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There is a lack of objective biomarkers to accurately identify the underlying etiology and related 

pathophysiology of disparate brain-based disorders that are less distinguishable clinically. Brain 

networks derived from resting-state functional magnetic resonance imaging (rs-fMRI) has been a 

popular tool for discovering candidate biomarkers. Specifically, independent component analysis 

(ICA) of rs-fMRI data is a powerful multivariate technique for investigating brain networks. 

However, ICA-derived brain networks that are not highly reproducible within heterogeneous 

clinical populations may exhibit mean statistical separation between groups, yet not be sufficiently 

discriminative at the individual-subject level. We hypothesize that functional brain networks that 

are most reproducible in subjects within clinical and control groups separately, but not when the 

two groups are merged, may possess the ability to discriminate effectively between the groups 

even at the individual-subject level. In this study, we present DisConICA or “Discover Confirm 

Independent Component Analysis”, a software package that implements the methodology in 

support of our hypothesis. It relies on a “discover-confirm” approach based upon the assessment of 

reproducibility of independent components (representing brain networks) obtained from rs-fMRI 

(discover phase) using the gRAICAR (generalized Ranking and Averaging Independent 

Component Analysis by Reproducibility) algorithm, followed by unsupervised clustering analysis 

of these components to evaluate their ability to discriminate between groups (confirm phase). The 

unique feature of our software package is its ability to seamlessly interface with other software 

packages such as SPM and FSL, so that all related analyses utilizing features of other software can 

be performed within our package, thus providing a one-stop software solution starting with raw 

DICOM images to the final results. We showcase our software using rs-fMRI data acquired from 

US Army soldiers returning from the wars in Iraq and Afghanistan who were clinically grouped 

into the following groups: PTSD (posttraumatic stress disorder), comorbid PCS (post-concussion 

syndrome) + PTSD, and matched healthy combat controls. This software package along with test 

data sets is available for download at https://bitbucket.org/masauburn/disconica.
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INTRODUCTION

Independent Component Analysis (ICA) is a blind source separation technique that is 

commonly employed for extracting brain networks involving spatially distributed regions 

with similar/correlated temporal activity [1], especially in the baseline resting state. 

Consequently, it has been applied to investigate altered brain networks in various 

heterogeneous neurological disorders using fMRI. Von dem Hagen et al. [2] employed ICA 

to demonstrate that individuals with Autism Spectrum Disorders (ASD) have reduced 

functional connectivity within the Default Mode Network (DMN), an important resting state 

brain network [3]. Assaf et al. [4] studied the role of altered functional connectivity of the 

default mode sub-networks in ASDs using short resting fMRI scans and ICA. von Rhein et 

al. [5] showed that subjects with ADHD exhibit alterations in connectivity of the salience 

and executive control networks and associated brain regions during task performance by 

using ICA as a part of their methodology. Patriat et al. [6] used ICA and discovered higher 
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inverse correlation between the whole DMN and TPN networks in pediatric posttraumatic 

stress disorder (PTSD). Shang et al. [7] showed using ICA and chronic earthquake-related 

PTSD patients that the salience network (SN), central executive network (CEN), default 

mode network (DMN), somato-motor network (SMN), auditory network (AN), and visual 

network (VN) have both an increase and a decrease in functional connectivity in PTSD. 

Enhanced coupling of the amygdala and the insula within the SN was observed by Thome et 

al. [8] in subjects with PTSD by using ICA to evaluate connectivity within SN. The effects 

of developing PTSD in combat personnel with mild traumatic brain injury (mTBI) 

exhibiting abnormal activation of distributed brain networks including the emotion network 

and DMN were studied by Shu et al. [9] using ICA as a part of their methodology. Cisler et 

al. [10] used ICA in a study involving the characterization of the relationships of assault and 

PTSD severity with the organization of networks that are identified in emotion processing. 

Many resting-state networks (RSNs) in children aged 6–10 years based upon a sample of 

536 subjects are robust and discovered more frequently when ICA is applied repeatedly [11].

Another perspective we take into consideration is the general crisis of lack of reproducibility 

of findings reported in a given study using a different sample [11]. Often, preclinical 

research outcomes generate significant media attention while failing to translate into 

successful diagnoses or treatments [12] [13]. Although, there may be multiple potential 

reasons for these problems, basic scientific results frequently turn out to be irreproducible. A 

recent survey of more than 1500 scientists revealed that 70% had tried but failed to 

reproduce another scientist’s experiment, whereas 52% thought that there was a crisis of 

reproducibility [13]. Up to 85% of the resources were wasted while producing and reporting 

research relevant to clinicians and patients [14]. Major contributors to research waste have 

been identified as irrelevant research questions, research design and conduct, inefficient 

regulation and management of research, failure to provide access to full research reports, and 

the lack of unbiased and useable reports [15]. Sharing code written to analyze neuroimaging 

data improves transparency and reproducibility in neuroimaging research, as this code is 

necessary for interpreting and validating results, and addressing new research questions [16]. 

Methods, in general, need to address the issue of reproducibility of results, at least within 

their sample. In this paper, we not only provide a methodology that analyzes the 

reproducibility of independent components obtained from resting state fMRI (representing 

brain networks), but also implements it in a software package which is freely distributed 

along with this article.

We surmise that the lack of reproducibility of brain networks across heterogeneous spectrum 

disorders not only hinders replicability of results as mentioned above, but also the ability of 

potential biomarkers based on such brain networks to effectively discriminate between 

disease groups and healthy controls. Therefore, we hypothesize that the functional brain 

networks most reproducible separately within disease and healthy control groups, but not 

reproducible when both groups are merged, can effectively discriminate between the groups.

Recently, an algorithm was proposed for modifying traditional ICA-based characterization 

of the functional brain networks such that reproducibility information is taken into 

consideration when we choose independent components. We utilize this method, namely 

“generalized Ranking and Averaging Independent Component Analysis by Reproducibility” 
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(gRAICAR, https://github.com/yangzhi-psy/gRAICAR) [17], which can provide 

independent components that are highly reproducible within a given group of subjects. This 

methodology extends a framework developed initially for single subject analysis called 

“Ranking and averaging independent component analysis by reproducibility - RAICAR” 

[18], which has been used before in various neuroimaging applications [19] [20].

Our study builds upon these previous works by introducing DisConICA or Discover 

Confirm Independent Component Analysis (ICA). a software package that implements a 

“discover-confirm” approach, wherein the “discover” phase entails estimating the 

reproducibility of independent components using the gRAICAR (generalized Ranking and 

Averaging Independent Component Analysis by Reproducibility) algorithm [17], and 

subsequently the “confirm” phase involves evaluating the ability of highly reproducible 

components thus obtained to effectively discriminate between groups of subjects or 

participants with heterogeneous neurological disorders. This software package implements a 

work flow not available previously in literature, and utilizes a system-of-systems design 

approach [21] that minimizes user workload. It accepts fMRI data from individual 

participants as input, completes pre-, para-, and post-processing of these data sets, and 

presents results to the user. Using results obtained from DisConICA, we can examine the 

reproducibility of group-level independent components, alterations in functional 

connectivity, and the ability of functional brain networks discovered by DisConICA to 

discriminate between different groups of participants in an unsupervised way. In Syed et al. 

[22], we used DisConICA with the ABIDE dataset and discovered that the Default Mode 

Network (DMN) in Autism appeared less prominent where decreased functional 

connectivity in default mode subnetworks contributes to core deficits observed in ASD 

patients. While the objective in Syed et al. [22] was to enumerate and validate the 

algorithmic principles underlying DisConICA using a widely used dataset (ABIDE) and 

known neurobiological alterations underlying Autism, the current paper is more focused on 

the underlying software engineering with PTSD as an illustrative example.

MATERIALS AND METHODS

This section is organized as follows. First we present a conceptual explanation of data pre-

processing, main analysis and post-processing, including clustering. Next, details of the 

software package which implements these conceptual steps are presented. Finally, we 

illustrate the conceptual steps as well as the capabilities of the software package using 

experimental fMRI data obtained from soldiers with PTSD and mTBI.

Pre-Processing

In the first step of our pre-processing phase, we utilize a combination of Data Processing 

Assistant for Resting- State fMRI [22] (DPARSF, http://www.restfmri.net), which is a plug-

in software based upon Statistical Parametric Mapping or SPM version 8 (http://

www.fil.ion.ucl.ac.uk/spm). Resting-State fMRI Data Analysis Toolkit (REST 1.7) [23], and 

MATLAB. Input data in this phase can either be in DICOMor .img/ .hdr file pair format, 

which is converted to NIfTI-1 format images (http://nifti.nimh.nih.gov/nifti-1, .nii files) 

before further processing. We use DPARSF to perform realignment of 3D brain volumes 
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relative to the initial volume using 6-parameter rigid body registration, normalization to 

MNI (Montreal Neurological Institute) template using nonlinear warping, spatial smoothing 

using a Gaussian kernel with full width at half maximum of 4 mm × 4 mm × 4 mm, de-

trending using linear polynomial and temporal band-pass filtering in the frequency range of 

0.01 – 0.1 Hz.

The next step of this phase picks up four dimensional NIfTI-1 format images (http://

nifti.nimh.nih.gov/nifti-1,.nii files) from the previous step, and use them as input to FMRIB 

Software Library v5.0 [24] [25] (FSL by Analysis Group, FMRIB, Oxford, UK) to derive a 

set of independent components for each subject using Multivariate Exploratory Linear 

Optimized Decomposition into Independent Components (MELODIC) algorithm [26] [27]. 

Analysis tools for ICA are available within FSL for decomposing single or multiple 4D data 

sets into linearly independent spatial components. More information on MELODIC can be 

obtained at http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC. In our pre-processing, we use 

MELODIC analysis tool to perform standard 2D spatial ICA on each subject. In addition to 

one spatial map per component, this analysis also results in corresponding time course and a 

mixing matrix. MELODIC determines the number of components internally within FSL 

through a dimensionality estimation mechanism including principal component analysis 

technique or PCA [28]. ICA is in fact conducted using FSL MELODIC, if configured to do 

so. The dimensionality is estimated by MELODIC using a probability PCA approach. The 

number of ICs is estimated individually for each subject, and varies with subjects. It is not 

assumed that the numbers of ICs are identical across subjects or within a given group. The 

gRAICAR algorithm reveals the similarity of the spatial maps among subjects. The 

difference in spatial characteristics of ICs is considered as the individual difference in 

gRAICAR. Actually, the difference in number of ICs is also due to individual difference. We 

use MELODIC results for each subject in the main analysis section to determine the 

reproducibility of these components, and therefore, the highly reproducible ones within each 

group. One of the highlights of our proposed software, DisConICA is that the users do not 

have to deal directly with individual software packages mentioned in this phase since our 

software automates these tasks by seamlessly communicating with other software packages.

Main Analysis

In this section, we summarize the conceptual underpinnings of the gRAICAR algorithm. We 

refer our readers to the original paper by Yang et al. [17] should they need a more 

comprehensive review.

We can represent the pre-processed dataset from subject i (i=1,2,…,n) as a matrix Ai of 

dimensions αi × βi, with αi representing the number of time points and βi the number of 

voxels. Ai, the data matrix, can now be decomposed into ci independent components (ICs) in 

the spatial domain, forming a matrix Bi of dimensions ci × βi, and their corresponding 

mixing time courses forming a matrix, Ci of dimensions ci × αi.

The four main processing phases in the gRAICAR algorithm have been summarized in Fig. 

1. We will include a high-level overview of this algorithm referring the readers to the 

original work by Yang et al. [17] for a more comprehensive description. The first phase 

involves performing ICA decomposition k (~5000 for this study) times for each subject 
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using random initial values leading to k × n realizations where n represents the number of 

subjects representing each realization as RZab which refers to the ICs obtained from the bth 

realization of subject a. A full similarity matrix (FSM) that has relational measures between 

all realizations is constructed in the second phase. Normalized mutual information or NMI 

quantifies the similarity between two realizations in this algorithm. Realizations that are 

found to be highly reproducible across subjects and ICA realizations are extracted and 

aligned in the third phase. Two related realizations are treated as individual-level 

components with the same primary group-level component or an aligned component, AC. 

For each aligned component, the algorithm generates a kn × kn reproducibility matrix within 

which NMIs between all pairs of realizations relevant to the AC are collected. The algorithm 

now aligns aligned components to obtain group-level component maps and examines the 

inter-subject consistency in the fourth phase. Fig. 1 A demonstrates the algorithm in general 

terms and we illustrate the specific implementation of this algorithm for an example of three 

subjects in Fig. 1 B, each with a set of four subject-level ICs.

Continuing our discussion of the algorithm, we now delve into the high-level technical 

underpinnings of the algorithm. The full similarity matrix constructed in the second phase of 

the algorithm includes relational measures between all realizations. Block structure of this 

full similarity matrix shows subject blocks (SBLs) which in turn represent subject-wise 

relationships. Elements within these blocks are able to determine similarity between 

realizations from the same subject or pairs of realizations from different subjects depending 

upon the block location. In these subject blocks, there are k × k realization blocks (RBs) 

providing pair-wise similarity between realization components from different ICA 

realizations. Similarity between two realization blocks can be quantified by using 

normalized mutual information or NMI [29]. If two variables are identical, NMI is set to 1 

and 0 if the two variables are statistically independent. This reveals higher order statistical 

similarity as opposed to second order similarity as defined by correlation or covariance [30]. 

The gRAICAR algorithm computes NMIs between each IC pair using mutual information 

based upon the algorithm proposed by Kraskov et al. [31]. NMIs are then standardized 

within an realization block, leading to standardized NMI or SNMI. Fig. 2 A shows the block 

structure as implemented in a full similarity matrix with 3 artificial subjects having two ICA 

realizations each i.e. n = 3 and k = 2.

In this representation, solid lines mark subject blocks. Off the diagonal subject blocks reflect 

the similarity between pairs of realizations from different subjects whereas those on the 

diagonal reflect those from the same subject. The realization block represented as a matrix, 

Rab-cd with dimensions ca × cc, reflects the similarity between RZab and RZcd (a, c: 1,2,…n, 

b,d: 1,2,…k). In the algorithm, NMI for two realizations is now calculated as:

RZab − cd[y, z] = NMI RZy ∈ RZab, RZz ∈ RZcd = H RZy + H RZz
H RZy, RZz

− 1 (1)

H(RZy), H(RZz), H(RZy, RZ) in (1) represent the entropies of random variables, RZy and 

RZz, and the mutual entropy between RZy and RZz (1 ≤ y ≤ ca, 1 ≤ z ≤ cc).
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To obtain standardized NMI in the alignment procedure, the NMIs are further standardized 

using the formula:

RZab − cd[y, z] = RZab − cd[y, z] − mean RZab − cd[y, ∗ ] ∪ RZab − cd[ ∗ , z]
std RZab − cd[y, . ] ∪ RZab − cd[ . , z] (2)

Where * denotes all NMI values in row y or column z of the realization block in (2). This 

standardized NMI or SNMI is used to compute the specificity of individual similarity values 

related to a given realization within the realization block. Diagonal realization blocks are 

generally set to zero because they represent identity matrices and are not of interest.

The gRAICAR algorithm then extracts highly reproducible realizations across subjects and 

ICA realizations and aligns them in its third phase of execution. To accomplish this, the 

algorithm searches all SNMI values within subject blocks indicating the similarity between 

pairs of realizations from different subjects to find a global maximum. Two realizations 

found to be related are considered subject-level components but with the same underlying 

group-level component, which we refer to as an aligned component. These realization blocks 

are then examined to locate the local maxima within them as this reflects possible locations 

of the aligned component within different ICA realizations and subjects. Rows and columns 

that contain these maxima are eliminated from the full similarity matrix after all realizations 

associated with this aligned component are located. This task is repeated until cm = max(c 

1 ≤ i ≤ n) aligned components have been found where c represents the number of ICs. The 

number of components is not the same among subjects, and hence empty matches for some 

subjects are allowed. A kn × kn reproducibility matrix for each aligned component is 

produced, thus collecting NMIs between all pairs of realizations associated with the aligned 

components. NMIs are then utilized to provide a more direct interpretation of similarity. In 

order to form its reproducibility matrix, a maximum of one realization is selected per aligned 

component in each ICA realization. The algorithm divides information contained within the 

reproducibility matrix into two metrics: inter-subject consistency and intra-subject 

reliability. Inter-subject consistency is defined as the mean of all NMIs within inter-subject 

blocks. The inter-subject consistency for a given aligned component between subjects a and 

c can be calculated as:

∝ac = mean RZa′ − c′ =
∑b = 1

k ∑d = 1
k RZab − cd[y(a, b), z(c, d)]

K2 1 ≤ a, c

≤ n, a ≠ c
(3)

Equation (3) represents the mean NMI within the inter-subject block ‘a–c’ in the 

reproducibility matrix, since it averages all the NMI values located at the intersection 

between realization b of subject a and realization d of subject c.

Fig. 2 B, a continuation of Fig.2 A, provides an example of the third phase of the gRAICAR 

algorithm summarizing the description presented above using the same scenario as in Fig. 2 

A. The circle mark represents a global maximum, which is computed by searching all 

SNMIs within the off-diagonal subject blocks. Doing so provides compatibility with larger 

variations across subjects than within subjects. In this example, the global maximum was 
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located at RZab–cd [y, z], which represents the y-th row and the z-th column of the 

realization block. Two related realizations, RZy(a,b) and RZZ(c,d), are treated as subject-level 

components with the same underlying group-level component or aligned component. 

RZy(a,b) is a representation of the y-th component of the b-th realization of the a-th subject.

This identifies the aligned component in different ICA realizations and subjects. These 

locations have been identified in Fig. 2 C as R22–11[s, v1] and R11–31[w1, t] where v1 and 

w1 represent relevant realization positions in individual realization blocks indicating the 

largest similarity with RZy(a,b) and RZz(c,d) respectively. v1 = w1 here means [y, v1] and 

[w1, z] favor the same realization and the component formed as a result is considered to be 

related to the aligned component determined by RZy(a,b) and RZz(c,d). If v1 and w1 are 

unequal, either v1 or w1 is chosen based upon a voting mechanism to determine the 

proximity of one or the other to more of those realizations investigated as the v1 = w1 case.

In its fourth phase, the gRAICAR algorithm estimates aligned component maps and 

corresponding mixing time courses by utilizing weighted averages of their related 

realizations. To calculate the weighted average of therealizations, the first step is to define a 

subject load on inter-subject consistency reflecting the contribution or inter-subject centrality 

of a given subject to a given aligned component.

γi = 1
n − 1 ∑c = 1, c ≠ a

n ∝ac , 1 ≤ a ≤ n (4)

Equation (4) can also be described as the inter-subject centrality of a subject in a given 

aligned component, and is the mean of the inter-subject consistency metrics between the 

given subject and the rest of the subjects. In (4), ∝ac is a reference to the inter-subject 

consistency metric between subjects a and c. Spatial maps and mixing time courses of an 

aligned component are calculated by merging this subject load on inter-subject consistency 

and the intra-subject reliability, as follows:

grpICτ =
∑a = 1

n βaγa∑b = 1
k RZp(a, b, n)

K∑a = 1
n βaγa

, 1 ≤ τ ≤ cm (5)

RZp(a,b,n) represents the realization or the spatial map of the IC identified in the b-th 

realization of the a-th subject. p sets an index on the location of the realization and can differ 

with different realizations and subjects. The weights vary for each aligned component, 

calculated by the aligned component-specific reproducibility matrix.

The algorithm now statistically detects aligned components found consistently across 

subjects. It explores the significance of cross-subject consistency of the resulting aligned 

component in two steps. It applies a nonparametric test to select the aligned component 

consistent across all subjects. One realization from each ICA realization in the full similarity 

matrix is randomly tested with replacement and the mean of inter-subject consistency 

metrics is calculated after a non-participating subject is artificially generated. This procedure 

is repeated ~500 times. The resulting means of inter-subject consistency metrics are 

combined to yield a null-distribution of the inter-subject consistency. The 95th percentile, 
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equivalent to a significance level of p = 0.05, of the null distribution provides a threshold at 

this point. Aligned components with mean inter-subject consistency metrics greater than the 

threshold value mentioned earlier are treated as common aligned components across 

subjects. Null distributions of the subject loads on inter-subject consistency and intra-subject 

reliability for each one of the aligned components mentioned earlier are produced by 

randomly assigning realization with replacement in the reproducibility matrix to subjects 

generated artificially. In the algorithm, thresholds for aforesaid metrics are determined at 

95th percentile of the equivalent null distributions, corresponding to a significance level of p 

= 0.05. Subjects above these two threshold levels are treated as representing the aligned 

component under consideration. The main tasks in the fourth phase of gRAICAR algorithm 

include estimating aligned component maps and corresponding time courses after weighted 

averaging of their related realizations, statistically detecting aligned components that are 

consistent across all subjects, and constructing a graph for each aligned component to 

characterize relationships among subjects from the standpoint of inter-subject consistency.

Post-Processing

Now that we have reviewed the gRAICAR algorithm, we present our post-processing 

workflow including clustering analysis. To review our workflow after gRAICAR processing, 

we present an example case with two diagnostic groups, 4 subjects in each group and 4 IC 

realizations per subject. For brevity, we assume gRAICAR produces two group-level 

components per group, grpIC1,1 and grpIC1,2 in group 1 as shown in Fig. 3 A, as well as 

grpIC2,1 and grpIC2,2 in group 2, as shown in Fig. 3 B. In this example, the first digit 

represents group enumeration and the second digit represents group-level component index. 

Suppose group-level components grpIC1,1 and grpIC2,2 had the highest inter-subject 

consistency according to gRAICAR analysis in groups 1 and 2, respectively, as shown in 

equations (6) and (7).

∝(Sub 1..Sub 4) grpIC1, 1 > ∝(Sub 1..Sub 4) grpIC1, 2 (6)

∝(Sub 1..Sub 4) grpIC2, 2 > ∝(Sub 1..Sub 4) grpIC2, 2 (7)

We now select these two components for further processing.

For all subjects, we access post-MELODIC analysis results and retrieve spatial maps 

associated with the ICs for each subject corresponding to each selected group-level 

component. We then process these spatial maps in MATLAB wherein the spatial map 

associated with the IC index of the current subject is retrieved and singleton dimensions are 

removed. The resulting array is reshaped using MATLAB’s reshape function (http://

www.mathworks.com/help/matlab/ref/reshape.html) thus giving us a matrix ɸx with 

dimensions px × q where px is the number of subjects in group x and q is the size of each 

spatial map associated with the current IC index. Suppose the size of the spatial map size for 

each subject in this example is 61 ɸ 73 ɸ 61. For group 1 with 4 subjects, ɸ1 is 4 ɸ 61 ɸ 73 

ɸ 61 and the same for group 2 and ɸ2. After all subjects in both groups are processed, we 

combine ɸ1 and ɸ2 matrices from groups 1 and 2 resulting in ɸє, an 8 ɸ 271633 matrix 

representing all individual subject-level maps from all groups. We apply the k-means 
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algorithm, utilized by several studies in the analysis of fMRI data [32] [33] [34], to ɸє to 

examine how subjects were clustered based upon their spatial maps without a priori 

groupings, and how this corresponds to clinically determined diagnostic clusters. We 

minimize the objective function, M, as follows:

M = ∑b = 1
x ϕb − Cb

2
(8)

ɸb represents combined spatial maps from all subjects in group b, Cb represents the mean of 

all points in group b, and x represents the number of groups in the analysis.

We set up the k-means algorithm to partition ɸє into two clusters since we have two example 

subject groups, continuing with the example we presented earlier. Cluster purity, referring to 

true positive rate obtained through k-means clustering analysis, provides us insight into the 

ability of grpIC1,1 and grpIC2,2 to accurately distinguish between the two diagnostic groups. 

If grpIC1,1 and grpIC2,2 do not represent the same functional brain network in both groups, 

or the spatial correlation value between the two group-level components is less than 0.9, we 

take grpIC1,1 from group 1 and find the group-level component, grpIC2,, in group 2 having 

the highest spatial correlation with it thus giving us the same functional network in group 2. 

The ‘.’ in grpIC2, represents the index value of this new-found component. We then find 

grpIC1,, the group-level component in group 1 with the highest spatial correlation with 

grpIC2,2 in group 2, or the component representing the same network as grpIC2,2 in group 1. 

We now merge (grpIC1,1 grpIC2,.) and (grpIC1,. grpIC2,2) and examine cluster purity in both 

cases using the k-means algorithm. The rationale behind this second round of analysis is to 

examine cluster purity values if similar functional brain networks from all groups are 

combined. In other words, this second round of analysis provides insight into the ability of 

similar functional networks to distinguish between the two groups. Having determined these 

reproducible networks and their ability to effectively discriminate between the groups also 

supports furthering our “discover-confirm” approach introduced earlier in this paper. In the 

following section, we review the implementation of this methodology in a software package 

named DisConICA.

Implementation

We have designed DisConICA software to allow users to examine their fMRI data sets using 

the “discover-confirm” approach we have proposed using the reproducibility of independent 

components. It is meant to provide functionality described in our analysis workflow and 

resulting components with minimal effort. The main application was developed in MATLAB 

with wrapped subsidiary applications. We have provided two starting formats for users, 

DICOM or .img/ .hdr file pairs.

Prerequisites—The first version of DisConICA was developed in MATLAB environment 

and hence MATLAB is required to run the software. Another pre-requisite is to define the 

location of FSL software directory in the host system. If this has been accomplished per 

instructions in FSL software (FMRIB Software Library v5.0; https://fsl.fmrib.ox.ac.uk/fsl/

fslwiki), the following command – “echo $FSLDIR” – should display the location of the 

above-mentioned directory. This gives the ability to run FSL’s ‘FEAT’ command described 
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later in FSL analysis. Once the FSL location has been established in the environment, the 

user can execute DisConICA.

In order to utilize this approach, DisConICA is designed to read the following directory 

structure, which the user needs to create:

Main Directory

Group 1

Sub 1

Sub 2

Sub 3

Sub 4

Group 2

Sub 1

Sub 2

Sub 3

Sub 4

In this structure, each subject directory contains DICOM or NIfTI Hdr/Img pair files. The 

current version of DisConICA has been limited to three diagnostic groups due to external 

processing constraints. This limitation is discussed later in this paper. An example structure 

has been discussed under gRAICAR algorithm and we continue with the same example that 

includes two groups – Group 1 and Group 2. Consequently, the data structure should be set 

up as follows:

Main Directory/Group 1/Sub 1, Sub 2, Sub 3…,

and

Main Directory/Group 2/Sub 1, Sub 2, Sub 3...

Under each subject, we may have

Sub 1/ 1.dcm,2.dcm,3.dcm,...

or

Sub 1/1. img, 1. hdr,2. img,2. hdr,...

Packaged Software—DisConICA wraps two software packages in addition to its native 

programming. These two packages are Data Processing Assistant for Resting-State fMRI 

[22] (DPARSF, http://www.restfmri.net) and fMRIB Software Library v5.0 [24] [25] (FSL 

by Analysis Group, FMRIB, Oxford, UK). DPARSF uses libraries from Statistical 

Parametric Mapping or SPM (http://www.fil.ion.ucl.ac.uk/spm) and Resting-State fMRI 
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Data Analysis Toolkit (REST 1.7) [23]. DPARSF, SPM and REST are bundled with 

DisConICA software. This not only helps standardize inter-process communications, such as 

those to and from the DisConICA software itself, but also resolves possible software 

conflicts. One of the highlights of DisConICA is that users do not have to deal directly with 

software packages mentioned in this section as DisConICA automates pre-processing whilst 

minimizing user effort. DISCONICA along with test data sets is available for download at 

https://bitbucket.org/mas0047/disconica/downloads/.

User Interface—Minimal user effort was the philosophy behind DisConICA’s user 

interface design. Fig. 4 shows the user interface corresponding to the starting point of the 

software. It was designed to accomplish its goals through methodology proposed in our 

paper with minimal effort on the user’s part. Single stage user interface allows users to enter 

the location where the entire analysis is set to execute. This refers to the main directory as 

described in the prerequisites section. The user then enters repetition time (TR) and selects 

an input format. If the TR is not entered, the program attempts to retrieve this value from 

input data. There are two input format options available: DICOM and .img/ .hdr file pairs. 

Once the user clicks ‘Continue’, background processing takes over.

Main Analysis—The software now ascertains a uniform number of input images or time 

points (DICOM or NIfTI) and alerts the user if any discrepancies are found, discontinuing 

the progress. If a uniform number of images or time points are found for each subject, the 

software sets the location of SPM, REST and DPARSF along with any NIfTI processing 

files necessary for the pre-processing phase. The program includes a separate interface to 

allow users to customize most DPARSF settings. Default settings are available in case 

customization is not needed. It communicates with DPARSF and completes the following 

tasks:

• Sets SPM, REST and DPARSF locations

• Disables options in these other software packages not used in our methodology

• Sets Time Points by examining files per subject

• Sets TR provided by the user

• Sets Slice Timing

• Sets Realignment

• Sets Normalization with Bounding Box [−90 −126 −72;90 90 108] and voxel 

size of 2×2×2

• Sets smoothing with FWHM of 4×4×4

• Sets de-trend and filter range 0.01 – 0.1 Hz

Once started, the software triggers SPM, REST and DPARSF. This processing completes 

steps set in the DPARSF module while the progress can be monitored through SPM and 

REST interfaces. Upon completion, the resulting 3D Img/Hdr pairs are saved in the 

following directory structure per subject:
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MainDirectory/Group1/FunImgNormalizedSmoothedDetrendedFiltered/Subject1, 
Subject2, Subject3…: A similar structure is created for other groups. Once DPARSF steps 

are completed, the software finds locations as described above and collapses all 3D images 

per subject to a single 3D Img/ Hdr pair. This collapsed 3D Img/Hdr pair is now converted to 

4D NIfTI format. The software now creates a directory per group under the main directory 

called ‘Melodic’ as:

MainDirectory/Group1/Melodic: 4D NIfTI images created per subject are now moved to 

this directory. The software prepares to run the Multivariate Exploratory Linear Optimized 

Decomposition into Independent Components (MELODIC) algorithm [26] [27] which will 

decompose 4D data sets using Independent Component Analysis. More information on the 

MELODIC algorithm can be obtained at http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC. In 

order to run FSL MELODIC through DisConICA, the software first creates a design script 

file with the extension ‘fsf (.fsf). This file defines the following steps, some of which are set 

by MELODIC as defaults:

• Location of each subject’s 4D NIfTI (nii) file which is edited and adjusted by 

DisConICA

• High pass frequency cut off point at 100 seconds

• Linear Registration on input data using FEAT functionality before the statistical 

analysis with 12 degrees of freedom

• Resampling resolution which refers to the desired isotropic voxel dimension of 

the resampled data set to 4mm

• Variance normalize time courses so that the estimation is more influenced by 

voxel-wise temporal dynamics than a voxel’s mean signal

• Automatic dimensionality estimation to avoid overfitting. This is achieved by 

using Bayesian estimators for the model order and PCA (principal component 

analysis) to reduce the data prior to IC estimation

• Single-session ICA

• Threshold IC maps at 0.5. MELODIC carries out inference on the estimated 

maps by default using a mixture model and an alternative hypothesis testing 

approach. This threshold level in alternative hypothesis testing refers to a voxel 

that survives thresholding as soon as the probability of being in the active class – 

modelled by the Gamma densities – exceeds the probability of being in the 

background noise class.

This design file is run in the environment using the ‘FEAT’ command of FSL which reads 

the design script file (.fsf) and starts MELODIC IC analysis, e.g. ‘feat design.fsf’. 

MELODIC ICA results are stored under the ‘Melodic’ directory where new directories are 

created by MELODIC for each subject. In this case, the file we specifically need for 

gRAICAR analysis is stored under each subject’s MELODIC ICA directory created by FSL 

MELODIC and called ‘melodic_IC.nii.gz’. A sample location is as follows:
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MainDirectory/Group1/Analysis/Melodic/Subject1.ica/filtered_func_data/
melodic_IC.nii.gz: In this location, Subject1.ica is a directory based upon Subject 1’s 4D 

NIfTI file and holds FSL MELODIC analysis’ results.

We now prepare to run the gRAICAR algorithm. In order to do so, the software creates a 

directory under ‘Analysis’ called ‘gR’. All ICA directories are moved to gR directory as 

follows:

MainDirectory/Group1/Analysis/ gR/Subject1.ica…: The software then creates a shell 

script to calculate the average mask of the group based upon individual masks created by 

FSL and stored in each subject’s ICA directory. As mentioned earlier, users do not have to 

directly interact with FSL and once the script is created, it is run as an environment 

command from within the software. The result is a file called ‘mask.nii.gz’ stored under gR 

directory of the group. In addition, the software creates a list file, subjects.list, that stores the 

names of subject directories. This list file is used by the gRAICAR algorithm. As an 

example, if we had four subjects in Group 1, the gR directory would have the following 

structure:

MainDirectory/Group1/Analysis/gR/Subject1.ica

MainDirectory/Group1/Analysis/gR/Subject2.ica

MainDirectory/Group1/Analysis/gR/Subject3.ica

MainDirectory/Group1/Analysis/gR/Subject4.ica

MainDirectory/Group1/Analysis/gR/mask.nii.gz

MainDirectory/Group1/Analysis/gR/subjects.list

Once the preparation is complete, the software calls the gRAICAR algorithm with the 

location of ‘gR’ directory in addition to those of average mask and the subjects list which 

are also under ‘gR’. It also specifies an output directory name, gROutput, for the algorithm 

to store results in. Once gRAICAR processing is complete, results are stored under 

‘gROutput directory for each group. If we had two groups as an example, we should now 

have the structure created by the gRAICAR algorithm shown in Fig. 5 for each group:

In our example, this structure is created under the following two directories:

MainDirectory/Group1/Analysis/gR/gR_Results

MainDirectory/Group2/Analysis/gR/gR_Results

The gRAICAR algorithm is run at the group-level and ‘computeMaps’ directory holds NIfTI 

(.nii) files of group-level components discovered by the algorithm.

Post-Processing—Once the gRAICAR results are available, the software completes the 

following tasks:
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1. Loads the ‘task_result.mat’ file for each group looking at the result object in this 

file and, specifically, the field obj.result.beta_rank_subjLoad. The lower the 

value of a group-level component in this field, the greater the inter-subject 

consistency.

2. Picks the most reproducible component.

3. For this group-level component, it looks at the ‘obj.result.foundComp’ field of 

the result object to determine which subject level component this group-level 

component maps to.

4. It then retrieves spatial maps for each subject’s IC forming the group-level 

component and combines them. We can call this combination x_vec.

5. Steps 1–4 are repeated for the second and third group (if we have three groups).

6. y_vec is the result of step 4 from Group 2 and the software now combines x_vec 
and y_vec, resulting in a combined matrix, A.

7. The software now runs k-means algorithm on A after defining the centroids as 

the average of x_vec and x_vec respectively. We set the number of clusters equal 

to the number of groups in the analysis.

8. These steps are summarized by Eq. 6 or Deshpande-Syed’s Equation for group 

distinction using ICA reproducibility and clustering.

9. The result of step 7 is a column vector where each row represents a subject along 

with the index of the cluster this subject has been assigned to. These indices help 

us determine cluster purity. Continuing our earlier example of two groups and 4 

subjects in each group, k-means results refer to the following structure:

Group 1 Subject 1 – Cluster 1

Group 1 Subject 2 – Cluster 1

Group 1 Subject 3 – Cluster 1

Group 1 Subject 4 – Cluster 1

Group 2 Subject 1 – Cluster 2

Group 2 Subject 2 – Cluster 2

Group 2 Subject 3 – Cluster 2

Group 2 Subject 4 – Cluster 2

In this example, cluster purity is 1 as all subjects have been identified correctly.

If the most reproducible components selected per group do not represent the same network 

basedupon their spatial correlation values being less than 0.9, the software can take the best 

component from Group 1 used in k-means and calculate its covariance against all group-

level components in Group 2. This step provides the group-level component in Group 2 that 
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represents the same functional network as and, therefore, has the highest covariance with our 

starting component from Group 1. This step is then repeated for the best component from 

Group 2 that was used in k-means. Now we have the group-level component in Group 1 that 

has the highest covariance value with the selected component in Group 2. This additional 

step ensures that the best components we had selected for k-means are matched with a 

component within the same brain network in the opposite group. In this case, the software 

runs k-means after combining an initial component from Group 1 and its counterpart from 

Group 2 and cluster purity is examined. The step is repeated for the initial component from 

Group 2. In our example, we have three cluster purity values. The software, therefore, 

calculates x+1 cluster purity values, where x is the number of groups.

Example Application

Data Overview—Post-traumatic stress disorder (PTSD) is categorized as an anxiety 

disorder and develops after a traumatic event has been experienced [35]. Veterans are at a 

higher risk for developing PTSD as many experience traumatic events during deployment 

and combat. The prevalence of PTSD among veterans deployed to Iraq and Afghanistan 

evaluated anonymously through questionnaires was found to be 6.2 – 12.9% [36]. We used a 

study that included 71 male participants who were also active duty soldiers, to evaluate 

DisConICA. Of these 71 participants, 15 had PTSD, 30 had both PTSD and PCS (post-

concussion syndrome, a chronic sequalae of mild traumatic brain injury - mTBI), and 26 

combat controls. All three groups were matched in age, race and education. In addition, all 

participants had combat experience in Iraq (Operation Iraqi Freedom, OIF) and/or 

Afghanistan (Operation Enduring Freedom, OEF). In this study, PTSD Checklist-5 (PCL-5) 

score, clinician referral, post-concussive symptoms using the Neurobehavioral Symptom 

Inventory (NSI), and medical history including documentation of mTBI(s) were used when 

grouping the subjects [37]. Details regarding inclusion and exclusion criteria for defining the 

three groups can be obtained from Rangaprakash et al, 2017 [37].

Data Acquisition—A 3T Siemens MAGNETOM Verio scanner (Siemens Healthcare of 

Erlangen, Germany) was used for participant scanning using T2* weighted multiband echo 

planar imaging (MB-EPI) sequence in resting state. The participants were asked to keep 

their eyes open and fixated on a white cross displayed with dark background on the screen 

using an Avotec projection system and not think of anything specific. Scanning parameters 

used included a TR (repetition time) of 600ms, TE (echo time) of 30ms, FA (flip angle) at 

55°, multiband factor of 2, anterior to posterior phase encoding direction, voxel size of 

3×3×4 mm3 and 1000 volumes or time points. For acquiring anatomical scan using an 

MPRAGE (magnetization-prepared rapid gradient echo) sequence, we used a TR of 1900 

ms, TE of 2.5ms, FA at 9° and voxel size of 1×1×1 mm3. Brain coverage was limited to the 

cerebral cortex, subcortical structures, midbrain and pons, thus excluding the cerebellum.

Technical Implementation—In order to examine our PTSD dataset, DisConICA was 

provided three (3) input directories representing three subject groups: PTSD, PCS+PTSD, 

and matched combat controls. Each subject had 1000 time points saved in the form of 

DICOM (.dcm) images within each directory, as described in the pre-requisites section. All 

software and processing settings were the same as described in the workflow, processing and 
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implementation phases of DisConICA. During the first stage, DisConICA pre-processed 

these sets using DPARSF. This step created a 4D NIfTI format output file per subject. 

DisConICA then used these 4D NIfTI images to run independent component analysis using 

FSL’s MELODIC functionality. Once the ICs had been computed per subject, DisConICA 

used that information per subject in the gRAICAR algorithm to calculate group-level 

components per group. The most reproducible components were then selected as explained 

earlier by DisConICA, one component per group was then retrieved, combined with all 

selected ones in the other two groups, and k-mean clustering was performed for different 

combinations, ɸє, where є represents the permutational spatial combinations of 127 such 

components from the PTSD, 82 from the PCS+PTSD, and 111 from matched control 

groups. Resulting cluster purities were then determined for the three groups. The 

combination of group-level components, Px from the PTSD group, Sx from the PCS+PTSD 

group, and Cx from the control group, which gave the the highest cluster purities was then 

examined further. We denote these as the primary group-level components. We examined the 

spatial correlation values of Px with all group-level components in PCS+PTSD and control 

groups, those of Sx with all group-level components in PTSD and control groups, and finally 

those of Cx with all group-level components in the PTSD and control groups. Secondary 

group-level components with the highest spatial correlation with primary components were 

identified using the following approach.

ξ = max∑i = 1
ns cov ψ, ψi (9)

In Eq. (9), ξ denotes the highest covariance between the primary group-level component, 

and the secondary group-level component, ψi, from the opposite group with ns identifying 

the total number of components in the opposite group. Secondary group-level components 

thus identified are presented in Table I.

We then performed another set of clustering analyses, on Px combined with Sp
x and Cp

x, on 

Sx combined with Ps
x and Cs

x, and finally on Cx combined with Pc
x and Sc

x. This second 

round of analyses determined whether the reproducible components in each group, when 

paired with the corresponding components with similar spatial distribution in the other 

groups, effectively discriminated between the groups. Finally, for components that 

effectively discriminated between the groups, we performed two-sample t-tests to determine 

whether they were stronger or weaker in the disease groups as compared to the control 

group.

RESULTS

We first present the most reproducible components in the PTSD, PCS+PTSD and control 

groups, i.e. Px, Sx, and Cx, respectively (Figs 6–8). These group-level components, when 

combined and examined using k-means clustering, yielded a cluster purity value of 1 for all 

three clusters, one cluster per group. All three groups were identified with 100% accuracy.

We then combined Px with Sp
x and Cp

x and examined this combination using k-means 

clustering. This combination produced cluster purity values of 0.93 for PTSD group, 0.83 

for PCS+PTSD group, and 0.85 for the control group. The spatial correlation coefficient 
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value between Px and Sp
x or ρ(Px, Sp

x) was 0.68 (p < 0.005) while ρ(Px, CPx) was 0.51 (p < 

0.005).

Sx was then combined with Ps
x and Cs

x and examined using k-means clustering. This 

combination produced cluster purity values of 1 for PTSD group, 0.97 for PCS+PTSD 

group, and 1 for the control group. The correlation coefficient value between Sx and Ps
x or 

ρ(Sx, Ps
x) was 0.55 (p < 0.005) while ρ(Sx, Cs

x) was 0.49 (p < 0.005).

Finally, we combined Cx with Pc
x and Sc

x and examined this combination using k-means 

clustering. This combination produced cluster purity values of 0.87 for PTSD group, 0.97 

for PCS+PTSD group, and 0.92 for the control group. The correlation coefficient value 

between Cx and Pc
x or ρ(Cx, Pc

x) was 0.65 (p < 0.005) while ρ(Cx, Sc
x) was 0.62 (p< 0.005).

We then completed a series of two sample t-tests as described in the previous section. The 

goal was to examine whether there werewere significant between-group differences in the 

strength of the reproducible network(s) discovered in Px, Sx, and Cx, as well as their spatial 

homologues. This round of tests indicated that these networks comprising medial prefrontal 

cortex as shown in Cx were significantly stronger in controls as compared to both PTSD (p < 

0.05 unc., t = 1.67) and PCS+PTSD (p < 0.05 unc., t = 1.67) groups. Also, functional 

networks comprising dorsolateral prefrontal cortex and inferior parietal lobe, shown in Px, 

were significantly stronger as compared to PCS+PTSD (p < 0.05, t = 1.68).

DISCUSSION

In this section, we discuss the main findings of our study. We first present the unique and 

beneficial features of our DisConICA software package. Next, we discuss the significance of 

the results we have obtained from DisConICA analysis of resting state fMRI data acquired 

from PTSD, PCS+PTSD and controls groups, and whether they support the hypotheses 

described earlier in this paper. DisConICA provides users the ability to examine the 

reproducibility of group-level independent components using the gRAICAR algorithm, and 

the ability of these group-level components to distinguish between groups using 

unsupervised learning algorithms such as k-means clustering. A variety of neuroimaging 

softwares provide the ability to view and analyze fMRI data. Functionality in existing 

software packages include, but are not limited to, viewing fMRI data, format conversions 

such as from DICOM to NIfTI, brain extraction, tissue-type segmentation, segmentation of 

subcortical structures, linear and nonlinear registration, voxel-wise analysis of multi-subject 

grey-matter density, longitudinal and cross-sectional analysis of structural changes, and 

structural analysis and include well respected packages such as DPARSF, SPM, FSL, 

Mango, AFNI, BrainNet Viewer, and Brain Voyager among others [29] [30] [31] [32] [38] 

[39] [40]. Taking analyses a step further are standalone packages and sub-packages of the 

aforementioned ones, such as Sci-kit based software, MELODIC, GIFT, and CONN, a 

functional connectivity toolbox, among others, that apply various multivariate functional 

connectivity techniques to fMRI datasets including ICA and group ICA [41] [33] [42] [43] 

[44].

Syed et al. Page 18

Neuroinformatics. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although there are robust fMRI analysis packages available to separately perform different 

steps described in our algorithm, the unique feature of our software is its ability to 

seamlessly interface between different packages and provide a one-stop solution. 

Specifically, the software incorporates ingestion, pre-, and para-processing steps from other 

software packages whilst including an implementation of a “discover-confirm” approach we 

have proposed in this study. The ability to seamlessly interface with other software packages 

provides pre- and para-processing functionality as well as the ability to post-process, 

including but not limited to, the identification of highly reproducible components in each 

input group, the selection and creation of a data set based upon spatial maps of highly 

reproducible independent components, and the application of unsupervised learning 

techniques, k-means clustering algorithm currently, to distinguish between input groups. 

Given that software packages for achieving specific, yet narrow, objectives are continuously 

being released and given that different packages may be better at achieving certain 

objectives compared to others, we feel that the approach of seamless integration and 

communication between different software packages is a model for future software 

development in neuroimaging.

We are implementing our methodology in its entirety in the DisConICA package, with no 

such implementations available in the literature currently. Therefore, a direct comparison 

with packages mentioned earlier is beyond the scope of the current report. However, we 

highlight how our software takes fMRI data analysis a step further. In addition to providing 

and automating all stages of pre-processing, it incorporates techniques to determine and 

analyze the reproducibility of group-level independent components using the gRAICAR 

algorithm [17] and k-means clustering. In DisConICA, the user simply needs to complete 

two tasks to setup the analysis: (i) a pre-determined directory structure where individual 

subject level images are arranged in group-level directories that the subjects belong to, and 

(ii) the availability of the required analysis environment. Other tasks are accomplished 

seamlessly by DisConICA in the background and user responsibilities are minimized. 

DisConICA completes all pre-processing steps emulating our approach and processing 

choices we used. It then uses a “discover-confirm” approach wherein, during the “discover” 

phase, it uses gRAICAR to retrieve reproducible components in each group. During the 

“confirm” phase, it uses unsupervised learning to determine the separation between groups 

based on the reproducible components in each group. During discover and confirm phases, 

individual subject components determined reproducibility and discriminability, respectively. 

The group level components are shown for interpretation purposes and did not impact the 

estimates of reproducibility or discriminability. This is a novel methodological framework 

for investigating discriminative features between diagnostic groups, as opposed to 

performing group-wise statistical tests or supervised classification. DisConICA then 

compares group-level components to find the ones that produce high cluster purities. Once a 

combination with one group-level component from each group that produces the highest 

cluster purity has been identified, group-level components with similar networks in opposite 

groups for each component in this combination are identified using spatial correlation. The 

software combines components with similar networks (i.e. spatial distributions) and 

determines cluster purity once more, per network, to evaluate separation between groups 

based upon these networks. Discriminability is assessed by using the network most 
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reproducible within a group but not in the combined group and the spatial analog of the 

identified network in the other group so that the approach is not circular i.e. (i) Px, Sp
x, Cp

x 

as shown in Fig. 6, (ii) Sx, Ps
x, Cs

x as shown in Fig. 7, and (iii) Cx, Pc
x, Sc

x as shown in Fig. 

8.

gRAICAR is already a publicly available software and we use it as part of our software. 

Therefore, it is important to note the differences relationship between gRAICAR and 

DisConICA. Our software takes a user through the entire process from raw data to pre-, 

para- and post-processing steps including automating and integrating DPARSF, FSL 

MELODIC and gRAICAR. Most importantly, our software allows seamless interaction 

between other software packages including gRAICAR. It then builds upon results and 

completes clustering analysis and reporting. In cases there is enough information about a 

disorder, it confirms the networks between subjects and controls. Where there isn’t much 

information available a priori, it can lead to the discovery of networks relevant to that 

disorder or a research area. In short, gRAICAR is one component of our software, but it 

does much more, as described above.

When the tool was used to study reproducible independent components in the comparison 

between psychiatric populations of PTSD and PCS+PTSD along with controls, we made 

interesting findings. The brain regions involved in the most reproducible components in the 

three groups, i.e. Px, Cx and Sx, were frontal regions including the dorsolateral prefrontal 

cortex (DLPFC) and medial prefrontal cortex (MPFC), the caudate and inferior parietal lobe 

(IPL, also recognized as the temporo-parietal junction or TPJ). These regions are generally 

known to be involved in executive control. Furthermore, statistical tests indicated that these 

networks were the strongest in controls, weaker in PTSD, and the weakest in PCS+PTSD. 

This observation is in agreement with the fact that brain regions involved in executive 

control are impaired in these disorders [45] [37] [46] [47]. PCS+PTSD appeared to be more 

extreme than PTSD, mirroring prior findings [37]. The functional connectivity patterns were 

comparable in general to previous studies [48] [49] [50]. Specifically, our findings 

corroborated with findings from previous studies, which implicate the prefrontal cortex 

(more specifically DLPFC and MPFC) [51] [52] [53] [54], lateral parietal cortex [55] [56] 

[57] [58], and the caudate [59] [60] [61] [62] in these disorders. Given that the DisConICA 

algorithm identifies reproducible components, our findings in these disorders can be utilized 

to further test possible diagnostic instruments and treatment interventions targeting the 

identified brain mechanisms.

Limitations

We now point out some technical limitations of the current version of DisConICA. This 

version has been developed in MATLAB 2014a and 2016, and is not standalone in its 

current shape and form. It also has dependencies on pre-processing software such as 

DPARSF v4.0, FSL v6.0, SPM v8, and REST v1.8. Even though these softwares are 

provided as a part of the DisConICA package, technical and performance impediments in 

these softwares, such as processing times, unavoidably affect the overall performance of 

DisConICA. The current version has been limited to the study of up to three groups, as 
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illustrated in our example application described in this paper. This and other limitations will 

be reviewed in future versions and, hopefully, mitigated.

DisConICA is being designed as a comprehensive rs-fMRI analysis package which accepts 

data in raw formats and applies pre-, para-, and post-processing techniques to implement 

various algorithmic stages of our proposed approach. Due to the amount of processing 

involved, we have benchmarked the performance of our software using two different 

methods of application, interactive or non-batch (NB) and batch-mode (BM). Fig. 9. shows 

processing time comparison for the two data sets: the first dataset has 2 groups with 4 

subjects each and 120 time points and the second dataset has 3 groups with 4 subjects each 

and 1000 time points. Processing stages have been presented along the y-axis. The 

benchmarking was completed in a Lenovo System X HPC Cluster environment where the 

interactive or non-batch mode processing took place on a computing node with 128GB of 

memory and 2 “Haswell” CPUs (10 cores/CPU). The processing time increases significantly 

as the number of time points or subjects increases. We believe that computational 

complexity could be potential limitation of the proposed software. However, we continue to 

explore new high performance technologies as they are introduced, in order to enhance 

processing times, and believe that this is less likely to be an issue in the future.

Storage and memory utilization are another two concerns depending upon the user’s 

computing environment. Since DisConICA has been designed to accept raw input data and 

apply all pre-, para-, and post-processing steps, the amount of memory increases 

significantly at run-time. During benchmarking, we noticed that a raw data set at 105 MB 

with 4 subjects and 120 time points increased in size to 1.4 GB whereas another raw data set 

with 4 subjects and 1000 time points initially at 899 MB grew to around 10 GB. This 

involves various phases of computation including ICA and gRAICAR analysis. A user 

would need to take these environmental constraints into consideration before proceeding 

with a larger data set. Processing may not proceed successfully if enough memory is not 

allocated during these stages.

Future Work

The current version of DisConICA has been written in MATLAB version 2014a but tested 

with the 2016 version as well. It runs on a UNIX platform (although, it can run on Windows 

platform with some modifications, which will be forthcoming in the future) and takes 

advantage of multi-processor environments for faster processing.

We would like to note some important differences between our approach and the 

bootstrapping analysis of stable cluster (BASC) approach proposed by Bellec et al. 

[65]. They perform clustering of fMRI time series themselves and the resting state 

networks are defined based on these clustering, while our definition of resting state 

networks are based on ICA. It is generally understood that the spatial independence 

condition of ICA may be more suitable for identifying resting state networks 

whereas clustering fMRI time series may be more appropriate to obtain brain 

parcellations. That said, we do acknowledge that the bootstrapping methodology 

employed by them is generalizable and it is conceivable that such a methodology 

may be employed to assess the stability of resting state networks discovered 
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through ICA. Future work must attempt to assess the comparative utility of 

gRAICAR and BASC in assessing reproducibility of resting state networks. Future 

work must also attempt to evaluate the utility of our approach in various domains of 

application such as lifespan studies [47].
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Fig. 1. 
A. Work flow diagram illustrating the 4 phases of gRAICAR algorithm. B. An illustration of 

the implementation of gRAICAR algorithm using a sample data set of 3 subjects, each with 

4 subject-level ICs. Phase 1 involves multiple ICA decompositions for each subject. Phase 2 

involves creating a full similarity matrix (FSM). ICs are aligned based upon similarity 

metrics in phase 3. In phase 4, ICs are averaged based upon reproducibility matrices.
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Fig. 2. 
A. Block structure of full similarity matrix (FSM) based upon an example set with 3 subjects 

and 2 sets of subject-level components (RZ, a set of ICs produced after two ICA 

decompositions). In this example, each block shows similarity between 2 pairs of RZs from 

the same subject or two different subjects. Also, RZ 11–31 indicates inter-subject similarity 

between RZ 1 of subject 1 and RZ 1 of subject 3. The first digit in 11 is an index to the 

subject whereas the second is an index to the RZ. Highlighted, on the diagonal blocks 

indicate similarity within the components of a subject or intra-subject similarity whereas off 

diagonal ones indicate that between the components of two different subjects. B. RZ 21–31 

represents RZ 1 of subject 2 and RZ 1 of subject 3 and has been found to be the global 

maximum in this example. C. Determine block-wise maxima with highlighting in each block 

such as RZ 21–11 in row 2 and column 1. Global maximum in this figure has been 

highlighted in addition.
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Fig. 3. 
A. A toy illustration of the analysis workflow. gRAICAR analysis on ICs estimated from 

fMRI data corresponding to Group 1 is assumed to produce group-level components 

grpIC1,1 and grpIC1,2. Let us suppose that grpIC1,1 has highest inter-subject consistency in 

Group 1 and hence be selected for further processing. B. A toy illustration of the analysis 

workflow. gRAICAR Analysis on ICs estimated from fMRI data corresponding to Group 2 

is assumed to produce group-level components grpIC2,1 and grpIC2,2. Let us suppose that 

grpIC2,2 has highest inter-subject consistency in Group 2 and hence be selected for further 
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processing. C. The spatial maps at the individual subject level corresponding to group-level 

components from Fig. 3 A and Fig. 3 B, i.e. the most reproducible ICs within each group, 

are obtained and entered into a k-means clustering analysis in order to determine their ability 

to discriminate between the groups.
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Fig. 4. 
DisConICA’s user interface with options described under “User Interface” section of this 

paper.
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Fig. 5. 
Directory structure created by the gRAICAR algorithm in MATLAB
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Fig. 6. 
A. Spatial map of the group-level component, Px from PTSD group, that was most 

reproducible within the PTSD group as well as produced the highest cluster purity when 

combined with Sx from PCS+PTSD group and Cx from the controls group. DLPFC 

(Dorsolateral prefrontal cortex) and IPL (inferior parietal lobe, also called the temporo-

parietal junction or TPJ) have been identified as well. B. Spatial map of the group-level 

component, Sp
x from PCS+PTSD group, that was found to have the highest spatial 

correlation with and correspondence to Px Fig. 6 A. DLPFC (Dorsolateral prefrontal cortex) 

and IPL (inferior parietal lobe) have been identified. C. Spatial map of the group-level 

component, Cp
x from the controls group, that was found to have the highest spatial 

correlation with and correspondence to Px (Fig. 6 A). DLPFC (Dorsolateral prefrontal 

cortex) and IPL (inferior parietal lobe) have been identified.
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Fig. 7. 
A. Spatial map of the group-level component, Sx from PCS+PTSD group, that was most 

reproducible within the PCS+PTSD group as well as produced the highest cluster purity 

value when combined with Px from PTSD group and Cx from the controls group. Caudate 

and MPFC (medial prefrontal cortex) have been identified as well. B. Spatial map of the 

group-level component, Ps
x from PTSD group, which was found to have the highest spatial 

correlation with and correspondence to Sx (Fig 7 A). Caudate and MPFC (medial prefrontal 

cortex) have been identified as well. C. Spatial map of the group-level component, Cs
x from 

the controls group, which was found to have the highest spatial correlation with and 

correspondence to Sx (Fig. 7 A). Caudate and MPFC (medial prefrontal cortex) have been 

identified as well.
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Fig. 8. 
A. Spatial map of the group-level component, Cx from controls group, that was most 

reproducible within the control group as well as produced the highest cluster purity value 

when combined with Px from PTSD group and Sx from PCS+PTSD group. MPFC (Medial 

prefrontal cortex) has been identified as well. B. Spatial map of the group-level component, 

Pc
x from PTSD group, which was found to have the highest spatial correlation with and 

correspondence to Cx (Fig. 8 A). MPFC (Medial prefrontal cortex) has been identified as 

well. C. Spatial map of the group-level component, Sc
x from PCS+PTSD group, that was 

found to have the highest spatial correlation with and correspondence to Cx (Fig. 8 A). 

MPFC (Medial prefrontal cortex) has been identified as well.

Syed et al. Page 35

Neuroinformatics. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Processing time comparison (in seconds, shown on x-axis) between two data sets (the first 

dataset has 2 groups with 4 subjects each and 120 time points and the second dataset has 3 

groups with 4 subjects each and 1000 time points) and two execution modes: interactive or 

non-batch (NB) and batch-mode (BM). Processing stages have been presented along the y-

axis.
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Table 1

Notations used to refer to group-level components used in our analysis and described in the technical 

implementation section. This table shows the secondary components, the groups they belong to, and the 

primary component most significantly spatially correlated to each secondary component.

Secondary Component Group Primary Component

Sp
x PCS+PTSD Px

Cp
x Control Px

Pc
x PTSD Cx

Sc
x PCS+PTSD Cx

Ps
x PTSD Sx

Cs
x Control Sx
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