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Abstract

Background: Misclassification of Medicare beneficiaries’ race/ethnicity in administrative data
sources is frequently overlooked and a limitation in health disparities research.

Objective: To compare the validity of two race/ethnicity variables found in Medicare
administrative data (EDB and RTI race) against a gold-standard source also available in the
Medicare data warehouse: the self-reported race/ethnicity variable on the home health Outcome
and Assessment Information Set (OASIS).

Subjects: Medicare beneficiaries over the age of 18 who received home health care in 2015 (N =
4,243,090).

Measures: Percent agreement, sensitivity, specificity, positive predictive value (PPV), and
Cohen’s kappa coefficient.

Results: The EDB and RTI race variable have high validity for Black race and low validity for
American Indian/Alaskan Native race. While the RTI race variable has better validity than the
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EDB race variable for other races, kappa values suggest room for future improvements in
classification of Whites (0.90), Hispanics (0.87), Asian/Pacific Islanders (0.77), and American
Indian/Alaskan Natives (0.44).

Discussion: The status quo of using ‘good-enough for government’ race/ethnicity variables
contained in Medicare administrative data for minority health disparities research can be improved
through the use of self-reported race/ethnicity data, available in the Medicare data warehouse.
Health services and policy researchers should critically examine the source of race/ethnicity
variables used in minority health and health disparities research. Future work to improve the
accuracy of Medicare beneficiaries’ race/ethnicity data should incorporate and augment the self-
reported race/ethnicity data contained in assessment and survey data, available within the
Medicare data warehouse.

INTRODUCTION

Improving minority health and reducing health dispartities is a national priority.12 Recent
attention has been placed on addressing confounding of observational data and the use of
sophisticated causal modeling methods in health disparities research.® However, monitoring
and reducing disparities requires accurate data on race and ethnicity that is not consistently
available.*-% Administrative data sources of race/ethnicity data are limited with regards to
completeness and accuracy, making self-reported data the preferred source and gold
standard.” Despite this, even when self-reported race/ethnicity data is available, an
administrative data source is frequently used in research on disparities in healthcare quality
and outcomes.®-10 The completeness and accuracy of race/ethnicty data is especially
problematic for Asian Americans and Pacific Islanders (AAPI), as well as for American
Indians and Alaskan Natives (AIAN).11-13 As a result, incomplete and inaccurate race/
ethnicity data limit our understanding of the sources of disparities in healthcare access,
quality, and outcomes as well as evaluation of changes in minority health over time.

Administrative data, including insurance plan enrollment and demographic information, is
contained in the Medicare Beneficiary Summary File (MBSF). The MBSF contains two
separate race variables. The first is from the Medicare enrollment database (EDB), and
originates from Social Security Administration records. Prior to 1980, the Social Security
Administration (SSA) collected voluntary race data using the categories: white, black, other,
and unknown (for people who did not respond). “A further limitation in the racial and ethnic
data contained in Medicare beneficiary files is that when the Center for Medicare and
Medicaid Services (CMS) obtains the enrollee information from the SSA master beneficiary
record, it receives information only on the retiree, not the retiree’s spouse. Instead, the race
of the beneficiary is simply assigned to the spouse.”!* CMS has made multiple efforts to fill
in missing data including a postcard survey of people with Hispanic surname or country of
birth, and use of race/ethnicity data from Medicaid for dual-eleigible beneficiaries from 32
states. However, despite these efforts, the EDB race variable is known to severely
undercount Hispanics, Asian Americans/Pacific Islanders, and American Indians/Alaskan
Natives.® Due to these limitations, analyses using race/ethnicity data from the enroliment
file (EDB) are generally restricted to the identification of differences between black and
white patient populations.®6 The second race variable was created a decade ago by

Med Care. Author manuscript; available in PMC 2021 January 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Jarrin et al.

Page 3

researchers at the Research Triangle Institute (RTI) to improve classification of Hispanics
and Asians/Pacific Islanders.17:18 The RTI race imputation algorithm utilizes lists of
Hispanic and Asian/Pacific Islander names from the U.S. Census, and simple geography
(residence in Puerto Rico or Hawaii) to improve on the EDB race code.l” The RTI race
variable is used by the Centers for Medicare & Medicaid Services’ in reports on health
disparities in the Medicare population and in studies which include focus on Hispanic and
Asian/Pacific Islander populations.19:20

In contrast to administrative data sources, national surveys of Medicare beneficiaries include
self-reported race and ethnicity. Examples of survey datasets that contain self-reported race/
ethnicity include the Medical Expenditure Panel Survey (MEPS), the Medicare Current
Beneficiary Survey (MCBS), and the Health and Retirement Survey (HRS). Additionally,
the Consumer Assessment of Healthcare Providers and Systems (CAHPS) patient
experience datasets contain self-reported race ethnicity data. Finally, self-reported race/
ethnicity data is collected as part of post-acute and long-term care assessments including the
Outcome and Assessment Information Set (OASIS) used in home health care (the gold-
standard in this study), the Minimum Dataset (MDS) used in nursing homes, the Inpatient
Rehabilitation Facility-Patient Assessment Instrument (IRF-PAI), and the Medicare Health
Outcomes Survey (HOS) used in Programs of All-Inclusive Care of the Elderly and with a
random sample of Medicare Advantage plan subscribers.

While patient experience survey data (CAHPS) has been used to validate race/ethnicity
variables contained in administrative sources, the use of self-reported race/ethnicity data
collected as a routine part of healthcare delivery has received less attention. The main
objective of this analysis is to compare the agreement and accuracy of two sources of race
and ethnicity information contained in the Medicare data warehouse: 1) the Enrollment
Database (EDB) race variable which originates from Social Security Administration data; 2)
the Research Triangle Institute (RTI) race variable imputed from name and geography; with
a gold-standard: the self-reported race and ethnicity data collected by Registered Nurses and
Physical Therapists during routine home health care assessments as part of the Outcome and
Assessment Information Set (OASIS).2! For added context, the accuracy and agreement
measures are stratified by sex, patterns of misclassification errors are explored, and we
compare our findings with earlier studies using survey data as the gold standard.

METHODS

Data Source and Patient Population

The study population included all Medicare beneficiaries, 18 years and older, who received
home health care in 2015 (4,243,090 people). Two data sources containing three race/
ethnicity variables for our sample of Medicare beneficiaries were linked using the unique
Chronic Conditions Warehouse (CCW) beneficiary identification number for the entire study
population: The 2015 Medicare Beneficiary Summary File (MBSF) containing the
Enrollment Database (EDB) race variable and Research Triangle Institute (RTI) race
variable; and the 2015 Outcome and Assessment Information Set (OASIS) containing the
‘gold-standard’ self-reported race/ethnicity for all home health care patients. All three race
variables (EDB, RTI, OASIS) were available for the entire study population.
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During the initial home health care visit by a registered nurse or licensed physical therapist,
as part of the standardized OASIS assessment, race/ethnicity data are obtained by self-report
(a caregiver may answer if the patient is unable) and allows for multiple answers to be
recorded. The directions for this question include the words “Mark all that apply” and the
response choices are: 1) American Indian or Alaska Native, 2) Asian, 3) Black or African-
American, 4) Hispanic or Laino, 5) Native Hawaiian or Pacific Islander, and 6) White.

For the purposes of this paper, and for consistency with the EDB and RTI race variable
categories, beneficiaries who self-identified as either or both 1) Asian and 2) Native
Hawaiian or Pacific Islander were classified as Asian American/Pacific Islander (AAPI).
The vast majority (99.73%) of home health beneficiaries had only a single race/ethnicity
recorded, and we restricted our study to this population. Details of the remaining 11,720
people (0.27% of study population) who identified with two or more racial/ethnic groups are
included for the interested reader as a brief Appendix. Our final study sample consisted of
4,231,370 adult Medicare beneficiaries who received home health care in 2015. The study
was approved by the Institutional Review Board of [replace with the authors’ academic
institution].

Statistical Analyses

Datasets were linked at the patient level using the unique beneficiary identification code
assigned for this purpose by CMS. For each person, the analytic file contained the three race
variables (EDB, RTI, OASIS) which were recoded (so that the value 1 had the same
meaning in each dataset) and also dummy coded for calculation of single-race kappa
statistic. All analyses were completed by the second author using SAS statistical software
(version 9.4) and the first author using Stata 15.0 to ensure reproducibility and confirm final
results were error-free. We first assessed the agreement and validity of the EDB race and
RTI race variables compared to self-reported race/ethnicity data from the home health
Outcome and Assessment Information Set (OASIS). Analyses of sensitivity, specificity,
positive predictive value (PPV), and Cohen’s kappa coefficient were calculated for the full
sample and for each sex separately (Table 1).

Sensitivity = [True Positive/(True Positive + False Negative)] *100
Specificity = [True Negative/(True Negative + False Positive)] *100

Positive Predictive Value = [True Positive/(True Positive + False Positive)] *100

Cohen’s kappa statistic is a measure of interrater reliability that takes into account the
frequency or rarity of belonging to a different racial/ethnic group. Values range from 1
(complete agreement) to —1 (complete disagreement).22 As a point of reference, Landis and
Koch have suggested a kappa coefficient greater than 0.81 indicates excellent agreement.23
Both the overall kappa statistic and the individual race kappa statistics were calculated using
the entire sample, including cases classified as other/unknown.

In the second set of analyses, the pattern of race/ethnicity misclassifications were explored
for both the EDB and RTI race variables compared to OASIS gold-standard. Table 2
includes the raw data used to populate and calculate the overall sample statistics presented in
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Table 1. Next, we focus on the subset of cases which were misclassified, highlighting the
improvement of the RTI race variable compared to the EDB race variable (Table 3).

In the third set of analyses, differences in race/ethnicity categorization of RTI compared to
OASIS race/ethnicity are compared for a subset of beneficiaries with dementia or diabetes
(Table 4). We determined dementia or diabetes diagnosis status for our subset study
population from the Medicare Beneficiary Summary File (MBSF) chronic conditions
warehouse flags. This analysis highlights one aspect of race/ethnicity variable choice on
study design and the resulting differences in frequency and prevalence of chronic disease
burden within subpopulations.

Agreement and accuracy of Enrollment Data Base (EDB) and Research Triangle Institute
(RTI) race variables with self-reported race/ethnicity from OASIS.

Both the EDB and RTI race variables have mutually exclusive categories, meaning that a
person who is categorized as white or black is considered to be non-Hispanic. For this
reason, in the text and tables, the term “white” refers to non-Hispanic whites, the term
“black” refers to non-Hispanic blacks and African Americans, the term “AAPI” refers to
non-Hispanic Asians and Pacific Islanders, and the term “AIAN” refers to non-Hispanic
American Indians and Alaskan Natives.

In our analyses using OASIS race as the validation standard (shown in Table 1), the
sensitivity of EDB and RTI race variables for non-Hispanic whites was high (96.9-97.9),
however, the specificity of EDB race was low (79.6) compared to RTI race (95.5). In
contrast, among people who self-identified as non-Hispanic black, the EDB and RTI race
variables both perform similarly well, with high sensitivity (96.6-97.0) and high specificity
(99.2-99.4). Among people who self-identified as Hispanic the original EDB variable had
low sensitivity (36.2) but high specificity (99.8). In contrast, the RTI race variable had both
good sensitivity (90.8) and high specificity (98.8). Among people who self-identified as non-
Hispanic Asian, Hawaiian Native, or other Pacific Islander (AAPI), specificity of both the
EDB and RTI race variables was high (99.6-99.8). However, the RTI race variable had better
sensitivity (74.7) compared to the EDB race variable (62.6). Finally, among people who self-
identified as non-Hispanic American Indian or Alaskan Native (AIAN) the sensitivity of the
EDB and RTI race variables was low (43.0-43.2), while the specificity was high (99.8). The
EDB classification of AIANs based on tribal membership registration results in fewer than
half of people who self-identify as AIAN being correctly classified in Medicare
administrative race/ethnicity data.

Sex differences in accuracy and agreement of race/ethnicity variables

The EDB race variable, originating from Social Security Administration records, is slightly
more accurate for women compared to men except among AIANs (k= 0.44 vs. 0.46). In
contrast the RTI race variable, imputed from U.S. Census name lists and residence in Hawaii
or Puerto Rico, is less accurate for women compared to men among AAPIs (k= 0.77 vs.
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0.79), Hispanics (k= 0.85 vs. 0.89), and AIANSs (k= 0.44 vs. 0.46). See Table 1 for all
accuracy and agreement statistics stratified by sex.

Patterns of over-classification and misclassification by race/ethnicity variables

The pattern of misclassification errors in the EDB and RTI race variables compared to self-
reported race/ethnicity from the OASIS dataset are shown in Table 3. Using the original
EDB race variable 190,434 people were misclassified as non-Hispanic white, with the
majority (167,495/190,434 = 88%) self-identifying as Hispanic. In contrast, the RTI race
variable mistakenly classifies a much smaller number (41,878) of minorities as being non-
Hispanic white, with about half being Hispanic (21,941/41,878 = 52.4%). However, the RTI
race variable misassigned non-Hispanic whites as Hispanic more than five times as often
compared to the original EDB race variable (37,670 vs. 6,695), accounting for 78% of
people misassigned as Hispanic by RTI race. Although smaller in number, non-Hispanic
whites also comprise 80% of people misassigned by the RTI race variable as black, 77%
who are misassigned as AAPI, and 84% of people misassigned as AIAN (Table 3).

Dementia and diabetes frequency and prevalence by race/ethnicity variables

To illustrate the potential impact of race/ethnicity misclassification on estimated size of
health disparities and disease prevalence we calculated the number of beneficiaries with
dementia and diabetes using each of the three race/ethnicity variables. When comparing the
numbers of people with a diagnosis of dementia or diabetes the largest net differences were
among the Hispanics, Asians/Pacific Islanders, and American Indians/Alaskan Natives
(Table 4). The net difference is important for study designs that draw their sampling frame
from administrative data sources.

Using the RTI race variable (compared to OASIS) resulted in an overestimation of the
number of Hispanics with dementia by a net difference of 4,283 (4.8%) and diabetes by a net
difference of 10,477 (5.4%). In contrast, the EDB race variable underestimated the number
of Hispanics with dementia by a net difference of 48,407 (-54.8%) and diabetes by a net
difference of 114,003 (-59.0%). However, the EDB race variable also produced falsely high
estimates of the prevalence of dementia (34.1%) and diabetes (67.9%) in Hispanics. The RTI
and OASIS race variables produced similar estimates of the prevalence of dementia (29.0%-
29.6%) and diabetes (63.9%-64.9%) among Hispanics.

Among AAPIs, the number of people with dementia was underestimated by a net difference
of 1,853 (-6.4%) using the RTI race variable and by 6,032 (-21.1%) using the EDB race
variable. The pattern was similar for diabetes in AAPIs, which was underestimated by a net
difference of 4,391 (—8.2%) using the RTI race variable, and 12,113 (-22.6%) using the
EDB race variable. When the prevalence of dementia and diabetes were calculated for
AAPIs using each of the race/ethnicity variables the pattern was similar to that seen for
Hispanics, with EDB race overestimating chronic disease burden. Using the RT1 and OASIS
variables the prevalence of dementia among Asians/Pacific Islanders was 32.1%-32.6%, and
34.1% using EDB race. For diabetes, the prevalence among AAPIs was 59.9%-60.2% using
the RTI and OASIS race variables, and 62.7% using EDB race. Full results shown in Table
4.
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DISCUSSION

If we believe self-reported race is truly a “gold standard,” we must consider more than
overall accuracy (kappa statistic > 0.81) and high specificity. Paraphrasing Statalist
(statalist.org) expert Clyde Schechter, let’s use a simple example: Lou Gehrig’s disease or
amyotrophic lateral sclerosis (ALS) is a very rare motor neuron disease. If a “test” to
diagnose ALS simply results in everyone “not having it,” that test will have high specificity,
giving the correct answer for well over 99.9% of the population. However, it is useless to
find people who actually have ALS. To be useful, you really need to consider two different
measures of validity. 1) Sensitivity: the proportion of people who are positive under the gold
standard who are also test positive, and 2) specificity: the proportion of people who are
negative under the gold standard who also test negative. Referring to Clyde’s phony “test”
for ALS, the test would have a specificity of nearly 100% but a sensitivity of 0%. Evaluation
of tests or measures for which a gold standard exists usually requires looking at both the
sensitivity and specificity.

Similarly, the EDB race variable is nearly useless (despite having high specificity) in
identifying Medicare beneficiaries who are Hispanic (sensitivity 36.2, kappa 0.50), AIAN
(sensitivity 42.9, kappa 0.44), and AAPI (sensitivity 62.5, 0.71). While the RTI race variable
is more useful for identifying Hispanics (sensitivity 90.8, kappa 0.87), it still lacks validity
for AIAN (sensitivity 43.0, kappa 0.44) and AAPI (sensitivity 74.7, kappa 0.77).

Consistent with prior studies, we found the EDB and RTI race variables contained in
Medicare administrative data undercount Hispanics, AAPIs, and AIANs (summarized in
Table 5).18:24.25 While advances have been made in the Medicare Bayesian Improved
Surname and Geocoding (MBISG 2.0) algorithm used to calculate racial and ethnic
differences in Healthcare Effectiveness Data and Information Set (HEDIS) measures,26-28
the accuracy statistics are reported as cross-validated Pearson correlations with self-report,
in the form of probabilities, precluding direct comparison with current and prior studies
listed in Table 5.

From a methodological standpoint, the choice of race/ethnicity data source is essential at the
study design stage for health disparities research. The impact of race/ethnicity variable
selection on estimates of disease prevalence is of special concern, as we found in the case of
dementia prevalence among Hispanics shown in Table 4. When using the EDB race variable,
the prevalence of dementia among Hispanics is 18% higher compared to when the RTI race
variable is used, with an absolute difference of just over 5 percentage points. A smaller
difference (1.5 percentage points) is seen for AAPIs, with virtually no difference for non-
Hispanic whites, blacks, and American Indians/Alaskan Natives (AIANs). Compared to the
EDB race variable, if the RTI variable was a “race-specific” anti-dementia drug for
Hispanics it would be a blockbuster.

For AAPI populations, our study findings have additional significance. Asian Americans/
Pacific Islanders are the fastest growing population in the U.S., while being the most
heterogeneous. Certain AAPI subgroups, such as Filipinos, may be more prone to
misclassification using surname-based imputation methods due to the long history of
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Spanish colonization in the Philippines. Similarly, the Republic of China (Taiwan) was
colonized by the Dutch and Spanish; India was colonized by the Portuguese, Dutch, and
British; and Vietnam, Laos, and Cambodia were colonized by the French. In addition,
interracial/intercultural marriages frequently result in women changing their last name to
that of their husband’s family, such that a woman who marries a Filipino-American man
might be classified as Hispanic using name-based race algorithms.

While the self-reported race/ethnicity data should always be the first choice, we found the
RTI race variable to be very accurate for identifying Hispanics (A= 0.89 for males; k= 0.85
for females), and non-Hispanic whites (k= 0.90) or blacks (A= 0.96) of either sex (Table 1).
For more granular analyses, and especially research that aims to disentangle race/ethnicity
and socio-economic status, a higher level of accuracy may be desired. Researchers who are
working with linked administrative and assessment datasets should report racial/ethnic
differences based on the self-reported race variable. Reviewers and journal editors should
question the source of race/ethnicity data and critically examine the rationale for research
which uses the EDB race variable, as it is inappropriate for use beyond studies of black/
white disparities. Similarly, studies of nursing home or home health patients should not use
the EDB or RTI race variable, as self-reported race collected in the MDS and OASIS
assessments is the gold-standard. Finally, future advances in race/ethnicity imputation
algorithms at CMS should include and augment self-reported race/ethnicity data from both
survey (MCBS, HOS, CAHPS) and assessment (OASIS, MDS) data sources.

This study has several limitations. First, the study population consisted only of Medicare
beneficiaries who utilized home health care in calendar year 2015. Second, blacks are
slightly overrepresented in the home health care population compared to the full Medicare
population (estimated with the RTI race variable). Third, some older adults, especially
AAPIs and Hispanics, may retire or seek supportive care outside of the U.S., limiting their
access and use of the Medicare home health care benefit, and the generalizability of findings
for Medicare beneficiaries living outside the U.S. Finally, AIANs who live on tribal
reservations may be underrepresented, in contrast to people who self-identify as American
Indian but are not registered tribal members.

In conclusion, administrative datasets are commonly used in reports and studies of minority
health and health disparities. Our study highlights the potential for bias and error introduced
during the selection of race/ethnicity data source. Our work confirms the advantages of
using the RTI race variable compared to EDB race variable. We also show that further
reductions in error and bias can be gained by using self-reported race/ethnicity contained in
assessment datasets. These findings have important implications for the design of future
studies and the interpretation of prior published research on minority health and health
disparities. Future work to improve imputation algorithms for Medicare beneficiaries’ race/
ethnicity should incorporate self-reported race/ethnicity data that is contained in assessment
(e.g. MDS, OASIS, IRF-PAI, HIS, HOS) and survey data (CAHPS) to augment existing data
sources (EDB, RTI).
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APPENDIX

Description and discussion of Medicare beneficiaries who self-identified
with two or more race/ethnicity groups during home health assessment
(OASIS dataset).

In this supplemental analysis, we focused on the 11,720 beneficiaries who self-identified
with two or more racial/ethnic groups during their home health care assessment and were
excluded from the main analysis. While this represents a very small fraction (0.28%) of the
4,243,090 Medicare beneficiaries who received home health care in 2015, the number of
individuals with multi-racial/ethnic identities is rapidly growing.2® Of these, 289 people
(0.007%)identified with more than two races.

Researchers should be aware of this issue and methods for classifying and modeling
individuals who self-report multiple races/ethnicities.2® For example, of the 4,568 Hispanic
individuals who self-reported two races/ethnicities in OASIS, the corresponding RTI race/
ethnicity variable correctly classified 3,194 (70%) as Hispanic but missed/undercounted
1,374 (30%). Additionally, among people who self-identified in OASIS as American Indian
or Native Alaskan (AIAN) nearly one-sixth also identified with another race/ethnicity
(2,919/18,891).

Appendix Table 1.

Medicare beneficiaries who self-identified with two races/ethnicities

AAPI  White Black AIAN

Hispanic 281 3,586 504 197

AAPI 1,596 259 78
White 2,286 2,318
Black 326

Abbreviations: AAPI = Asian American/Pacific Islanders/Native Hawaiians; AIAN = American Indians/Alaskan Natives.
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Table 3.

Cases misclassified by EDB or RTI race/ethnicity compared to OASIS.

Study population (N = 4,321,370)

Misclassified OASIS race self-reported as:
EDB race misclassified as:  318,177(7.5%) White Black AAPI Hispanic AIAN
e wor - R
mow % R HE W
AnP 1042 Jlo 7o wome 7%
m A% AS B -
AAN B0SL g0 o1 sow ok
Other / unknown 72,099 3’113%602 %%%2 22651)350/3; 11277740/90 1821/?)
RTI race misclassified as: 179,488 (4.2%) White Black AAPI Hispanic AIAN
e - [ o da
e
s BE R Am o
Hispanic agsoa  STOI0 4175 0214 -5
- g & A
o BEUR o g

Abbreviations: AAPI = Asian American / Pacific Islanders / Native Hawaiians; AIAN = American Indians / Alaskan Natives
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