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Guidelines for antibiotic use are among 
those public health conundrums with 
the highest stakes in modern medicine. 
Antibiotics remain our main treatment 
response to potentially fatal bacterial 
diseases, preventing millions of deaths 
every year, and there is emerging evi-
dence for the benefits of preventive 
antibiotic administration. For example, 
preemptive azithromycin use in healthy 
children in regions with a high child 
mortality rate can increase survival well 
beyond the capacity of the majority 
of other targeted interventions [1, 2]. 
Conversely, there is compelling evidence 
that antibiotic use leads to an increased 
prevalence of antibiotic resistance in the 
community [3, 4], to an increasing pro-
portion of multidrug-resistant infections 
that are no longer treatable, and even-
tually to a blunting of our antimicrobial 
arsenal [5, 6]. Appropriate antibiotic use 
is thus a trade-off between medical best 
practice for improving patient outcomes 
and the wider public health implications 
of antibiotic use at the community level. 
Balancing this trade-off is particularly 
challenging in instances where a substan-
tial increase in antibiotic use in the com-
munity offers somewhat marginal health 
benefits, as is the case for the immediate 
treatment of otitis media as compared to 
a “reactive” prescribing strategy triggered 

only by the worsening of symptoms [7]. 
Proposing an evidence-based solution 
to this issue requires understanding and 
quantifying the mechanisms underpin-
ning transmission of bacterial carriage 
and the selection pressures governing 
the introduction and maintenance of 
nonsusceptible strains.

To elucidate these mechanisms, 
Lewnard et al, in this issue of The Journal 
of Infectious Diseases, investigated the 
individual-level effect of antibiotic pre-
scription on carriage of penicillin-nonsus-
ceptible pneumococci [8]. In a secondary 
analysis of a randomized, double-blinded, 
placebo-controlled trial, the authors stud-
ied the effects of immediate versus reactive 
administration of amoxicillin-clavulanate 
therapy to children attending primary 
care for acute otitis media, over a 2-month 
follow-up period. As otitis media is the 
main reason for antibiotic prescribing in 
children in high-income settings and con-
tributes substantially to overall antibiotic 
use [9, 10], understanding both the clin-
ical impact and the selective pressure of 
antibiotic prescribing for otitis media is a 
key part in the optimization of antibiotic 
prescription strategies.

This reanalysis shows clear evidence 
that a strategy of immediate prescrib-
ing following diagnosis confers a fitness 
advantage on nonsusceptible strains: 
amoxicillin-clavulanate–based treatment 
substantially reduces carriage prevalence 
of penicillin-susceptible pneumococci but 
that of not their nonsusceptible counter-
parts. The largest effect, an 88% reduction 
in carriage of susceptible strains versus 
the placebo arm, was seen at the first 
follow-up visit, which was a week after 
enrollment and the end of the treatment 

course. Moreover, 2 months after enroll-
ment, the prevalence of penicillin-sus-
ceptible pneumococcal carriage in the 
treatment arm had rebounded but to a 
much lower level than it had been before 
treatment (52% vs 30%) and to a slightly 
lower level than in the control arm (41% 
vs 30%). Furthermore, the study provides 
evidence that that this fitness advantage 
is conferred by two mechanisms. First, 
treatment preferentially clears resident 
susceptible strains from the nasopharynx 
(7% vs 61% carriage prevalence imme-
diately after treatment), with lower car-
riage prevalence of penicillin susceptible 
strains observed seven weeks after ending 
treatment (35% vs 64%) . Second, treat-
ment may actively block recolonization 
by susceptible strains (2% vs 9% preva-
lence at end of treatment in participants 
uncolonized at enrollment)—possibly 
even during the days, or weeks, after the 
course is complete (2% vs 12% carriage 
prevalence one week after treatment has 
ended). These two mechanisms result 
in a vacated niche in the treatment arm, 
cleared of susceptible strains.

One would expect that in the treated 
patients, the vacated niche would be filled, 
in part, by penicillin-nonsusceptible 
pneumococci, yet there was no evidence 
for this. While this finding is somewhat 
reassuring, it is important to note that 
the study was only powered to detect 
roughly a doubling of the prevalence of 
penicillin-nonsusceptible pneumococcal 
carriage. For comparison, a prospective 
observational study in Malawi detected 
an increase of about 20% in the preva-
lence of cotrimoxazole-nonsusceptible 
pneumococci in the weeks following 
treatment. However, mass administration 
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of azithromycin in a cluster randomized 
trial led to almost a 5-fold increase in 
carriage of azithromycin-resistant pneu-
mococci, compared with control clusters 
[5], hinting at a likely nonlinear rela-
tionship between individual-level and 
population-level effects of antimicrobial 
resistance.

The reanalysis by Lewnard et  al ele-
gantly highlights the complex dynam-
ics between carriage and treatment that 
underlie the deceptively simple linear 
relationship between antibiotic use and 
resistance across commensal bacteria 
and drug combinations that has been 
reported across Europe [3]. The explicit 
dynamics of increased antimicrobial 
use and a subsequent rise in resistance 
are poorly understood but are likely 
governed by a highly nonlinear com-
bination of factors, with competition 
between susceptible and nonsusceptible 
strains as the balancing mechanism at its 
core [11–13]. This gap in our knowledge 
implies that, to date, it remains impossi-
ble to adequately quantify the trade-off 
between the benefits of a specific antibi-
otic use recommendation and its impli-
cations for increased resistance and 
associated health losses. In particular, 
assessing population resistance levels 
may be complicated both by a delayed 
effect of changes in prescribing rates 
and by the uncertainty associated with 
inferring population-level effects from 
individual-level observations. Although 
we are yet to fully grasp an intuitive 
and mechanistic understanding of this 
relationship between antibiotic use 
and resistance [14–16], it is clear that 
results such as those from the study by 
Lewnard et al will be essential to empir-
ically parameterize the selective pres-
sures on pneumococcal transmission. 
Encouragingly, transmission models of 
resistant pathogens have routinely relied 
on calibrating their output by using the 2 
fitness advantages reported by Lewnard 
et al [12], and, hence, this study will help 
better equip future endeavors that aim 
to quantify the impact of competition 
on observed resistance levels.

Ultimately, we must work toward a 
mechanistic understanding of resistance 
transmission if our goal is to inform public 
health decision making for antibiotic use 
guidelines. With similar work on other 
bacteria and treatment combinations, we 
will build a comprehensive understanding 
of resistance acquisition and transmis-
sion across pathogens. Finally, we antic-
ipate that strengthened evidence of the 
relationships between antibiotic use and 
resistance from countries outside Europe, 
especially those with higher rates of anti-
biotic use, will guide and corroborate our 
mechanistic understanding of the evolu-
tion of antibiotic-resistant strains.
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