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Abstract

Rationale for review: The increasing mobility of populations allows pathogens to move rapidly and far, making

endemic or epidemic regions more connected to the rest of the world than at any time in history. However, the

ability to measure and monitor human mobility, health risk and their changing patterns across spatial and temporal

scales using traditional data sources has been limited. To facilitate a better understanding of the use of emerging

mobile phone technology and data in travel medicine, we reviewed relevant work aiming at measuring human

mobility, disease connectivity and health risk in travellers using mobile geopositioning data.

Key findings: Despite some inherent biases of mobile phone data, analysing anonymized positions from mobile

users could precisely quantify the dynamical processes associated with contemporary human movements and

connectivity of infectious diseases at multiple temporal and spatial scales. Moreover, recent progress in mobile

health (mHealth) technology and applications, integrating with mobile positioning data, shows great potential for

innovation in travel medicine to monitor and assess real-time health risk for individuals during travel.

Conclusions: Mobile phones and mHealth have become a novel and tremendously powerful source of information

on measuring human movements and origin–destination-specific risks of infectious and non-infectious health

issues. The high penetration rate of mobile phones across the globe provides an unprecedented opportunity to

quantify human mobility and accurately estimate the health risks in travellers. Continued efforts are needed to

establish the most promising uses of these data and technologies for travel health.
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Introduction

Human populations are highly mobile in this modern world.
The volume of worldwide population travel has expanded at an
exceptional rate over the last few decades, with international
tourist arrivals increasing from 674 million in 2000 to 1.3
billion in 2017 and expected to reach 1.8 billion by 2030.1,2

The increasing mobility of populations allows pathogens to

move rapidly and far, making endemic or epidemic regions more
connected to the rest of the world than at any time in history.
The pathogens introduced by travellers may lead to secondary
transmission and local outbreaks, as has been observed in severe
acute respiratory syndrome, influenza, Ebola, Zika, yellow fever
and measles, among others, or to the appearance of diseases such
as malaria in non-endemic areas following migration for work or
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Figure 1. The penetration rate of mobile cellular subscriptions by region, 2000–2017 (Data source: The World Bank 22).

travel to visit friends and relatives.3–13 The spread of infectious
diseases and their potential health risk in travellers has resulted
in substantial concerns and challenges to global health systems
and economies,14–17 with a need to place more emphasis on under-
standing population mobility, infectious disease connectivity and
the individual health risk of travellers.

Human movements vary from short, periodically recurring
travel to work or school, to rare international migration, but the
ability to measure and monitor human mobility and its changing
patterns across temporal (hour, day, week, month or year) and
spatial (individual, house, community, city or nation) scales
using traditional data sources has been limited. In resource-poor
settings, demographic data collected via traditional censuses and
surveys at subnational scales can often be lacking or outdated.18

However, many recent studies have highlighted how our under-
standing of human mobility across contexts can be significantly
improved through quantitative analyses of positioning data from
the huge population of mobile phone users.19,20 In 2017, there
were already over 5 billion unique mobile subscribers globally,
with a penetration rate of 66% of the global population, and
the total number of mobile cellular subscriptions exceeds the
world population at 7.79 billion.21,22 Moreover, mobile phone
penetration is constantly rising and is predicted to nearly reach 6
billion users by 2025 with 5 billion connecting to internet.21,23

Even in the most resource-poor regions, such as Sub-Saharan
Africa, the penetration rate of mobile cellular subscriptions has
reached 75% of the population in 2017 (Figure 1), which is
estimated to steadily increase to 85% by 2025.21,22 As mobile
phones are now an integral part of modern life, mobile position-
ing data have become a novel and tremendously powerful sources
of information on measuring human movements and pathogen
spread.12,19,20,24–35

Quantifying how people move throughout their daily activ-
ities within the context of spatial risks enables a better under-
standing of environmental drivers of infectious disease, as well
as chronic disease and other issues that involve long-term dif-
ferences in exposure and mobility during travel.36–39 Recent
advances in mobile health (mHealth) technology, together with
the increasing penetration of smartphones and the internet,
have facilitated the monitoring of traveller health behaviour
and assessment of environmental risks, e.g. air pollution, and

offer more reliable and more frequently updated ‘apps’ that
consolidate travel health information from multiple sources in
travel medicine research and practice.36,37,40–45

To facilitate a better understanding of the use of mobile
phone data in travel health, here we review the research work
aimed at measuring human movements, disease connectivity and
health risk in travellers using mobile geopositioning data and
mHealth technology. We searched PubMed for all related studies,
published up until 5 March 2019 and in English, by the queries
‘(mobile phone OR cell phone OR smartphones OR call detail
records OR mHealth OR eHealth) AND (travel OR mobility
OR movement OR connectivity) AND (disease OR health OR
risk OR illness)’ in the title and abstract fields. The number of
relevant publications resulting from these searches has grown
rapidly over the last decade (Figure 2). We also searched the
relevant reports and reviews published by the World Health
Organization , and relevant references cited in publications were
also reviewed. In this paper, first, we outline traditional and novel
data sources for measuring population movements, highlighting
the potential of mobile positioning data. Then, we sketch out
approaches using human mobility data as a proxy for infectious
disease connectivity. Further, the progress of mHealth for indi-
vidual health risk monitoring and assessment in travel medicine
research and public health practice is also summarized. Finally,
we discuss the challenges of using mobile phone data and future
directions for research in this area.

Measuring human mobility using mobile phone

data

Traditionally, approaches to measuring human mobility rely
on data from population and housing censuses, travel history
surveys or cross-border and traffic surveys (Table 1).35,46,47 With
technological advancements, however, increasing numbers of
novel data sources have been used to measure human move-
ments. Data from small-scale studies using personal Global
Positioning System (GPS) trackers provide information on short-
distance, circulatory movement and can directly inform activity
spaces, the local areas within which people move or travel during
the course of their daily activities.35,48,49 The trajectories of bank
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Figure 2. The number of relevant publications searched in the PubMed as of 5 March 2019.

notes were traced to model human mobility over a long time
period.50 Data of global air traffic and itineraries have also been
analysed to measure internal and international connectivity and
its impact on the spread of pathogens and vectors at city or
airport level.3–8 Infrastructure data have also been used to define
the connectivity between regions with the travel time as a proxy
of human mobility and health accessibility.51,52 Moreover, earth
observation data, such as satellite imagery of night-time lights
can help inform on the changing densities of populations within
cities over the course of a year.35,53 Mobile phone data are par-
ticularly promising for analysing travel-related phenomena on
a scale previously impossible, providing a ‘big data’ approach to
understanding human mobility and its changes.16–30 Two types of
mobile-based positioning data that have so far been increasingly
explored in travel-related studies are call detail records (CDRs)
and mobile location history.

CDRs

CDRs are routinely collected by mobile phone operators for
billing purposes.20,31 Each CDR contains an entry for each call
or text made or received by any user with the subscriber iden-
tification module (SIM) card, together with the date and time
of each communication and the tower that the communication
was routed through within mobile phone networks.23,24 Every
time an individual makes a call or sends a text via a short
messaging service, it normally will be routed through the closest
tower in the network. If these data are available in conjunction
with geographic coordinates of relevant towers, then the tower-
level location of each communication can be identified, and
from this, the movement of individual mobile users between
different calls can be derived. When mobile penetration rate is
high in the population, or mobile users’ movements could be
taken to represent the mobility pattern of the general popula-
tion, spatially and temporarily explicit estimations of human
mobility and densities at national scales can be derived from
anonymized CDRs. Previous studies for Namibia, Bangladesh,
Portugal and France have shown that estimates derived from
CDRs can accurately replicate population counts and migration
patterns from censuses.19,30,54–57 In these studies, each individual
user was assigned a primary daily location based on either the
most frequently used mobile phone tower or the most recently

used mobile phone tower if a communication was not placed
on the day. However, as the data on very infrequent mobile
phone users may introduce noise in defining locations and pop-
ulation mobility, infrequent mobile phone users, e.g. a subscriber
with 30 days or less worth of data for each year, could be
filtered out to obtain more accurate estimates of population
movements.58

Furthermore, these passive positioning data derived from
CDRs can also be used to measure seasonal changes in
subnational population numbers and produce density maps of
human distribution changes over multiple timescales, providing
more precise denominators for health metrics than static
measures from censuses.20 However, CDRs cannot measure
spatial movements finer than tower-level spatial resolution,
and estimates are limited to domestic movements, as it is more
difficult to obtain CDRs from operators in different countries
to get estimates of international traveller flows. Nevertheless,
mobile phone location history data are promising for measuring
cross-border movements, as outlined below.

Mobile location history

When smartphones are connecting to the internet, various appli-
cations record user check-in locations with high spatial precision
where various services are used.34,35,59,60 Location history data
can be extracted from populations using mobile-based social
media, e.g. Tweets, Facebook and WeChat, search engines, e.g.
Google and Baidu, and other applications such as mHealth
apps.34,35,56,57 These data are associated with a consolidated user
account, allowing for recording of geographic coordinates that
are passively recorded across all mobile devices that an individual
has owned. Because location is identified using a combination of
the phone’s internal GPS and connected WiFi devices and cell
towers, these data are as spatially refined as GPS tracker data
and can span years. Moreover, the passively collected nature of
these data avoids many known biases from compliance issues in
studies that use GPS trackers and avoids recall bias found in self-
reported travel history data.35 However, the biases may still exist,
as the smartphone penetration is still very low in low-income
countries. The opt-out nature makes them sensitive and careful
controls and ethics clearance need to be in place before accessing
these data.
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The high resolution of mobile-based location history data,
however, means they are one of few viable sources of information
for better understanding and mapping these differences towards
mapping activity spaces and travel routes across long periods and
countries. For instance, studies using Google location history and
Twitter geotag data, being collected in an opt-out, passive fashion

for users, demonstrated that mobile location history can be a
reliable source to capture rich features of mobility movements
within and between cities and even between countries.35,59 Fur-
ther, based on CDRs and social media location history data from
different nations, a variety of individual and collective mobility
patterns can be accurately predicted by using a universal model

Table 1. Traditional and innovative data sources for measuring human movements

Data type Description Strengths Challenges

Traditional data source

Population and housing
census

Assembly of population
and housing census data
on place of residence
1–5 years ago.

Primary source for migration statistics;
Global extent, consistent measure for
complete population;
Shows strong correlations to shorter scale
domestic and international movements;
Of value for global, continental, regional
connectivity assessments.

Long-term movements and
permanent migrations only;
Coarse spatial scale, bias to longer
spatial scales;
Lack of census data in countries
affected by conflicts;
Normally collected once every
decade.

Travel history surveys Travel log collected at
health facilities, or
through active
surveillance/surveys.

Valuable data on relevant population
pathogen movements;
High value for measuring temporal trends
in domestic and international travel;
Important data for refining and validating
models.

Not collected in many settings;
Sample a small proportion of
population;
Selection and recall biases;
Difficult to access, inconsistent
coverage/quality.

Cross-border and traffic
surveys

Counting the number of
cars and people that are
crossing a border.

Cross-border movements;
Measuring seasonal patterns by multiple
cross-sectional surveys

Difficult to obtain the origins and
destination locations of travel;
Difficult to capture the whole
picture of movements in where
there are porous borders.

Novel data source—mobile phone

CDRs Individual-level records
routinely collected by
mobile phone operators
for billing purposes,
located to cell towers.

Cover large population of mobile users,
potential to track hard-to-reach
populations;
Rich spatiotemporal data on individual,
fine-scale movements;
Capture long time series and seasonality
with timely information;
Of value for national-scale analyses,
assessing population distributions, disease
connectivity, and the parameterization of
mobility models.

Difficult to access and share;
Ownership biases;
Privacy issues and loss of
information due to anonymization;
Difficult to capture international
movements.

Smartphone-based
internet/social media
location histories

Geolocated data on use of
internet/social-media-
connected devices,
integrating online media
content.

Timely, spatially precise positioning data on
users’ locations;
Long time series to capture seasonal
domestic and international travel of users;
Rapidly increasing penetration, potential to
track hard-to-reach populations;
Richness of information to understanding
social connections and behaviours.

Ownership and selection biases,
changing sample over time;
Data availability and loss of
information due to anonymization;
Privacy and ethical issues;
Additional logistical, technical
issues for analysis.

mHealth apps data Individual travel history
and health risk
monitoring data collected
by the mobile
applications for mHealth.

Timely information on users’ location;
High value in real-time individual travel
patterns, environmental exposure
monitoring and health risk assessment
during travel;
Improving healthcare access for travel
medicine and public health interventions;
Of value for the individual-level
quantitative research on travel-related risk
exposure and health outcome.

Reliability of self-reported
information;
Selection bias and small sample
size;
Indicators for measuring the risk
and exposure;
Privacy and ethical issues.
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Table 1. (Continued)

Data type Description Strengths Challenges

Novel data source—other

Air travel data Route aggregated
statistics of flight
passengers and air
transportation network
data.

Includes the origins, stops and destinations
at airport or city level;
Captures seasonality in long time series;
High value in route-scale analyses, assessing
international connectivity and modelling
the risk of pathogen spread.

Incomplete picture of population
movements;
Difficult to access travel itinerary
data, and lacks demographic data;
Coarse spatial scale and difficult to
capture the origins and
destinations beyond airports.

Infrastructure Georeferenced data on
transport links that form
the basis of regional
mobility.

Global coverage, consistent data;
Useful proxy indicative of mobility,
connectivity and healthcare accessibility.

Based on an assumption that those
travel times influence how
population’s move; no measure of
actual movements;
Few time series;
Validation.

Earth observation data Data collected via
remote-sensing
technologies to monitor
and assess the status of
and changes in
environments, e.g. satellite
nightlight imagery

Proxy measures of population movements;
Global coverage and high spatial resolution;
High comparability and timely information.

No actual movements with
unknown origins and destinations;
Methodological and technical
issues;
Continuity and validation.

at diverse spatial scales.34 Therefore, mobile phone data provide
an unprecedented opportunity to understand global and seasonal
dynamics associated with contemporary human mobility.

Mobile-derived human movements and disease

connectivity

Based on the enormously detailed travel itineraries that mobile
phone data can produce, patterns of pathogen spread through
space and time can be simulated and measured using individual
human movement trajectories combined with existing knowl-
edge on pathogens. Though some pathogens are transmitted
via vectors or animal hosts, most infectious diseases rely on
human movement for wide-scale spread, and even for those
spread by vectors, human movement plays a substantial role
in transmission dynamics.61,62 To measure the risk of infectious
disease spread via travellers by various modes of transporta-
tion, a variety of individual or metapopulation-based statistical
and mathematical models have been used to estimate the time,
origins, destinations, probability and magnitude of pathogen
importation and onward transmission from epidemic or endemic
areas (Table S1 available as Supplementary data at JTM online).
To date, mobile-derived human mobility, especially using CDRs,
have been used to explore the transmission of malaria,12,31,55

dengue,29 cholera,63 measles,64 rubella,28 Ebola,65,66 and HIV
infection.67

Taking malaria as an example, we illustrate how spatiotem-
porally explicit mobility derived from mobile positioning data
has been used to define malaria connectivity and inform inter-
ventions. Although malaria is a mosquito-borne disease, human
travel-mediated transmission on spatial scales that exceed the
limits of mosquito dispersal has been undermining the success
of malaria control and elimination programmes that have been

implemented in many countries.10–12,68 The early detection and
treatment of imported parasites due to human travel become high
priorities for informing malaria elimination policy. A variety of
models, integrating CDR-derived human mobility and malaria
epidemiological and entomological data, have investigated the
dynamics of human carriers to identify importation routes and
locate transmission foci that contribute to malaria epidemiology
for endemic countries in sub-Saharan Africa, Mesoamerica and
South-East Asia.12,26,31,46,55,56,69,70 In these studies, spatial clusters
of primary sinks and sources of parasite importation and their
seasonal changes were disentangled, with the estimates of net
export and import of travellers and infection risks by region.
Using near real-time mobile-derived mobility data, this evidence
can be rapidly updated and used to identify where active surveil-
lance for both local and imported cases should be increased,
which regions would benefit from coordinating efforts and how
spatially progressive elimination plans can be designed.55 To
achieve local or national malaria control or elimination goals,
even global malaria eradication, these approaches and find-
ings have significant implications for targeting interventions
at source locations to maximally reduce the number of cases
exported to other regions, as well as providing health advice and
healthcare for the travellers visiting to or returning from source
regions.31,55,56

It is noteworthy that models parametrized by various mobil-
ity data sources and spatiotemporal resolutions can generate
divergent outcomes.32 Based on a spatially structured reaction–
diffusion metapopulation model where the whole population is
divided into sub-populations connected by mobility fluxes, a
previous study found that the adequacy of mobile phone data
for infectious disease models becomes higher when epidemics
spread between highly connected and heavily populated loca-
tions, such as large urban areas.32 Furthermore, seasonal and

https://academic.oup.com/jtmedi/article-lookup/doi/10.1093/jtmedi/taz019#supplementary-data
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geographic spread of pathogens depends on connectivity fluctu-
ations through the year, because seasonal travel and directional
asymmetries could be across a spectrum from rural nomadic pop-
ulations to highly urbanized communities, with combined effects
of school terms and holidays.33 These variations in travel impact
how fast communities are likely to be reached by an introduced
pathogen. In addition to measuring the risk of pathogen spread,
mobile-derived population movement data also play an impor-
tant role in understanding the relationship between geographic
isolation and health disparities by measuring the accessibility of
health resources,71 identifying vulnerable and high-risk popula-
tions in vaccination campaigns28,64 and evaluating interventions,
e.g. screen/travel restrictions for epidemic containment.66

mHealth applications and risk assessment in

travellers

Because mobile positioning data are opt-out and are passively
collected as users carry their smartphones, the recent rise of
mHealth methodology, e.g. smartphone applications, offers new
opportunities to capture the full range of health risks during
travel in real time, from travel location, physical activity, health
symptoms and sleep to environmental hazards such as extreme
weather conditions and air pollution.42 For instance, mHealth
has been used for dynamic assessment of exposure to air pollu-
tion during travel.36,37

Research on travellers using mHealth applications offers
many advantages in improving risk assessment over prior
methodologies such as pre- and post-travel risk questionnaires.
Using mHealth applications to assess risk in travellers daily
during their trips minimizes the risk of recall bias that is an
inherent problem in administering health questionnaires weeks
or months after the event actually occurred during the trip. In
addition, novel publicly available data sources (e.g. weather
patterns, social media data, traffic patterns) can be integrated
with daily self-reported data on symptoms and risk behaviours in
order to create a complex picture of how environmental factors,
health behaviours and personal risk factors interact during travel
to create health outcomes. The ability to create a real-time map
of traveller health events such as traffic accidents or infectious
disease transmission has the potential to improve medical advice
given prior to travel and enable a faster public health response
to major events. Finally, prior research suggests that participants
may be more likely to share sensitive or socially unacceptable
information on an online form, improving understanding of rates
of risky behaviours during travel.72

Farnham et al.42–45 used mHealth technology to identify the
range of health outcomes during travel using real-time moni-
toring and daily reporting of health behaviours and outcomes
and identify traveller subgroups who may benefit from more
targeted advice before and during travel. In this mHealth-based
study, non-infectious disease-related health issues were com-
monly found in travellers, despite being largely unaddressed in
traditional travel medicine research; in addition, clear patterns
of traveller behaviour and health outcomes emerged, suggesting
that subgroups of travellers exist for whom specialized medical
advice is needed. These results suggest a substantial potential
for improving evidence-based travel medicine advice. Rodriguez-
Valero et al. developed an mHealth application that tracked

incidence of disease among travellers in real time and provide
telemedicine care to ill travellers.73 This study suggests the poten-
tial of mHealth for detecting and responding to traveller health
issues in real time, providing a two-way monitoring and response
application. These studies also show that the use of a smartphone
app to collect health information is technically feasible and
acceptable among a traveller population, allowing researchers to
minimize recall bias, greatly increases the quality and quantity of
data collected during travel and even respond to emergent health
issues. Therefore, inferences from data monitored by mHealth
apps can yield important insights for health risk assessment
that were previously impossible in travel medicine. Moreover,
mHealth data from a smartphone application integrated with
streaming data sources have supported healthcare delivery, lab-
oratory diagnostic tests and data collection and allowed for
the operation of a national-level disease reporting and health
surveillance with fine geolocated data at a low cost.74–79

Discussion

It has long been appreciated that population movements drive the
transmission patterns and intensity of many infectious diseases.
Understanding the changing patterns of human travel over time
is critical for tailoring and updating evidence-driven surveillance
and strategies to address travel-related health issues.80 In this
study, although a systematic literature review approach was not
performed by using a comprehensive search strategy to collate
all relevant empirical evidence, we still found the highly detailed
mobile positioning data undoubtedly provide one of the most
powerful, scalable and real-time data sets on human mobility
available, yielding insight into individual’s movement trajectories
across various time and space scales. The advantages of using
this innovative data source for travel-related aspects are linked
to its potential to overcome many limitations of traditional data
sources and other approaches. Moreover, the recent advance
of mHealth technology, together with mobile positioning data,
shows great potential for innovation in travel medicine to mon-
itor and assess real-time health risks for individuals during
travel.32,42 However, there are a number of challenges that must
be met to ensure the success of using mobile-derived human
movement data.

First, there are always confidentiality and ethical issues in
using mobile positioning data automatically generated by indi-
viduals. This makes the location data held by individual, private
or state actors logistically difficult to be accessed, as it is lim-
ited by the telecom, internet and data-protection regulations in
many countries.23,81 To facilitate data sharing and avoid privacy
and commercial concerns, appropriate safeguards should be in
place to ensure data security, with data anonymization and
aggregation taking place on separate servers hosted by opera-
tors behind operators’ firewall before sharing.82 As the public
health usefulness of these data continues to be demonstrated,
mobile phone operators and technology companies are becoming
more receptive to providing these anonymous data for research
and public health purposes. Currently, however, access to these
data has primarily been through negotiated agreements between
operators and research groups. To make outputs from CDRs
more accessible, the initiatives like the Open Algorithms project
and the FlowKit, a CDR analytics toolset developed by the
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Flowminder Foundation and the WorldPop research group at
the University of Southampton, aim to unlock the potential of
private data for public good in a privacy-conscientious, scalable,
socially and economically sustainable manner.83,84 Moreover, it
is necessary to create adequate legislative and regulatory frame-
works to safeguard confidentiality of the information and ensure
the ethical use of data for development projects.81

Second, as mobile phone or social media users only represent
a proportion of the whole population, the interpretation of
mobility estimates must account for biases introduced by hetero-
geneous use of mobile phones, social media platforms and the
internet.81 It is often assumed that mobile phones are sufficiently
widespread that users represent a true random sample of a pop-
ulation. However, mobile users are not necessarily representative
of the population at large, as the differences in the use of mobile
devices, social media platforms and internet are still significant
by level of socioeconomic development, sex, age and urban/rural
areas. In many low-resource settings, for instance, the users are
commonly disproportionately male, educated and from larger
households, compared with the general population.20,85,86 More-
over, the behaviours of using mobile phones and social media
as well as the possibility that individuals own multiple SIM
cards or mobiles affect the ability to produce accurate and
representative estimates of population mobility.20,23,25 Though
these potential biases are decreasing as mobile phone ownership
rises,20 a prerequisite for these studies is still to understand the
demographic features of mobile phone owners or users of social
media and mHealth apps. For instance, household surveys such
as the Demographic and Health Surveys programme can provide
information on mobile phone usage and ownership patterns and
allow assessment of spatial differences that could bias results.20

Third, given the increasing volume of these huge, complex
and ‘noisy’ mobile data as well as the spatiotemporal hetero-
geneity of disease transmission,81 another major challenge is the
methodological difficulties of measuring transmission risk of
infectious diseases at appropriate spatial and temporal spatial
scales. Regarding the diverse biological aspects of pathogens,
population immunity and entomology and ecology of vectors,
the complexity can be very different in the inference of the
arrivals and spread risk of different pathogens. For instance, for
pathogens with sufficiently high transmissibility, higher transmis-
sibility could result in more rapid spatial spread. However, for
pathogens with weak transmission, both seasonal patterns and
the impact of distance might be obscured, and many locations
might not be affected.28,29,33 Moreover, modelling results are also
sensitive to the choices in the parametrization of population
movements, considering the variety of individual travel activities
and data sources.23,32 Understanding how modelling results are
affected by limitations inherent to the mobile phone data will
help to increase the predictive capacity of models based on such
novel data sources and facilitate the interpretation in uncertain-
ties of travel-mediate epidemic modelling and the sensible use of
big data for decision-making.23,81,87,88

Despite inherent biases in mobile phone data, the progress of
analytic tools for adjusting estimates and increasing penetration
rate of mobile devices and internet-based platforms in popula-
tions may diminish the impact of these biases on measures of
human movements.71,85,86 More research is needed to establish
the most promising uses of these data for travel health, and

the combination of information extracted from traditional and
innovative data sources are beginning to be produced and yield a
proof of concept and road map for future studies on individual’s
risk assessment in travel medicine.43–45 For instance, phylogeo-
graphic analyses can relate travel and epidemiological dynamics
by integrating mobile data with expanding genetic data.

Given the mobile location data being collected every second
across the world, as well as the upcoming 5G networks and
advances of artificial intelligence technology, these digital records
provide an unprecedented opportunity to quantify human mobil-
ity and accurately estimate the health risks through the sheer
numbers of individuals reflected in the data streams.23,81
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Supplementary data are available at JTM online.
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