized light, two of the intensity 

components are equal to each other, and Eq. (3) can be written in the form

r2 =
I − I⊥

2

I + 2I⊥
2 . (5)

The sign convention used is that r is positive when I‖>I⊥, and r is negative when I‖<I⊥. This 

convention together with Eq. (5) leads to expression (1). Similar considerations allow us to 

obtain Eq. (2) starting from Eq. (3). The definitions (1)–(3) can be used in both steady-state 

and time-resolved anisotropy measurements. In time-resolved experiments the intensities Ix, 

Iy, and Iz or I‖ and I⊥ are understood as dependent on time. These expressions are 

appropriate when the emission field is symmetrical about the vertical or z-axis. More 

complex expressions are needed in the absence of cylindrical symmetry.

II. THE ANISOTROPY VECTOR

Assume that intensities Ix, Iy, and Iz are measured within the coordination system oriented 

so that the difference between the strongest and weakest component intensities is maximum. 

To understand the meaning of the anisotropy vector we turn our attention to the following 

identities:

Ix = I
3 1 +

2Ix − Iy − Iz
I , (6)

Iy = I
3 1 +

2Iy − Iz − Ix
I , (7)

Iz = I
3 1 +

2Iz − Ix − Iy
I . (8)

Each of the intensity components can be understood as a sum of the intensity components 

mean value (I/3) and an additional positive or negative value which describes the anisotropy 

of the emission field. Let us introduce the following notations:

rx = 1
6

2Ix − Iy − Iz
I ≡ 2

6I
Ix −

Iy + Iz
2 , (9)
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ry = 1
6

2Iy − Iz − Ix
I ≡ 2

6I
Iy −

Iz + Ix
2 , (10)

rz = 1
6

2Iz − Ix − Iy
1 ≡ 2

6I
Iz −

Ix + Iy
2 . (11)

The quantities rx, ry, and rz describe the relative excess of a given emission component over 

the average value of the other two emission components, i.e., Ix over (Iy+Iz)/2, Iy over (Iz

+Ix)/2, and Iz over (Ix+Iy)/2. These quantities can be understood as the projected magnitudes 

of a certain vector along the axes of the Cartesian system (rx, ry, rz). We will call this vector 

a vector of anisotropy r. One can show that the magnitude |r| of this vector fulfills the 

following equation:

r 2 ≡ rx
2 + ry

2 + rz
2 =

Ix − Iy
2 + Iy − Iz

2 + Iz − Ix
2

2I2 . (12)

That means that Eq. (3) in fact defines the magnitude of the anisotropy vector. One can also 

see that

rx + ry + rz = 0. (13)

Equation (13) means that only two projections of the anisotropy vector are independent. For 

instance, in the case when ry and rz are known one has

r2 = 2 ry
2 + ryrz + rz

2 . (14)

In particular, all three projections of the anisotropy vector are equal to zero if any two of 

them are equal to zero.

Equation (13) constitutes the equation of a plane in the coordinate system (rx, ry, rz) (Fig. 3). 

The angle α between this plane (plane of anisotropy) and each of the axes rx, ry, and rz is 

equal to arccos(2/ 6). That means that all anisotropy vectors lie in one plane and that the 

magnitude and direction of each anisotropy vector can be described by just two numbers. We 

introduce a new coordinate system (rH, rV) with the axes rH and rV lying in this plane (Fig. 

3) by the transformation

rH = 1
2 ry − rx , (15)

rV = 1
6 2rz − rx − ry . (16)

We use the subscript V (vertical) because usually the z-axis is directed vertically in the 

experiments, and subscript H (horizontal) because the intensities Ix and Iy are detected in the 

horizontal plane. By substituting Eqs. (9)–(11) for rx, ry, rz in Eqs. (15) and (16) one obtains
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rH = 3
2

Iy − Ix
I , (17)

rV =
2Iz − Ix − Iy

2I . (18)

The projections rH and rV describe the anisotropy of the emission field of any symmetry. 

Equation (18) may be written in other two forms; rV=[Iz−(Ix+Iy)/2]/I or rV=[(Iz−Ix)+(Iz

−Iy)]/(2I). This means that the quantity rV may be understood as describing either the excess 

of the intensity component Iz over the average value of the intensity components Ix and Iy or 

the relative mean value of the differences Iz−Ix and Iz−Iy. The quantity rH describes the 

relative difference between the intensity components Ix and Iy.

There exists an infinite number of other coordinate systems allowing expression the 

anisotropy vector as a combination of two components. However, the coordinate system 

defined by Eqs. (15) and (16) seems to be the most convenient to describe anisotropy of the 

emission field where the z-axis is a distinguished axis. All possible values of the anisotropy 

components rH and rV are limited by the following three specific points R=(rH, rV): 

Rx ≡ ( − 3/2, − 0.5), where Ix=I and Iy=Iz=0, Ry ≡ ( 3/2, − 0.5), where Iy=I and Ix=Iz=0, and 

Rz≡(0,1), where Iz=I and Ix=Iy=0. These three points define an equilateral triangle as shown 

in Fig. 4. One can show that all other possible points (rH, rV) lie on this triangle. The 

anisotropy values corresponding to the emission fields which are cylindrically symmetrical 

along the respective axes of the coordinate system (x,y,z), that is describing the cases where 

Ix=Iy, or Iy=Iz or Iz=Ix, are placed on the medians of the triangle. In the particular case of z-

axis cylindrical symmetry of the emission field rH=0 and the anisotropy is described by 

magnitude of the projection rV varying from −0.5 to +1.0. The relative intensities Ix /I, Iy /I, 
and Iz /I calculated from Eqs. (6)–(8) vary along the respective medians of the triangle from 

zero to unity (Fig. 5). Points on the Rx, Ry side of the triangle correspond to the class of the 

emission fields totally polarized in the x – y plane, for which Iz=0. Among others, this class 

involves emission originated from the distribution of the emission dipoles which is rod-like 

along the x-axis, disc-like in the x – y plane, or rodlike along the y-axis (Fig. 5). Points on 

the Rx, Rz and Ry, Rz side of the triangle have an analogous interpretation. The centroid of 

the triangle corresponds to Ix /I=Iy /I=Iz /I=1/3 and to the spherically symmetrical emission 

field. The vertices of the triangle correspond to the emission fields which are rodlike along 

the respective axes of the coordinate system (x,y,z). If the emission field is a result of 

excitation by the linearly polarized light and the z-axis is chosen to be parallel to the electric 

vector of the excitation light then Ix=Iy and Eqs. (17) and (18) simplify to

rH = 0, rV =
I − I⊥
I + 2I⊥

. (19)

In this case the horizontal component rH of the anisotropy vanishes and the projection of the 

anisotropy vector along the rV-axis is tantamount to the anisotropy defined by Eq. (1) r=rV.
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While Eqs. (1) and (3) refers to the same notation (r), the quantities they describe are 

qualitatively different. Equation (3) describes the magnitude of the anisotropy vector which 

is always positive and Eq. (1) describes the magnitude of projection of the vector along the 

rV-axis, which can be positive, zero, or negative. The comparison of Eqs. (17) and (18) with 

Eq. (12) implies that the magnitude |r| of the anisotropy vector is related to rH and rV by the 

equation

r 2 = rH
2 + rV

2 . (20)

The anisotropy defined by Eq. (3) provides only a partial information about the observed 

symmetry of the emission field. Full information is provided by quantities rH and rV defined 

by Eqs. (17) and (18).

Another interesting interpretation of the anisotropy vector is possible using a Cartesian 

system with the coordinates representing the relative intensities Ix /I, Iy /I, and Iz /I. In such a 

system all possible points (Ix /I,Iy /I,Iz /I) lie in the plane Ix /I+Iy /I+Iz /I=1. Because none of 

these intensities can be negative the possible positions of the points (Ix /I,Iy /I,Iz /I) are 

limited to the triangle with vertices placed in the points (1,0,0), (0,1,0), and (0,0,1) (Fig. 6). 

One can show that this triangle is tantamount to our triangle of anisotropy. The classical 

definition of anisotropy (1) can be also discussed in this interpretation by introducing a two-

dimensional system (I‖ /I,I⊥ /I) (Fig. 6).

To characterize systems for which the emission anisotropy evolves with time one can use the 

components rH(t) and rV(t) of the time-dependent anisotropy vector r(t), defined by the time-

dependent forms of Eqs. (17) and (18),

rH(t) = 3
2

Iy(t) − Ix(t)
I(t) , (21)

rV(t) =
2Iz(t) − Ix(t) − Iy(t)

2I(t) . (22)

Using rH and rV, Eqs. (6)–(8) may be rewritten in the form

Ix = I
3 1 − rV − 3rH , (23)

Iy = I
3 1 − rV + 3rH , (24)

Iz = I
3 1 + 2rV . (25)

The time evolution of the intensity components Ix, Iy, and Iz is described by the time-

dependent versions of Eqs. (23)–(25),
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Ix(t) = I(t)
3 1 − rV(t) − 3rH(t) , (26)

Iy(t) = I(t)
3 1 − rV(t) + 3rH(t) , (27)

Iz(t) = I(t)
3 1 + 2rV(t) . (28)

Equations (26)–(28) are important for describing the time-dependent polarized intensities in 

light quenching experiments where the polarization of the quenching pulse is different than 

that of the excitation pulse. When the quenching light has the same polarization as the 

excitation light rH(t)=0, rV(t)=r(t), and one obtains from Eqs. (26)–(28) the well-known 

equations describing the time evolution of the intensity components of the cylindrically 

symmetrical emission field

I⊥(t) ≡ Ix(t) = Iy(t) = I(t)
3 [1 − r(t)], (29)

I (t) ≡ Iz(t) = I(t)
3 [1 + 2r(t)] . (30)

If the polarization of the light quenching pulse is not along the same direction as the 

excitation, then the polarized component decay according to Eqs. (26)–(28). Summarizing 

this section, one can say that the emission anisotropy can be understood as a vector. The 

general expression for anisotropy predicted by Jabloński allows calculation of only the 

magnitude of this vector, but not the values of its components. If the z-axis of the emission 

field is distinguished then rH [Eq. (17)] and rV [Eq. (18)] is a convenient representation of 

the anisotropy vector. These two quantities completely describe the anisotropy of the 

emission field of any symmetry. For emission fields displaying cylindrical symmetry along 

the z-axis, the horizontal projection rH of the anisotropy vector vanishes and the value of the 

parallel component rV becomes equal to the value of r calculated using the classical 

expression [Eq. (1)]. The time-dependent anisotropy can be described by the time-dependent 

anisotropy vector r(t) having two components rH(t) and rV(t) defined by Eqs. (21) and (22).

III. CHANGES OF FLUORESCENCE INTENSITY COMPONENTS INDUCED 

BY LIGHT QUENCHING

We now consider how the anisotropy vector can be used for interpretation of polarized 

intensity decays under conditions of light quenching. We will consider primarily a two-pulse 

experiment. The first light pulse excites the sample. The second light pulse, typically at 

longer wavelengths, causes stimulated emission. This stimulated emission is parallel to the 

direction of the quenching beam, and is not observed with the usual right angle observation. 

One observes the emission which has not been quenched.
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Light quenching experiments can be performed using polarized excitation, polarized light 

quenching, and measurement of the polarized emission. If the polarization of the quenching 

light pulse is parallel to the polarization of the excitation light pulse (parallel quenching) 

then during the light quenching experiment the vertical projection of the anisotropy vector 

decreases and the horizontal projection remains equal to zero. The emission field remains 

cylindrically symmetrical and is described by the two intensity components I‖ and I⊥. The 

time evolution of these components is given by Eqs. (29) and (30). Assuming that the 

quenching pulse is short compared to the fluorescence lifetime and rotational diffusion 

correlation time, both I(t) and r(t) display an instantaneous jump at the quenching pulse 

arrival time td. The intensity jump can be described by the parameter q defined as

q =
Ib − Ia

Ib
, (31)

where Ib and Ia are the total fluorescence intensities immediately before and after the 

quenching pulse. One has to stress that the parameter q describes the jump of the total 

fluorescence intensity which for parallel quenching is I=I‖+2I⊥, or I=Ix+Iy+Iz in general. For 

parallel quenching the jump of the anisotropy can be described by a single parameter Δr 
defined as

Δr = ra − rb, (32)

where rb and ra are the fluorescence anisotropies immediately before and after the quenching 

pulse. This is possible because under the parallel quenching conditions ΔrH=0 and Δr can be 

defined as being tantamount to ΔrV.

If the polarization of the quenching light is not parallel to the polarization of the excitation 

light then both projections of anisotropy vector are affected by the light quenching process. 

A general description of possible changes of the anisotropy of the emission field may be 

difficult. In this paper we will discuss only such cases when the emission field before and 

after the quenching pulse may be described in the same coordinate system (x,y,z). That 

means we will restrict ourselves to the cases when no rotation of the coordinate system is 

required to keep the maximum value of the difference between the strongest and weakest 

intensity component Ix, Iy and Iz of the initial and the light quenching modified emission 

field. A good example of such case is quenching by light which is polarized perpendicularly 

with respect to polarization direction of the excitation (perpendicular light quenching). 

Assume that the z-axis of the coordinate system is directed along the electrical vector of the 

excitation light and the y-axis along the electrical vector of the quenching light. Under these 

conditions the time evolution of the intensity components Ix, Iy and Iz is described by Eqs. 

(26)–(28) with I(t), rH(t), and rV(t) displaying instantaneous jumps at t=td. The jump of the 

total fluorescence intensity may be described by the parameter q defined by Eq. (31). The 

jump of the fluorescence anisotropy is related to the anisotropies rb=(rbH, rbV) and ra=(raH, 

raV) existing immediately before and after the arrival of the quenching pulse. Because the 

anisotropy rb refers to the cylindrically symmetrical emission field one has rbH=0 and 

rbV=rb, where
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rb =
Ibz − Ibx

Ibz + 2Ibx
. (33)

In this geometry, light quenching changes the values of all intensity components Ix, Iy, and 

Iz, but the ratio Ix /Iz remains unaffected (see Appendix A for justification of this property). 

We assume the rotational diffusion correlation time is long compared to the duration of the 

quenching pulse, so changes of the spatial distribution of the emission dipoles caused by 

rotational diffusion during the duration time of the quenching pulse can be neglected. Thus, 

the anisotropy rb can be also expressed by the respective intensity components measured 

immediately after the quenching pulse. Based on Eq. (33) one obtains

rb =
1 − Ibx /Ibz

1 + 2Ibx /Ibz
=

1 − Iax /Iaz
1 + 2Iax /Iaz

=
Iaz − Iax
Iaz + 2Iax

. (34)

Taking this into account and applying Eqs. (17) and (18) to the intensity components 

observed immediately after the quenching pulse one can show that

raV = − 3
3 2rb + 1 raH + rb, (35)

This expression indicates that in perpendicular light quenching the possible values of the 

projections rH and rV of the anisotropy vector after the quenching pulse are linearly 

dependent. One can see that in perpendicular light quenching the horizontally polarized 

quenching light almost always affects both the horizontal and vertical projections of the 

anisotropy vector, except the case rb=−0.5 when only the horizontal projection is modified. 

All achievable points (raH, raV) are placed on the straight lines passing through the lower 

right corner of the anisotropy triangle and the initial points (0,rb) (Fig. 7). The limiting vales 

of the anisotropy ra corresponding to very high intensities of the quenching pulse are placed 

on the Rx, Rz side of the anisotropy triangle and are related to rb by the equations

raH
∞ = 3

2
rb − 1
rb + 2, (36)

raV
∞ = 1

2
5rb + 1
rb + 2 . (37)

The limiting value of the magnitude ra of the anisotropy vector ra is given by

ra
∞ =

7rb
2 + rb + 1 1/2

rb + 2 . (38)

The change of anisotropy at time t=td is characterized by the vector Δr=(ΔrH, ΔrV) with the 

projections ΔrV and ΔrH defined as
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ΔrH = raH − rbH, (39)

ΔrV = raV − rbV . (40)

Using this notation, the anisotropy of the emission field registered immediately after the 

quenching pulse may be understood as a sum of two vectors, rb and Δr,

ra = rb + Δr . (41)

In light quenching experiments usually rbH=0 and rbV =rb, and then Eq. (35) implies that

ΔrV = − 3
3 2rb + 1 ΔrH . (42)

One can see that in the perpendicular light quenching, similarly as in the parallel light 

quenching, the changes of the intensity components Ix, Iy, and Iz may be described by just 

two parameters; q and ΔrV or q and ΔrH. We prefer to use q and ΔrH because using Eq. (42) 

the transformation ΔrV → ΔrH is not possible for rb=−0.5.

IV. DIFFERENTIAL POLARIZED FLUOROMETRY IN THE CASE OF A 

CYLINDRICALLY SYMMETRICAL EMISSION FIELD

In differential polarized fluorometry the samples are illuminated with linearly polarized, 

sinusoidally modulated light with the modulation frequency ω, where ω is in rads. Under 

these conditions the fluorescence emission field is cylindrically symmetrical and is 

described by two polarized intensity components I‖ and I⊥. Then the phase angle difference 

Δω between the components and the ratio Λω of the AC signals generated by the two 

components is measured,10–12

Δω = φ⊥ − φ = arctan
D N⊥ − D⊥N
D D⊥ + N N⊥

, (43)

Λω =
AC
AC⊥

=
N2 + D2

N⊥
2 + D⊥

2

1/2

, (44)

where

Nk = ∫
0

∞
Ik(t)sin(ωt)dt, (45)

Dk = ∫
0

∞
Ik(t)cos(ωt)dt, (46)
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and k=‖,⊥. The quantities Δω and Λω depend on the time-zero anisotropy r0, the modulation 

frequency ω, and the rate, freedom, and isotropy of fluorophore rotation. Consequently, 

information about the form of r(t) is available. The meaning of Λω is comparable to that of 

the intensity ratio of the polarized steady-state intensities. We prefer to present this 

observable as the modulated anisotropy,13

rω =
Λω − 1
Λω + 2 . (47)

Equation (47) may be obtained from Eq. (1) by replacing the intensities I‖ and I⊥ by the 

respective AC components, AC‖ and AC⊥, of the measured photocurrent and then utilizing 

Eq. (44). The modulated anisotropy has properties of both the steady-state anisotropy (r) and 

the fundamental anisotropy (r0). At modulation frequencies which are low compared to the 

correlation time, rω approaches r. At modulation frequencies much higher than the 

correlation time, rω approaches r0. The latter property does not fully apply to the light 

quenching experiments where rω may display remarkable oscillations around r0 at higher 

modulation frequencies.6–8

V. DIFFERENTIAL ANISOTROPY MEASUREMENTS IN THE CASE WHEN 

THE EMISSION FIELD IS NOT CYLINDRICALLY SYMMETRICAL

If the emission field is not cylindrically symmetrical then, depending on the direction of 

observation, one can measure three different values for the phase shift (Δxω, Δyω or Δzω) and 

three different values for the ratio of the polarized modulated components (Λxω, Λyω or 

Λzω),

Δxω = φy − φz = arctan
DzNy − DyNz
DyDz + NyNz

, (48)

Δyω = φx − φz = arctan
DzNx − DxNz
DxDz + NxNz

, (49)

Δzω = φx − φy = arctan
DyNx − DxNy
DxDy + NxNy

, (50)

Λxω =
ACz
ACy

=
Nz

2 + Dz
2

Ny
2 + Dy

2

1/2

, (51)

Λyω =
ACz
ACx

=
Nz

2 + Dz
2

Nx
2 + Dx

2

1/2

, (52)
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Λzω =
ACy
ACx

=
Ny

2 + Dy
2

Nx
2 + Dx

2

1/2

, (53)

where Nk and Dk are given by Eqs. (45) and (46) with k =x,y,z. From the above six 

quantities only four are independent, e.g., Δxω is related to Δyω and Δzω, and Λxω is related 

to Λyω and Λzω,

Δxω = Δyω − Δzω, Λxω =
Λyω
Λzω

. (54)

It seems that the most convenient way to measure the anisotropy of the emission field which 

does not display the cylindrical symmetry is to use the right angle observation and measure 

Δyω and Λyω with vertical orientation of the excitation polarizer. One can then rotate the 

excitation polarizer to the horizontal orientation, and measure Δzω and Λzω (Fig. 8). These 

data can then be fit using appropriate models for intensity and anisotropy decay. The 

quantities Λyω and Λzω may be presented as the modulated horizontal anisotropy

rHω = 3
2

Λzω − 1
Λyω + Λzω + 1, (55)

and/or modulated vertical anisotropy

rVω =
2Λyω − Λzω − 1

2 Λyω + Λzω + 1
. (56)

Equations (55) and (56) may be obtained on the way analogous to that applied to obtain Eq. 

(47), using Eqs. (17), (18), (52), and (53). In the cylindrically symmetrical limit of Eqs. 

(48)–(53) one obtains Δxω=Δyω=Δω, Δzω=0, Λxω=Λyω=Λω, and Λzω=1, yielding rHω=0 and 

rVω=rω [Eq. (47)]. Similar to rω, the modulated vertical anisotropy and the modulated 

horizontal anisotropy become at low modulation frequencies the steady-state anisotropies rH 

and rV, respectively, and at high modulation frequencies much higher then the correlation 

time—the time-zero anisotropies rH0 and rV0, respectively. In the light quenching 

experiments at high modulation frequencies rHω and rVω display oscillations around rH0 and 

rV0, respectively.

VI. INFLUENCE OF LIGHT QUENCHING AND ROTATIONAL DIFFUSION ON 

THE ANISOTROPY DECAY

In liquid solvents the luminescent molecules perform Brownian rotations due to the thermal 

motion. This phenomenon causes the relative Contributions of Ix(t), Iy(t), and Iz(t) to the 

total intensity I(t) to change with time. If the molecules may be treated as nonhindered 

rotators the result of the Brownian rotations is that the differences between Ix(t), Iy(t), and 

Iz(t) relative to the total intensity I(t) tend to zero. However, the total intensity I(t)=Ix(t)+Iy(t)
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+Iz(t) remains independent of the molecular rotation. In the presence of one-pulse or two-

pulse light quenching the fluorescence intensity decay takes the form

I(t) =
I0(t) for  0 ⩽ t ⩽ td,

(1 − q)I0(t) for  t > td,
(57)

where q is defined by Eq. (31), τ is the mean decay time, and td denotes the time delay of the 

quenching pulse, and I0(t) the intensity decay in the absence of the light quenching pulse. It 

is assumed that the total fluorescence decay before and after the quenching pulse is 

described by the same time-dependent function. This may be not applicable in the case of 

mixtures of fluorescent fluorophores when each fluorophore in the mixture is quenched to a 

different extent. The explicit expression for the function I0(t), characterizing the 

luminescence intensity in the absence of light quenching, depends on the particular system 

under investigation. It can be represented by a single exponential, multiexponential, or any 

other function. Note that the appropriate forms of equations describing the one-pulse light 

quenching experiments may be obtained by setting td=0 in the equations describing the two-

pulse experiments. The effect of Brownian rotations on the fluorescence anisotropy depends 

on the symmetry of the luminescent molecules, and the kind and efficiency of the light 

quenching. A general theoretical description of these phenomena may easily become very 

complicated. In the following subsections we discuss the influence of light quenching on the 

emission anisotropy in the simplest cases, i.e., when the fluorescence emission is excited by 

the linearly polarized light. In these cases the emission field in the absence of light 

quenching remains cylindrically symmetrical for all times shorter then the time of arrival of 

the quenching pulse. The discussion will be also limited to the simple light quenching 

experiments when the quenching pulse is polarized either parallel or perpendicular to the 

polarization direction of the excitation pulse.

A. Spherical molecules

It has been shown by Perrin14–16 that for spherical molecules the emission anisotropy r(t) of 

the cylindrically symmetrical emission field decays exponentially with time

r(t) = r0e−t /Θ, (58)

where r0 is the fluorescence anisotropy at t=0 and Θ is the rotational diffusion correlation 

time. Using the same formalism one can show (see Appendix B) that for spherical molecules 

generating a noncylindrically symmetrical emission field, the projections rH(t) and rV(t) also 

decay exponentially,

rH(t) = rH0e−t /Θ, (59)

rV(t) = rV0e−t /Θ . (60)

Equations (59) and (60) involve the same time-dependent term exp(−t/Θ). This implies that 

in this case, due to rotational diffusion, the anisotropy evolves from the arbitrary starting 
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point (rH0, rV0) towards the origin along the straight line. For the case of excitation by the 

linearly polarized light, accompanied (td=0) or followed (td>0) by the light quenching Eqs. 

(59) and (60) take the form

rH(t) =
0 for  0 ⩽ t ⩽ td,

raHe
− t − td /Θ

for  t > td,
(61)

rV(t) =
r0e−t /Θ for  0 ⩽ t ⩽ td

raVe
− t − td /Θ

for  t > td,
(62)

where

raV = r0e
−td /Θ

+ ΔrV, (63)

or taking into account Eq. (42),

raV = r0e
−td /Θ

− 3
3 2r0e

−td /Θ
+ 1 ΔrH, (64)

and

raH = ΔrH . (65)

After substituting Eqs. (57), (61), and (62) for I(t), rH(t), and rV(t) in Eqs. (26)–(28) one 

obtains

Ix(t) =

1
3 I0(t) 1 − r0e−t /Θ for  0 ⩽ t ⩽ td,

1
3(1 − q)I0(t) 1 − raV + 3raH e

− t − td /Θ
for  t > td,

(66)

Iy(t) =

1
3 I0(t) 1 − r0e−t /Θ for  0 ⩽ t ⩽ td,

1
3(1 − q)I0(t) 1 − raV − 3raH e

− t − td /Θ
for  t > td,

(67)

Iz(t) =

1
3 I0(t) 1 + 2r0e−t /Θ for  0 ⩽ t ⩽ td,

1
3(1 − q)I0(t) 1 + 2raVe

− t − td /Θ
for  t > td .

(68)

The above expressions can be used for calculation of the phase shifts Δkω and ratios Λkω 
given by Eqs. (48)–(53). After that, by comparison of the calculated values of Δkω and Λkω 
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with those found experimentally, the unknown light quenching parameters q and ΔrH can be 

evaluated. The parameter ΔrV can be evaluated later from Eq. (38). One has to notice that in 

general, the parameters q, ΔrH, and ΔrV are highly correlated and may be expressed by a 

single parameter describing the number of photons passing the light quenching cross section 

of the molecule during a single quenching pulse. This problem will be treated in more detail 

in a future paper.

For the parallel light quenching, the emission field remains cylindrically symmetrical for all 

times, and then Eqs. (66)–(68) simplify to

I (t) =

1
3 I0(t) 1 + 2r0e−t /Θ for  0 ⩽ t ⩽ td,

1
3(1 − q)I0(t) 1 + 2rae

− t − td /Θ
for  t > td,

(69)

I⊥(t) =

1
3 I0(t) 1 − r0e−t /Θ for  0 ⩽ t ⩽ td,

1
3(1 − q)I0(t) 1 − rae

− t − td /Θ
for  t > td,

(70)

where

ra = r0e
−td /Θ

+ Δr . (71)

In this case, the number of unknown light quenching parameters is reduced to two, q and Δr, 
defined by Eqs. (31) and (32).

B. Nonspherical molecules under one-beam or two-beam parallel light quenching

In this case the emission field remains cylindrically symmetrical for the entire fluorescence 

decay. The z-axis of the coordinate system can be chosen parallel to the symmetry axis of 

the emission field. Under these conditions the horizontal projection of the anisotropy vector 

remains equal to zero and the emission anisotropy is fully described by the vertical 

projection rV(t)=r(t). It has been shown that for nonspherical molecules excited by the 

linearly polarized light the emission anisotropy decays as a sum of exponentials,17–19

r(t) = r0 ∑
j = 1

n
g je

−t /Θ j, (72)

where the correlation times Θj are expressed by combinations of components of the diffusion 

tensor, and the amplitudes gj are dependent on the wave functions of the asymmetric rotor, 

the initial angular distribution of the transition dipoles and the properties of the observation 

polarizer. The number n of different correlation times may not exceed five. One can expect 

that light quenching will not change the correlation times Θj, which are determined by the 

diffusion tensor. However, light quenching can be expected to change the amplitudes gj as a 

result of modification of the spatial distribution of the transition dipoles. Thus, in the 
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presence of the parallel light quenching the anisotropy decay of nonspherical molecules can 

be described by the equation

r(t) =
r0 ∑

j = 1

n
g je

−t /Θ j for  0 ⩽ t ⩽ td,

ra ∑
j = 1

n
g j

le
− t − td /Θ j for  t > td,

(73)

where g j′ are the new, light quenching modified amplitudes associated with the particular 

correlation times Θp and ra is given by

ra = r0∑
g j

e
−td /Θ j + Δr . (74)

Due to possible changes of amplitudes gj, one can anticipate a possibility that certain 

correlation times which are difficult to retrieve from the classical measurements may 

become experimentally measurable after the act of light quenching. As for spherical 

molecules, the anisotropy of the emission field generated by the nonspherical molecules and 

modified by the process of parallel light quenching also evolves on the anisotropy triangle 

along the straight line. This line is described by the equation rH=0. To find the expressions 

for the parallel and perpendicular components of the intensity decay one has to substitute 

Eq. (57) for I(t) and Eq. (73) for r(t) in Eqs. (29) and (30). These expressions may then be 

used to calculate the frequency-domain observables, the phase difference Δω and the ratio 

Λω based on Eqs. (43) and (44), respectively.

C. Nonspherical molecules under two-beam perpendicular light quenching

In this case the emission field will lose cylindrical symmetry after the quenching pulse, and 

then both projections rH(t) and rV(t) of the anisotropy vector will decay heterogeneously. At 

present we do not know if the decays of these projections will be described by one common 

time-dependent function or by two different functions. The additional calculations to solve 

this problem are not within the scope of this paper. Assuming two different time 

dependencies for rH(t) and rV(t) one can write

rH(t) =

0 for  0 ⩽ t ⩽ td,

raH ∑
j = 1

n
gH je

− t − td /Θ j for  t > td,
(75)

rV(t) =
r0 ∑

j = 1

n
g je

−t /Θ j for  0 ⩽ t ⩽ td,

raV ∑
j = 1

n
gV je

− t − td /Θ j for  t > td,
(76)

where

Kuśba and Lakowicz Page 16

J Chem Phys. Author manuscript; available in PMC 2019 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



raV = r0 ∑
j = 1

n
g je

−td /θ j + ΔrV (77)

and raH is given by Eq. (65). In this case after the quenching pulse the emission anisotropy 

would not evolve towards the origin along the straight line on the anisotropy triangle. In 

order to find the intensity decays Ix(t), Iy(t), and Iz(t) one should substitute expressions (57) 

and (75)–(77) for I(t), rH(t), and rV(t) in Eqs. (26)–(28). Using these new decay functions 

and Eqs. (48)–(53) one can theoretically predict the phase shifts Δkω and amplitude ratios 

Λkω. Comparison of the calculated values of Δkω and Λkω may allow determination of the 

anisotropy changes ΔrH and ΔrV, and the light quenching modified amplitude factors gHj and 

gVj.

VII. CONCLUSIONS

The phenomenon of light quenching may generate emission fields which do not display 

cylindrical symmetry. For such fields the generally known definition of the emission 

anisotropy is not adequate. A new concept called an anisotropy vector is capable of 

describing the existing state of the emission field of any symmetry. The anisotropy vector is 

defined in the Cartesian system (rx, ry, rz) and cannot be shown in the laboratory system 

(x,y,z). The possible orientations of the anisotropy vector are limited to the plane defined by 

the equation rx+ry+rz=0 which allows for full description of the vector by just two 

components. In this plane we found a new system (rH, rV) in which the projection rV of the 

anisotropy vector corresponds to the classical definition of anisotropy with cylindrical 

symmetry. The relations of the projections rH and rV to the polarized intensity components 

Ix, Iy, and Iz are given by Eqs. (17) and (18). The projection rH has no analog in the classical 

anisotropy theory. All possible points (rH, rV) are placed inside an equilateral triangle, which 

we call the triangle of anisotropy. In the usual anisotropy experiments the horizontal 

projection, rH, is usually equal to zero. States with a nonzero horizontal projection of the 

anisotropy vector can be achieved after the act of the perpendicular light quenching. In this 

case the possible changes of both projections are fully correlated [Eqs. (35) and (42)]. For 

freely rotating fluorescent molecules, the anisotropy vector tends with time to zero. If the 

molecules are spherical or display isotropic rotations then, due to rotational diffusion, the 

anisotropy evolves from any starting point (rH, rV) towards the origin along the straight line. 

This may not be true for emission fields generated by molecules displaying anisotropic 

rotations when emission is modified by the perpendicular light quenching. One can expect 

that for heterogenous anisotropy decay, light quenching may change values of the 

preexponential factors associated with the observed correlation times.

APPENDIX A

Using the coordinate system shown in Fig. 9, the time dependent intensity components Ix(t) 
and Iz(t) can be expressed as
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Ix(t) = c1∫0

2π∫
0

π /2
n(α, β, t)sin3 α sin2 β dα dβ, (A1)

Iz(t) = c1∫0

2π∫
0

π /2
n(α, β, t)sin3 α cos2 β dα dβ, (A2)

where c1 is a constant, and n(α,β,t) is the angular distribution of the transition moments of 

the excited molecules at time t. If the electrical vector of the quenching pulse is directed 

along the y-axis then based on Eq. (44) from Ref. 8 the distribution n(α,β,t) is given by

n(α, β, t) =
n0(α, β)e−t /τ, for  0 ⩽ t ⩽ td,

n0(α, β)e
−Sp2 cos2 α

e−1/τ, for  t > td,
(A3)

where n0(α,β) is angular distribution of the transition moments of the excited molecules at 

time t=0 and Sp2 is a certain parameter proportional to the quenching power. One can see 

from Eq. (A3) that the distribution na(α,β,td) observed immediately after the quenching 

pulse is related to the distribution nb(α,β,td) observed immediately before the quenching 

pulse by the equation

na α, β, td = nb α, β, td e
−Sp2 cos2 α

. (A4)

Equations (A3) and (A4) are strictly valid for modest extents of light-quenching and high 

levels of quenching. The distribution of depleted fluorophore will be proportional to cos2α, 

and a somewhat broader distribution will be depleted with larger extents of light-quenching.

Using Eq. (A4) one can rewrite Eqs. (A1) and (A2) in the form

Ibx = c1∫0

2π
sin2 β∫

0

π /2
nb α, β, td sin3 αdα dβ, (A5)

Ibz = c1∫0

2π
cos2 β∫

0

π /2
nb α, β, td sin3 αdα dβ, (A6)

Iax = c1∫0

2π
sin2 β∫

0

π /2
nb α, β, td × exp −Sp2 cos2 α sin3 α dα dβ, (A7)

Iaz = c1∫0

2π
cos2 β∫

0

π /2
nb α, β, td × exp −Sp2 cos2 α sin3 α dα dβ . (A8)
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Because the integrals over alpha within the pairs Ibx, Ibz and Iax, Iaz are equal to each other, 

one obtains Ibx /Ibz =Iax /Iaz, independently on the shape of distribution nb(α,β,td) observed 

immediately before the quenching pulse.

APPENDIX B

The time dependence of the emission anisotropy of Brownian molecules is a function of 

their orientation. This orientation may be described by nine direction cosines Ci j =cos(i,j), 
(i=x,y,z; j=X,Y,Z). The direction cosines determine the actual position of the coordinate 

axes (x,y,z) of the Cartesian system fixed to the molecule, relative to the initial position of 

these axes (X,Y,Z). It has been shown previously14–16,20 that during the isotropic Brownian 

motion the mean values of the direction cosines fulfill the relation CxX
2 = CyY

2 = CzZ
2  and 

Ci j
2 = Cik

2 . Besides, for spherical molecules one obtains

Cii = 1
3 1 + 2e−t /Θ , (B1)

Ci j = 1
3 1 − e−t /Θ , (B2)

where Θ is the rotational diffusion correlation time. The time evolution of the intensity 

components Ix(t), Iy(t), and Iz(t) may be written in the form

Ik(t) = α(t) IX0 Cxk
2 + Iγ0 Cyk

2 + IZ0 Czk
2 , (B3)

where IX0, IY0, and IZ0 are the initial values of these components related to the total initial 

luminescence intensity I0 by the equation

I0 = IX0 + IY0 + IZ0 . (B4)

The function α(t) describes the decay of the I0,

I(t) = I0α(t) . (B5)

Using Eqs. (B3) and (B1)–(B2) one can show that for spherical molecules any difference of 

the intensity components decays according to the relation

Ii(t) − I j(t) = α(t) Ii0 − I j0 e−t /Θ . (B6)

The anisotropies rH(t) and rV(t) [(Eqs. (21) and (22)] can be represented by linear 

combinations of such differences [see also discussion following Eqs. (17) and (18)]. After 

utilizing Eqs. (B5) and (B6), and introducing denotations

rV0 =
2IZ0 − IX0 − IZ0

2I0
, (B7)
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rH0 = 3
2

IY0 − IX0
I0

, (B8)

one obtains Eqs. (59) and (60).
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FIG. 1. 
Schematic diagram for measurement of fluorescence anisotropy of a cylindrically 

symmetrical emission field.
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FIG. 2. 
Schematic diagram for measurement of the polarized intensities Ix, Iy, Iz of an emission field 

of arbitrary symmetry. The orientation of the Cartesian system (x,y,z) should be selected so 

that the difference between the strongest and weakest component intensities is maximum.
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FIG. 3. 
Orientation of the plane of anisotropy and coordinate system (rH, rV) in the coordinate 

system (rx, ry, rz).
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FIG. 4. 
The triangle of anisotropy. All possible values of anisotropy are placed inside this triangle 

and are described by different values of the projections rH and rV of the anisotropy vector r. 

In the particular case of the z-axis cylindrical symmetry of the emission field rH=0 and the 

anisotropy is described by magnitude of the projection rV varying from −0.5 to +1.0.
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FIG. 5. 
Approximate polar plots of the emission fields corresponding to the particular areas of the 

triangle of anisotropy. The relative intensities, Ix /I, Iy /I, and Iz /I, vary along the respective 

medians of the triangle from zero to unity. The centroid of the triangle corresponds to Ix /

I=Iy /I=Iz /I=1/3 and to the spherically symmetrical emission field, whereas the vertices of 

the triangle correspond to the emission fields which are rodlike along the respective axes of 

the coordinate system (x,y,z).
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FIG. 6. 
Position of the triangle of anisotropy and the coordinate system (rH, rV) in the coordinate 

system (Ix /I,Iy /I,Iz /I).
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FIG. 7. 
Possible changes of the anisotropy vector in parallel (LQ‖) and perpendicular (LQ⊥) light 

quenching for different values of the anisotropy rb immediately before the arrival of the 

quenching pulse. In the parallel light quenching ΔrH=0 and ΔrV⩽0. In the perpendicular 

light quenching ΔrH⩽0 and ΔrV⩾0. The short arrows show the direction of increasing power 

of the quenching pulse. The long arrows show the anisotropy vectors describing the 

respective emission fields after quenching by extremely intensive light pulses.
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FIG. 8. 
Illustration of the method of the registration of all three components of the polarized 

intensity with the same right-angle observation using vertical and horizontal polarization of 

the exciting beam.

Kuśba and Lakowicz Page 28

J Chem Phys. Author manuscript; available in PMC 2019 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 9. 
Spherical coordinate system used to prove that during the perpendicular light quenching 

experiments the polarized intensity ratio Ix /Iz remains unaffected.
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