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Abstract

Behavior genetic findings figure in debates ranging from urgent public policy matters to perennial 

questions about the nature of human agency. Despite a common set of methodological tools, 

behavior genetic studies approach scientific questions with potentially divergent goals. Some 

studies may be interested in identifying a complete model of how individual differences come to 

be (e.g., identifying causal pathways among genotypes, environments, and phenotypes across 

development). Other studies place primary importance on developing models with predictive 

utility, in which case understanding of underlying causal processes is not necessarily required. 

Although certainly not mutually exclusive, these two goals often represent tradeoffs in terms of 

costs and benefits associated with various methodological approaches. In particular, given that 

most empirical behavior genetic research assumes that variance can be neatly decomposed into 

independent genetic and environmental components, violations of model assumptions have 

different consequences for interpretation, depending on the particular goals. Developmental 

behavior genetic theories postulate complex transactions between genetic variation and 

environmental experiences over time, meaning assumptions are routinely violated. Here, we 

consider two primary questions: (1) How might the simultaneous operation of several mechanisms 

of gene-environment interplay affect behavioral genetic model estimates? (2) At what level of 

gene-environment interplay does the ‘gloomy prospect’ of unsystematic and non-replicable 

genetic associations with a phenotype become an unavoidable certainty?
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Introduction

All behavior genetic models operate under the assumption that genetic and environmental 

processes combine to give rise to psychological phenotypes. The most detailed theoretical 

models posit multifaceted, dynamic developmental processes whereby genetic variation 

comes to be correlated with and statistically dependent on experience (Beam et al., 2015; 

Bronfenbrenner & Ceci, 1994; Dickens & Flynn, 2001; Johnson, 2007; Kandler & Zapko-

Willmes, 2017; Plomin et al., 1977; Scarr & McCartney, 1983; Tucker-Drob, 2017; Tucker-

Drob et al., 2013). However, most empirical studies in behavior genetics use simple model 

specifications according to which genetic and environmental influences combine by 

addition. For some purposes, simple models are entirely appropriate. But for others, simple 

models may be misleading. Therefore, it is important to consider the research goals being 

pursued when interpreting behavior genetic results. We focus on two potential research 

goals: explanation and prediction.1 Increases in predictive accuracy do not always imply 

increases in explanatory power. For example, simple model specifications aggregate over the 

potential presence of complex underlying processes into relatively few parameters. In some 

circumstances, prediction could be maximized via simplifying assumptions, but explanation 

of the underlying processes may not be enhanced (or vice versa). Here, we outline seven 

theoretically and empirically pervasive developmental processes that should be considered 

when interpreting behavior genetic model results, regardless of whether such processes are 

formally modeled within any given investigation (see Table 1 for summary).

To make some progress on these issues, we begin by describing how research goals aimed at 

prediction compared to explanation differ. Next, we describe seven developmental processes 

necessary to keep in mind when interpreting behavior genetic results. The first six processes 

are relatively easy to understand, but the final process, simultaneous gene-environment 

interplay (GE-interplay), is quite difficult. We then consider how multiple developmental 

processes could generate the empirical data observed in behavior genetic studies, including 

the possibility of the “gloomy prospect,” wherein the influences on human behavior are so 

incredibly idiosyncratic as to preclude the possibility of identifying a generalizable model 

(Plomin & Daniels, 1987). Prospects of gloominess may be phenotype specific, implying 

that boundaries on gloominess could be established by a more complete accounting of the 

magnitude, timing, and interdependencies among developmental mechanisms guiding 

phenotype growth.

Identifying Research Goals

When specifying models or interpreting parameter estimates, researchers should first 

consider their goals. Although there are many potential goals, herein we focus on two broad 

categories which cover most current behavior genetic research: explanation and prediction. 

If one is primarily interested in understanding the causal processes that explain observed 

patterns of individual differences and their development, then the specified model would 

1Other aims that have been claimed as constitutive of scientific inquiry include having true answers to our questions (Kelly and 
Glymour, 2004), obtaining knowledge (Nagel, 1967), advancing empirically adequate theories (van Fraassen, 1980 and 1986), having 
understanding (de Regt, 2015), and gaining the ability to control nature (Keller, 1985). We invite the reader to think about how what 
we say in this paper matters with respect to these other aims as well, though we will not discuss them explicitly.
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need to include the causal processes relevant for a phenotype. To the extent that GE-

interplay is relevant to the development of a phenotype, it would be desirable to include 

these processes in a model. If, however, one is primarily interested in obtaining a useful 

model for predicting a phenotype, then the specified model may need not represent any 

causal processes. These processes would only need to be included to the extent that they 

would obscure prediction.

When interpretation of models conflates the goals of explanation and prediction—and 

especially when improvements in predictive accuracy are seen as improvements in 

explanatory power—misinterpretation may be likely. For example, accuracy of predicting 

neuroticism could be enhanced by including a biological variable reflecting sex (for 

example, presence or absence of a Y chromosome) in a regression equation; yet, the fact that 

sex is a statistically significant predictor does not explain individual differences with respect 

to neuroticism. Although sex differences in neuroticism are cross-culturally consistent 

(Schmitt et al., 2008), the fact that sex is associated with neuroticism does not tell us 

whether that association results from biological processes that stem directly from the 

measured genetic difference (e.g. sexual differentiation, and associated hormones, which 

stem from the presence or absence of the SRY gene), or from persistent cultural processes 

that are confounded with the same measured genetic difference (e.g. the historical power 

differential between the sexes, including assumed gender roles in society).

Similarly, it would be a mistake to infer from the fact that the R2 for one polygenic risk 

score is greater than the R2 for another that the first risk score is more informative about the 

data-generating mechanism. Bluntly, it would be a mistake to think that when the R2 value 

goes up, we have better understanding of how the world works, when in fact, we only have a 

more accurate prediction. Our point here is not to disparage prediction. Predictive accuracy 

is a worthwhile goal, but we should not confuse it with explanatory power. As we will 

discuss, the possibility of GE-interplay may alter the number of parameters that plausibly 

should be included in a model or at least considered as to the impact on estimated 

parameters. Moreover, our ability to explain our data and to understand how the world works 

on the basis of models that do not include GE-interplay parameters will be limited to the 

extent that GE-interplay influences development, even if such models are very useful for 

prediction. For example, Lee et al. (2018, p. 1116) reminded readers that “it is inappropriate 

to interpret the polygenic score for educational attainment as a measure of genetic 

endowment” due to evidence of GE-interplay. The polygenic risk score is a useful aggregate 

of information, but it does not explain or identify “genetic endowment.”

Likewise, the classical twin design specifies the A parameter. Falconer’s formula (1960) 

approximates2 the mathematical definition of A in a classical twin design: 2×(rMZ – rDZ), 

or in other words, twice the difference in similarity between monozygotic and dizygotic 

twins. The A parameter is often described as representing additive genetic effects because 

additive genetic effects would lead monozygotic twins to be more phenotypically similar 

than dizygotic twins. The description of the A parameter is useful – it accurately describes a 

2Modern behavior genetic models typically rely on structural equation modeling approaches, rather than simple multiplication and 
subtraction.
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likely causal model that would lead monozygotic twins to be more similar than dizygotic 

twins. Yet, the description is not complete. As Purcell (2002) detailed, GE-interplay affects 

the A parameter. Therefore, the A parameter could be described as something much more 

general: any sort of causal process—not just an additive genetic one—that would lead 

monozygotic twins to be more phenotypically similar to each other than dizygotic twins are 

to each other.

Such distinctions may be more or less relevant for prediction compared to explanation. As 

an illustrative example, consider measures of personality, which are associated with 

academic achievement primarily through a genetic pathway (Krapohl et al., 2014; Tucker-

Drob et al., 2016). How might GE-interplay need to be represented in this result? From a 

prediction perspective, the question may be irrelevant. Assuming a consistent environment in 

which the results of these studies hold and genetic markers of relevant personality 

characteristics are available, early prediction of achievement would be possible.

However, if the goal is to explain our observations or to understand the way the world 

works, representing GE-interplay will often be important. For example, there may be small 

genetically influenced differences in personality which are detectable by parents, teachers, 

and peers, who in turn reinforce the personality characteristics in achievement-relevant 

ways. Teachers may be particularly attentive to children who sit still and pay attention, and 

therefore exacerbate potentially small early differences. Understanding the process requires 

recognizing that the environment may have played a larger role across development 

compared to genetic factors. It just so happens that genetic factors are correlated with 

environmental reinforcement.

In order to make predictions, however, we simply need to know the patterns of association. 

Presumably genetic markers possess beneficial qualities for prediction, such as being 

measurable early in the lifespan and being relatively simple (i.e., not requiring multiple 

measures of possible sources of environmental reinforcement unfolding across the lifespan). 

Yet, more can be gained by merging across these goals. For example, gaining control over 

the process would likely benefit from identifying a set of predictive markers, but also 

understanding the detailed causal mechanisms. Control does not need to focus on the genetic 

variant; a biological or pharmaceutical intervention may not be desired for numerous 

reasons. Instead, understanding the causal pathway points towards several intervention 

points, such as teacher-student interactions.

Disentangling Multiple GE-Interplay Processes across Development

One of the most complex empirical approaches to GE-interplay simultaneously estimates 

active or evocative gene-environment correlation (rGE) and quantitative Gene × 

Environment interaction (G×E) at a single point in time (van der Sluis et al., 2012).3 An 

environment and a phenotype are measured once per family member. Heritability of the 

environment reflects rGE, and G×E is estimated by calculating the heritability of the 

3In this manuscript, we focus on quantitative G×E, meaning the effect sizes of genes and environments are interdependent, rather than 
qualitative G×E, meaning different genes may operate across groups.
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phenotype at different levels of the environment. Although such studies represent substantial 

progress beyond conventional biometric variance decomposition approaches, they 

nevertheless represent static snapshots of developmental processes.

Developmental models are underdetermined relative to the data collected in behavior genetic 

studies (Earman, 1993; Glymour, 1970; Hausman et al., 2014; Norton, 2008; Stanford, 2001, 

2006). In order to find useful models of phenotype development, the data must be able to 

identify each of the relevant parameters, some of which may dynamically change across the 

lifespan. Of course, practical limitations (e.g., economic resources, not to mention 

participant fatigue) impede our ability to conduct intensive studies to estimate each 

developmental parameter central to models of GE-interplay. Yet, the typical interpretation of 

empirical models of GE-interplay is premised on the idea that psychological outcomes 

emerge through slow, accumulating, developmental processes.

For example, Beam et al. (2015) hypothesized that small differences in early phenotypes 

between siblings will increasingly drift apart across development due to environmental 

reinforcement. If one sibling happens to have slightly higher cognitive abilities than the co-

sibling, the difference between the siblings might be exacerbated by phenotype-matching 

behavior by teachers, peers, parents, and economics (i.e., job demands). The sibling 

differences typically observed in behavior genetic studies of adolescents or adults may not 

have always been present earlier in development, and the magnitude of the difference also 

may not be static across subsequent development. To make matters even more difficult, both 

rGE and G×E may take place simultaneously, and the effect of such interplay may wax and 

wane across the lifespan.

Theories of GE-interplay are highly complex and dynamic, making it nearly impossible, 

absent prohibitively intensive multivariate longitudinal data, to empirically determine what 

combinations of processes are responsible for observed phenotypic variation from among 

the universe of potential models. It may be the case that twin models are perfectly specified, 

and the only influences that matter for the development of phenotypes are additive and 

uncorrelated genetic, shared environmental, and nonshared environmental influences. If 

development works in this manner, then the interpretation of behavior genetic models would 

be much easier. To the extent that these sources of variance are correlated and non-additive, 

then the latent variance components and molecular genetic associations are potentially 

representative of these developmental processes (Purcell, 2002). If development works in 

this manner, then the work of behavior geneticists requires thoughtful consideration of 

multiple plausible mechanisms that could lead genetically related individuals to resemble 

one another phenotypically. We describe seven processes that are relevant when interpreting 

behavior genetic results.

1. Phenotypic mean and variance shifts

Non-genetically informative studies indicate that phenotype means and variance shift across 

development, typically in tandem. Based on CDC growth charts (Kuczmarski et al., 2002), 

variance in human height increases by roughly 1200% from birth to adulthood which is also 

the time over which the mean increases. Mean levels of many psychological dimensions also 

change across development, such as cognitive ability (Tucker-Drob, 2009), personality 
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(Roberts, Walton, & Viechtbauer, 2006), sensation seeking and delinquency (Harden, Quinn, 

& Tucker-Drob, 2011), and internalizing disorders (Hankin et al., 2009). Concomitant with 

these mean-level changes, variance also increases for academic achievement (NWEA, 2015), 

personality (Mõttus et al., in press; Mõttus et al., 2017), and psychopathology (Caspi et al., 

2014)4. Of course, mean-levels and variance do not increase continuously or uniformly 

across the lifespan (e.g., Mõttus et al., 2016, Tucker-Drob, 2011). Individuals tend to grow 

and mature across childhood and adolescence, followed largely by stability of means and 

individual differences in adulthood and possible declines in old age. There may be some 

limit on development, at least relative to the prevailing environmental conditions.

Behavior genetic models are rarely interpreted with these sorts of lifespan trends in mind. 

When evaluating the heritability of a phenotype in adulthood, it may be useful to consider 

the processes that could lead both to mean-level changes in the population and also to 

increases in variance of the phenotype. For instance, individuals could all grow in the same 

direction, but at different rates. Or, fan-shaped longitudinal patterns may emerge when some 

individuals decrease, while more individuals increase or increase to a greater extent. Just as 

phenotypic variance estimates for a phenotype reflect intermediate states that have resulted 

from an ongoing developmental process, behavior genetic variance components reflect a 

developmental process. The common practice to standardize phenotypes at each wave (e.g., 

as Z-scores) or treat age as a simple covariate masks this rich information.

2. Independent genetic and environmental effects

Genetic and environmental differences may influence phenotypes in an additive and 

independent manner. By “independent,” we mean the effects are not tied to GE-interplay and 

instead have relatively direct influences on the phenotype. This definition is admittedly 

murky as all growth requires both genetic and environmental factors to be present. Even so, 

we can imagine some allele that increases height by some constant amount in all individuals 

with the allele, in every environment that we observe in the real world. Similarly, there may 

be environmental experiences (e.g., getting struck by lightning or bitten by a radioactive 

spider) that have a constant impact on development for all individuals that experience it, and 

individuals do not select or evoke the environment on the basis of their characteristics. How 

many genetic and environmental effects are of this variety, compared to effects that are 

partially dependent on GE-interplay? Unfortunately, even though this question is a critically 

important one in behavior genetics and goes back to the earliest debates in the field (e.g., R. 

A. Fisher and L. T. Hogben, see Tabery, 2014), the answer remains unknown.

Despite this gap in knowledge, several things can be said concerning the structure of genetic 

and environmental influences. Twin and family studies provide estimates of heritability and 

environmentality for a wide variety of phenotypes (Polderman et al., 2015). Heritability is 

nontrivial for essentially all phenotypes, and estimates are also not particularly close to 0% 

or 100% for most common human individual differences. Turning to molecular genetic 

information, between 1% and 15% of common genetic variants may play a causal role in 

4Caspi et al. (2014) report longitudinal data on the psychometric structure of psychopathology across ages 18 to 38 years with 
approximately five waves for 11 disorders. Supplemental Table 1 reports means and standard deviations for each wave. When mean 
levels of psychopathology increase from one wave to the next, variance in psychopathology also increases (r = .78).
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height, cognitive ability, and personality, indicating substantial pleiotropy (Zeng et al., 

2018). The magnitude of these statistical associations is known to be incredibly small 

(Chabris et al., 2015). The results of genome-wide association studies (GWAS) remain 

correlational in nature. The results are unable to satisfy our definition of “independent” 

given above. Quite the contrary, it is well-established that polygenic scores derived from 

GWAS are at least partly correlated with environmental processes (e.g., Koellinger & 

Harden, 2018). On the environmental side, a comprehensive scan of the relevant 

environments has not been conducted, although it is likely that many relevant environments 

exist with small effect sizes (Turkheimer & Waldron, 2000).

3. Non-random mating

Assortative mating refers to the observation that individuals do not produce offspring with 

partners having random characteristics. Rather, individuals tend to mate with others that 

share similar characteristics (e.g., D’Onofrio et al., 1999; Eaves et al., 1999). Assortative 

mating may occur due to individuals actively selecting a particular trait in a partner (e.g., 

educational attainment), selecting partners on the basis of a phenotype correlated with some 

other trait (e.g., selecting on educational attainment also selects on cognitive ability), or 

selecting partners based on social categories related to access (e.g., being willing to partner 

with individuals who differ from one’s educational attainment, but being exposed to 

individuals with similar educational attainment, termed social homogamy, which may occur 

in the presence of other selection processes, e.g., McGue, Wette, & Rao, 1989). Partner 

similarity may also be observed due to partners influencing each other’s behavior (e.g., 

sharing a partner’s enthusiasm for education may motivate an individual to pursue further 

schooling).

Molecular genetic data has made it easier to distinguish among these possibilities. For 

example, at the phenotypic level assortative mating for educational attainment is moderate in 

size (r ~ 0.4), and partly due to genetic assortment (Domingue et al., 2014; Hugh-Jones et 

al., 2016). Results for other phenotypes are similar (Conley et al., 2016). One limitation of 

these studies is that they typically rely on polygenic scores, which are themselves estimated 

with considerable error. This error limits the precision of the estimate of genetic assortment 

and tends to push the estimates toward zero. Yengo and colleagues (2018) developed a 

technique to infer assortative mating from patterns found in the genome. They found 

significant assortative mating based on genotype for educational attainment and height, but 

not for 30 other phenotypes (potentially due to limited sample size of the underlying 

GWAS). The estimates from this approach matched those found when comparing genomes 

of actual couples.

The implications of these types of assortment differ for behavior genetic parameters. If 

positive assortment (i.e., partners have similar characteristics) occurs on the basis of 

genetically influenced factors, then partners will be more genetically similar than two 

random members of the population. Therefore, the expectation that the genetic correlation 

between dizygotic twins will be on average .5 is incorrect; the average will be shifted 

upwards, resulting in an underestimate of heritability. If negative assortment (i.e., partners 

have dissimilar characteristics) occurs, then the expectation would be reversed. However, 
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across a wide array of phenotypes, positive assortment is more common (D’Onofrio et al., 

1999; Eaves et al., 1999). Extensions of the classical twin design, such as extended family 

designs (Keller, Medland, & Duncan, 2010), can be used to estimate assortative mating, but 

these designs carry their own assumptions concerning the consistency of genetic effects 

across cohorts and ages. For molecular genetic studies, assortative mating could hinder 

confirmation of SNP associations. Specifically, tests of within-family associations will be 

less powerful to the extent that assortative mating exists in the population. Evidence of 

assortative mating from molecular genetic data has been documented for educational 

attainment, where estimates of within-family effects are systematically smaller than 

between-family effects (Lee et al., 2018), and sibling polygenic risk scores for educational 

attainment are more similar than would be expected by chance (sibling PRS r ~ 0.55, Belsky 

et al., 2018). Results found in a population with assortative mating will also be less likely to 

transfer to a population were assortative mating does not take place.

4. Individual developmental trajectories

Over the lifespan, effects may persist from birth (e.g., cesarean sections and immune 

function; Cho & Norman, 2013) or activate in response to some transition (e.g., puberty and 

genetic effects on rule-breaking; Harden et al., 2015). Effects may fade in importance (e.g., 

divorce and well-being; Lucas, 2007) or sustain their importance (e.g., parental support and 

social competence; Fraley, Roisman, & Haltigan, 2013). Effects may be static (i.e., stable 

across development), innovative (i.e., come “online” later in development) or decay (i.e., 

decrease in importance as time passes). Further, it is unlikely that phenotypic growth can 

continue constantly in any direction (Waddington, 1942). Put differently, there may be some 

sort of reaction range in which a phenotype may change within an individual, but the range 

is somewhat limited (Turkheimer & Gottesman, 1991).

Longitudinal behavior genetic studies have identified lifespan trends in estimates that 

coincide with phenotype growth. For example, personality and cognitive ability increase in 

test-retest stability, heritability, and genetic and environmental stability with age (Briley & 

Tucker-Drob, 2014; Kandler & Papendick, 2017; Tucker-Drob & Briley, 2014). The 

specifics of these trends differ substantially, however, potentially pointing toward contrasting 

developmental processes (Briley & Tucker-Drob, 2017). Nearly the entire increase in test-

retest stability of cognitive ability is driven by increasingly stable genetic influences. In 

contrast, nearly the entire increase in test-retest stability of personality is driven by 

increasingly stable environmental influences. Translating these aggregate trends into actual 

causal effects, such as those outlined at the beginning of this section, requires causal 

reasoning that is more detailed in terms of mechanism and developmental specificity (i.e., 

how, when, and where effects occur) than abstract proportions of latent variance (see Tucker-

Drob & Briley, in press).

Similarly, Haworth and colleagues (2010) demonstrated that the heritability of cognitive 

ability increases relatively linearly across childhood and adolescence, which is one of the 

most well-replicated results in behavior genetics (Plomin et al., 2016). However, there are 

many potential interpretations of this finding. New genetic influences may turn on and 

explain new variance, either in response to some sort of intrinsic maturational process or in 
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response to a novel environment (e.g., novel genetically influenced characteristics guide 

development after entry into school compared to prior). Alternatively, perhaps environmental 

influences decay and no longer impact cognition. Examining unstandardized shifts in 

variance components might help in this context.

GE-interplay could also result in increasing heritability for cognitive ability. We consider 

two plausible possibilities next.

5. Gene-Environment Correlation

Following Plomin et al., (1977), we distinguish between passive rGE (parents pass on 

correlated genes and environments to their children), evocative rGE (individuals evoke a 

response from the environment based on genetically influenced characteristics), and active 

rGE (individuals select or create environments based on genetically influenced 

characteristics). Empirical evidence suggests that rGE is ubiquitous. Kendler and Baker 

(2007) estimated moderate heritabilities for a wide range of environmental factors, such as 

stressful life events, social support, peer relationships, and marital quality. Similarly, 

parenting behaviors are heritable, not only on the part of the parent, but also in response to 

genetically influenced characteristics of the child (Klahr & Burt, 2014; Briley et al., 2014). 

These results from quantitative genetic studies are consistent with active or evocative rGE. 

Children may possess genetically influenced characteristics which their parents notice and 

respond to, or children may possess genetically influenced characteristics which lead to 

active influence on the parent. Passive rGE is somewhat easier to document with molecular 

genetic data. For example, Krapohl and Plomin (2016) found an association between family 

socioeconomic status and a polygenic score for educational attainment estimated for the 

child, both of which were also associated with actual academic achievement. Thus, parents 

provided an environment correlated with genetic material, and each of these factors are 

likely influential for child development (see also Krapohl et al., 2017). Passive rGE, in 

addition to assortative mating, may explain why within-family associations with molecular 

genetic data are weaker than between-family associations (Lee et al., 2018).

Strong theoretical models point to rGE as a central driver of development through the 

mechanism of selection into environments that match one’s characteristics (e.g., Beam & 

Turkheimer, 2013; Scarr & McCartney, 1983). For example, rGE may be a likely candidate 

for the increases in heritability across age. Teachers might observe aspects of their students 

related to the ability to pick up material quickly and provide tailored instruction. Although 

this might be good pedagogical practice, a side effect is that initial differences may become 

magnified. Similarly, students may actively choose their educational experiences, whether 

that is paying attention in class, completing homework assignments, or studying for exams. 

Each of these behaviors likely has some sort of causal influence on learning. Again, the 

initial preferences for engaging in these behaviors might magnify differences across 

development, increasing estimates of heritability. In particular, the increase in heritability is 

driven by earlier genetic influences exerting a stronger impact on later cognitive ability 

(Briley & Tucker-Drob, 2013). Importantly, these sorts of explanations for increasing 

heritability assume that the environment has a causal effect. If it did not, then a correlation 
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between genes and environments would be found, but would not affect phenotype 

development.

In addition to rGE leading to the enhancement of one’s characteristics, it is also possible for 

genetic variants and environments to act in opposite directions. For example, some 

individuals may possess genetic variants that increase levels of neuroticism, which is a risk 

factor for depression and anxiety disorders (Cuijpers et al., 2010). Individuals with relatively 

high levels of neuroticism may be more likely to seek psychotherapy, an environmental 

experience that appears effective at reducing levels of neuroticism (Roberts et al., 2017). 

This sort of rGE would not lead to increasing heritability estimates. Instead, the 

environmental experience may limit variance by moving extreme phenotypes toward the 

average. In some circumstances (i.e., if the intervention only acts on genetic sources of 

variance), heritability could be reduced. It is also plausible that the intervention is effective 

at the level of the phenotype, and therefore aggregate variance may be reduced without 

altering the genetic and environmental composition.

6. Gene × Environment Interaction

Theoretical arguments in favor of the pervasive presence of G×E interaction are popular 

(Manuck & McCaffery, 2014), although they are hindered by one limitation: there currently 

exists no single, confirmed, accepted-by-the-broader-scientific-community example of such 

an effect at the molecular level on any common human individual difference. The frequently 

used example, phenylkenonuria (PKU), is relevant to only a tiny fraction of the population 

with a Mendelian genetic disorder. One major limitation in this area is that the expected 

magnitude of G×E effect sizes remains unknown, with nearly all studies likely having very 

low power to detect the effects. Identification of main effects via GWAS exploded after the 

first few successful studies allowed researchers to understand the likely magnitude of the 

effect sizes.

Evidence of G×E effects from twin and family studies (outside of developmental impacts on 

heritability) is limited, with few published attempts at direct replication (see Plomin et al., 

2016, pg. 4). It is challenging to know whether this is due to a preponderance of negative 

results, which are generally less likely to be published, or due to natural variation in areas of 

interest and data availability between research groups, leading to structural challenges in 

collaboration and replication. Where direct replication has been sought, results appear 

inconsistently replicable across samples. This may be due to low statistical power, lack of 

true effects, or meaningful moderators. For example, the reported G×SES effects on 

cognitive ability emerge primarily in the United States, but not other parts of the world, 

potentially due to differences in social services (Tucker-Drob & Bates, 2016).

To the extent that such G×SES effects do impact development, heritability would be 

increased when the interaction effect is not modeled. This implication occurs due to the fact 

that monozygotic twins would respond similarly to a shared environment, but dizygotic 

twins would respond potentially differentially to the extent that genetic differences alter 

response to the environment. That process would magnify the difference between 

monozygotic and dizygotic twin similarity. Theoretically, genetically influenced 

characteristics may play a larger role in cognitive development in resource rich 
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environments, and in contrast, such characteristics may not be able to play a role in 

development when there are considerable obstacles to development in low resource 

environments (Bronfenbrenner & Ceci, 1994). It could be that this process early in life 

stratifies children’s educational outcomes (e.g., achievement, but also motivation, values, 

and relationships with teachers). Then, the subsequent development of the child is guided by 

this early event. Or, it could be the case that the effect of such G×E slowly and incrementally 

accumulates across the lifespan.

Molecular genetic data, particularly candidate gene studies, have a poor replication record 

for G×E (Duncan & Keller, 2011), although evaluation of the evidence is challenging in light 

of the quality and variety of available research (Duncan et al., 2014). Molecular G×E 

research has been hampered by incorrect methods (Keller, 2014), but even large-sample 

investigations with appropriate statistical controls demonstrate conclusively that the specific 

variants selected for the focus of early candidate gene work are not consistently associated 

with outcomes of interest, either in terms of main or interaction effects (Chabris et al., 2012; 

Samek et al., 2016; Haberstick et al., 2014; Haberstick et al., 2016). It is unlikely that G×E 

effects should be expected to be much larger than main effects (and the distribution may, in 

fact, be considerably closer to zero). Very large samples, at least as large as main effects 

GWAS and likely much larger still due to lower power for interaction terms (e.g., N >> 

100,000), will be necessary to detect interaction of specific genetic variant and 

environmental effects.

7. Simultaneous GE-Interplay

As emphasized earlier, GE-interplay substantially complicates interpretation of behavior 

genetic parameters. It is sometimes stated that behavior genetic models assume that GE-

interplay does not take place. We know this assumption is false. Therefore, the parameter 

estimates in standard models should be interpreted cautiously. To the extent that genetic 

influences are dependent on environmental context (G×E) or are systematically linked with 

environmental context (rGE), straightforward implications for development are difficult. For 

example, educational attainment is heritable. One interpretation is that genetic variants are 

associated with educational attainment in an invariant manner across all environments and 

all plausible environmental contexts. An equally plausible interpretation is that variants are 

associated only in certain environments (G×E), only when systematically exposed to certain 

environments (rGE), or are easily altered by some sort of intervention.

The impact of GE-interplay on behavior genetic parameter estimates can be reasoned out. As 

laid out by Purcell (2002) for twin studies, the typical interpretation states that correlation 

between genes and the shared environment results in shared environmental variance, and 

correlation between genes and the nonshared environment results in genetic variance. When 

genetic effects are dependent (i.e., G×E) on the shared environment (or vice versa), the result 

is genetic variance. When genetic effects are dependent on the nonshared environment (or 

vice versa), the result is nonshared environmental variance. However, these implications may 

not always be so clear. For example, if genes are correlated with nonshared environments 

that decrease the phenotype (e.g., neuroticism and psychotherapy), then the result would not 

be an increase in genetic variance. Similarly, there are likely many potential causal processes 
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that impact phenotype development that may not fit into the standard interpretation. 

Reasoning out the implications of a certain process in isolation requires understanding the 

phenotype.

For molecular genetic studies, the implications are somewhat different. To the extent that 

genes and environments are correlated in a way that the environment magnifies the initial 

genetic difference, the genetic variant effect size is increased. For example, if a SNP 

predisposes individuals to start smoking, then that SNP will likely be associated with lung 

cancer due to the environmental impact of smoking (e.g., Thorgeirsson et al., 2008). 

Similarly, if a SNP predisposes parents to behave in a certain way toward their children and 

then this SNP is passed on to their children, then the SNP will index both the environmental 

pathway and any other genetic pathway that may occur. A similar pattern has been 

demonstrated in recent studies of non-transmitted alleles displaying a statistical association 

with child variables (Bates et al., 2018; Kong et al., 2018). Again, these implications assume 

that environments match and amplify genetic effects. To the extent that correlated 

environments mask genetic effects, SNP effect sizes may be decreased.

The influence of G×E on molecular genetic associations is dependent on the form that the 

interaction takes, and only in cases of pure cross-over interactions will main effects be 

completely obscured. In all other cases of statistical interaction and with a large enough 

sample size, the main effect should be detectable even in the absence of knowledge of the 

moderating environment.

Multiple developmental processes could generate the empirical data observed in behavior 

genetic studies because GE-interplay processes may not be independent. Mechanisms like 

rGE and G×E may synergistically guide development (Tucker-Drob et al., 2013). Multiple 

forms of GE-interplay may lead to the increasing heritability of cognitive ability with age 

simultaneously. Stratified educational opportunity may limit opportunities for active rGE to 

occur, resulting in G×E. Although it is statistically straightforward to identify the 

implications of typical examples of rGE and G×E in isolation, we have little knowledge 

about the relative magnitude of each process, when in development these mechanisms exert 

a causal influence, or how the true cocktail of developmental inputs interact with one 

another. The developmental picture may be very complex. For example, Brant et al. (2013) 

found that the heritability of cognition increased more quickly for individuals with lower 

ability compared to high ability, with high ability adolescents similar to low ability children 

in terms of the magnitude of genetic influences. What combination of developmental inputs 

would produce such a potentially counter-intuitive finding?

Despite having some knowledge of the traces that rGE and G×E leave on behavior genetic 

estimates, it is not known how much each process contributes to any given estimate of 

heritability. In part, this gap occurs because each process is layered on top of the others, 

resulting in a complex developmental history of phenotype growth.
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Complexity, Compression, and the Gloomy Prospect

As a field, behavior genetics has produced substantial knowledge concerning replicable 

patterns of genetic and environmental influences across the lifespan (Plomin et al., 2016). 

Heritability is substantial (Turkheimer, 2000), but each SNP explains a tiny portion of 

variance (Chabris et al., 2015). There is some evidence of GE-interplay, even if the empirical 

data to this point have not identified many replicable examples for G×E. Genetic and 

environmental effects shift across the lifespan as phenotypes become more stable. Although 

the statistical and interpretational implications of GE-interplay processes are well-known, 

the magnitude of each process is not well-known. Worse still, the factors that affect behavior 

genetic estimates all occur potentially simultaneously and continuously across development, 

and they may even interact with one another in a nonlinear and highly complex fashion. 

Researchers can increase the reasonableness of their inferences from behavior genetic 

models by gaining clarity on what is known and unknown concerning processes that 

influence parameter estimates. Ruling out potential processes can substantially shrink the 

number of possible interpretations.

Some basic questions remain difficult to address: what processes led to an estimate of 40% 

heritability? Was it additive and independent genetic effects, rGE reinforcing initial 

differences associated with genotype, or some form of G×E? Would heritability have been 

40% if the sample was 10 years younger? Would heritability actually be 50% if assortative 

mating was correctly handled? Numerous papers have been written on the interpretive 

problems of heritability (e.g., Johnson, Penke, & Spinath, 2011; Keller et al., 2010; 

Turkheimer, 1998). Our point here is not to retread this ground, but instead to point out the 

number of considerations required. Each of these considerations can be deconstructed in 

isolation to infer what the impact would be on behavior genetic models. The real world 

combines them all simultaneously in different quantities for each phenotype.

In the face of such taxing complexity, a framework with which to visualize the impact of 

different combinations of structural inputs would be useful. A successful model could 

generate phenotype levels from the ground up, starting with partners producing offspring 

with synthetic genomes and environments. One goal could be to identify what sets of model 

parameters can fill in the gaps identified in this review. As noted, there are likely several 

plausible sets of developmental parameters that could lead to the empirical results found in 

the literature. It might be the case that several potential models could produce similar 

observed trends, such as increasing heritability with age. We view this as a useful 

demonstration of the potential for equifinality in behavior genetic models, a limitation of the 

models that could be overlooked due to implicit assumptions about the data-generating 

mechanisms. A simulation approach would force these assumptions to be explicit and would 

allow them to be contrasted with other plausible assumptions.

In this context, we may think of phenotype development or the task of individual-level 

prediction as falling along a continuum of complexity. At one end is perfect simplicity: a 

change in an input leads to a change in the output every time, and researchers are able to 

make accurate predictions with easily obtainable and cognizable information. At the other 

end, it may be the case that there is such complexity that a description of development 
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requires the full history of all variables at all points in time; the data stream is incapable of 

any compression. Under this scenario, the best anyone can do is record what happens. There 

is no more efficient way to express the observations, and the observations do not support any 

interesting predictions. Although behavior geneticists widely acknowledge that the 

phenotypes under study are complex (i.e., not having a single cause or simple set of causes), 

less consideration has been given to the potential compressibility of the phenotypes across 

individuals relative to the set of available variables (e.g., Li & Vitányi, 1997; Wallace & 

Freeman, 1987). By “compression,” we mean the ability to represent some large set of 

information in a more compact manner (Braddon-Mitchell, 2001; Sayood, 2005; Wheeler, 

2016). To what extent can behavior genetics move from thousands of genetic associations 

toward a cognizable and useful model of development (see Kendler, 2008)? This type of 

question has emerged most clearly in the literature surrounding the “gloomy prospect.”

The need to empirically evaluate the gloomy prospect

Under the limitations of empirical data collection, little behavior genetics research exists that 

explicitly considers the possibility of the gloomy prospect. Plomin and Daniels (1987, pg. 8) 

described the gloomy prospect as a situation in which “the salient environment might be 

unsystematic, idiosyncratic, or serendipitous events,” ultimately minimizing the possibility 

that much scientific progress can be made. Turkheimer and Gottesman (1996) used a 

simulation approach to illustrate the gloomy prospect; small shifts in environmental context 

completely removed all specific phenotype-environment associations. Turkheimer (2000, pg. 

163) applied the same gloomy outlook to molecular genetic associations in the real world 

due to the inherent complexity of development and noted that “the underlying complex 

causal processes would cause the apparent results [of molecular genetic studies] to be small, 

and to change unpredictably from one experiment to the next.”

The gloomy prospect is discouraging from an empirical standpoint as it implies that the 

upper limit for scientific progress in predicting and explaining future behavior at the 

individual-level may already have been reached or be reached without substantially more 

meaningful progress. If phenotype development is driven by genetic effects that manifest 

differently across environments that are peculiar to a given individual, then identifying the 

effect that a genetic variant has on development will necessarily also be idiosyncratic. If 

true, the clinical utility of genetic or environmental information about individuals will be 

largely worthless, since a plethora of interdependent factors (many of which are inaccessible 

due to a failure of measurement over development) must be known before reasonable 

predictions can be made.

Gloominess falls on a continuum, and how gloomy the prospect of giving an informative 

behavior genetic account depends on the phenotype. For example, it may be that things are a 

bit gloomier for personality compared to cognitive ability or anthropometric traits (e.g., 

Cheesman et al., 2017). If there is no GE-interplay and no other potentially biasing factors, 

then molecular genetic associations will replicate and the prospects for giving an informative 

account is not gloomy at all. But if, on the other hand, GE-interplay is extremely large and 

the effects of any genetic variant are entirely dependent on the (potentially random) 

environmental context, then it is unlikely that any genetic effect will replicate. This situation 
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would be maximally gloomy. However, most phenotypes likely fall somewhere between 

these extremes.

We suggest that a plausible starting point for identifying the “gloominess” of a phenotype is 

to investigate the seven developmental processes highlighted in this manuscript. Put 

differently, a greater understanding of phenotype processes (i.e., how the phenotype 

influences engagement with the environment), structure (i.e., how phenotypes covary), and 

development (i.e., how phenotypes respond to engagement with the environment in the 

context of other relevant phenotypes across the lifespan; see Baumert et al., 2017). Each of 

these questions can be addressed with behavior genetic methodology. For example, the field 

has established the genetic and environmental structure of many related phenotypes. We 

suggest that gains can be made in overcoming the gloomy prospect by better understanding 

our phenotypes, that is to say, gaining knowledge not only of genetic and environmental 

structure, but also of the processes that led to such a structure across developmental time. 

This work toward explanation is directly relevant to researchers interested primarily in 

prediction as the gloomy prospect may imply some upper limit on prediction. Evaluating 

simultaneous GE-interplay will be challenging, but such work could provide important 

insight into the mechanisms of phenotype growth.

Additionally, progress toward identifying the boundaries of the gloomy prospect could be 

made by drawing more heavily on animal models. Although the strength of animal models is 

typically seen as exerting control over environmental experiences, an increasing number of 

studies use designs in which GE-interplay is possible (Bell & Saltz, 2017; Freund et al., 

2013). For example, social niche construction refers to the tendency of certain organisms to 

form social groups partially based on genetic differences (i.e., rGE; Saltz & Foley, 2011; 

Saltz & Nuzhdin, 2014). This behavioral tendency has also been found to be context 

dependent (Saltz, 2011) and influence development (Saltz, 2013, 2014). More generally, 

animals exhibit repeatable behavioral syndromes (Bell, Hankison, & Laskowski, 2009; Sih, 

Bell, & Johnson, 2004), similar to human personality, and a host of tools are available to 

better explain and predict these patterns (Bengston et al., 2018). This work may be better 

situated to address major unanswered questions in human behavior genetics, such as 

potential sources of Gene × Environment interaction. Lee et al. (2018) found relatively few 

leads on why genetic associations with educational attainment might vary across contexts 

(although, see Tropf et al., 2018 for an analysis with individual-level data), but the animal 

literature may offer further clues (see Saltz et al., 2018). Of course, evidence from animal 

models may be difficult to extrapolate to a phenotype like educational attainment, but the 

ability to track the effect of GE-interplay on development dynamically and consistently 

across the lifespan is a major advantage of animal models.

Communicating complexity

Given the complexity of development, disseminating results to researchers outside of 

behavior genetics or to the lay public is difficult due to perceptions about genetic influences 

that may not be warranted, such as strict genetic determinism (Dar-Nimrod & Heine, 2011). 

In order to head off misinterpretations, some researchers have written publicly-accessible 

responses to frequently asked questions as accompaniments to major publications (e.g., 
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Rietveld et al., 2013). In addition to answering frequently asked questions, researchers 

should describe competing mechanisms by which the observed data could have been 

generated, which would help other researchers and the public to better interpret the results. 

For example, we might find a non-trivial heritability of educational attainment (Lee et al., 

2018). One possibility is that this heritability relates to fixed genetic effects. However, if the 

heritability of educational attainment were entirely filtered through environmentally 

mediated processes that were quite distant from the genome (e.g., via reinforcement due to 

parental cognitive stimulation; Tucker-Drob & Harden, 2012) and effectively modifiable by 

intervention (e.g., universal preschool; Tucker-Drob, 2012), then different implications 

would be drawn. This descriptive example could be an effective tool for communicating with 

the general public that high (or non-zero) heritability estimates do not imply an absence of 

environmental processes. A better understanding of phenotype inputs across development 

could aid in distinguishing these potential mechanisms.

Conclusion

Behavior genetics has a public communication problem, partly due to the disconnect 

between our simplistically presented models and the long list of required caveats and 

assumptions. Common intuitions concerning genetics (e.g., Dar-Nimrod & Heine, 2011) 

likely lead to shortcuts about the causal relation between some genetic variant and an 

outcome. For example, a person may intuitively believe that an association between a SNP 

and educational attainment is deterministic and not sensitive to any sort of environmental 

input. Vague statements about GE-interplay and other caveats of the models (e.g., behavior 

genetic models reflect what is, not what could be) may not be maximally effective. 

Identifying and interrogating the most likely and robust models that are plausibly involved in 

human development may allow for a more nuanced discussion of phenotypes, both among 

researchers and between researchers and the general public. Further, we suggest that 

discussion among researchers could benefit from clarifying the motivation of scientific 

inquiry, whether aiming at understanding nature, predicting individual-level outcomes, or 

gaining control over development. Some of the complexity we highlight may be particularly 

relevant to researchers aiming at understanding, rather than prediction or control. Unifying 

across these goals may improve behavior genetic theory and utility.

In this report we have laid out a set of known empirical behavior genetic results, and at the 

same time, the interpretive ambiguity that accompanies these results. Although the 

implications of GE-interplay for various analytic models are relatively straightforward 

(Purcell, 2002), a difficulty emerges when applied to development, where multiple 

interdependent inputs exert pressure on phenotypes. As genetically-informative models of 

development move toward specifying small-scale, mechanistic inputs (Briley et al., 2018; 

Nivard & Boomsma, 2016; Tucker-Drob & Briley, in press) in addition to broad-scale inputs 

(e.g., Plomin et al., 1977; Scarr & McCartney, 1983), we encourage nuanced thinking 

concerning the causal chain that leads to estimates of heritability and molecular genetic 

associations. Such considerations may lead to different solutions to causal reasoning 

problems or judgments of human agency (see Lynch, 2017).
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All phenotypes of interest to behavior geneticists are complex by one measure or another. 

The question becomes how complex, whether doomed to a true gloomy prospect, whereby 

the intractably complex developmental processes that lead to the outcome of interest are so 

unique as to be essentially ungeneralizable beyond a single individual, or rather may be 

placed along a spectrum of relative gloominess. That is, relative complexity is bound to vary, 

with some phenotypes being simpler to disentangle than others. Existing empirical trends 

provide a tool to narrow down the likely candidates, from a universe of nearly infinite 

possibilities.
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